Exercise 1 (Simple questions).

1. At which conditions is a language $A \subset \{0,1\}^*$ hard for NL under polynomial-time reductions?

2. Give an example of a non proper monotone function.

Exercise 2 (Graph representation and why it does not matter). In the definition of PATH, we did not specify which graph representation is used. In fact, this does not matter as the two usual representations (by adjacency list or matrix) are log-reducible from one another.

Let $\Sigma = \{0, 1, /, \bullet, \#\}$ with $\#$ the end-of-word symbol. For a directed graph $G = (V, E)$ with $V = [0, n - 1]$ for some $n \in \mathbb{N}$ and $E \subseteq V \times V$, we consider the following two representations of G by a word in Σ^*:

- By its adjacency matrix $m_G \in \Sigma^*$:

 $$m_G \overset{\text{def}}{=} m_{0,0} m_{0,1} \ldots m_{0,n-1} \bullet \cdots \bullet m_{n-1,0} \ldots m_{n-1,n-1} \#$$

 where for all $0 \leq i, j < n$, $m_{i,j}$ is 1 if $(i, j) \in E$, 0 otherwise.

- By its adjacency list $l_G \in \Sigma^*$:

 $$l_G \overset{\text{def}}{=} k_0^0 / \ldots / k_m^0 \bullet \cdots \bullet k_{m-1}^{n-1} / \ldots / k_{m-1}^{n-1} \#$$

 where for all $0 \leq i < n$, $k_i^0, \ldots, k_i^{m_i}$ are binary words listing the (codes of) right neighbors of vertex i.

1. Show that it is possible to check in logarithmic space that a word $w \in \Sigma^*$ is a well-formed description of a graph (for any of the two representations).

2. Describe a logarithmic space bounded deterministic Turing machine taking as input a graph G, represented by its adjacency matrix, and computing the adjacency list representation of G.

3. Show that is f and g are computable in logarithmic space, $f \circ g$ is computable in logarithmic space.

4. Let L be a NL-complete language, let f and L' be such that f is logarithmic space computable and $L' \in \text{NL}$ and for all x we have $x \in L$ iff $f(x) \in L'$, show that L' is NL complete.
Exercise 3 (Restrictions in the definition of $\text{SPACE}(f(n))$). In the course, we restricted our attention to Turing machines that always halt, and whose computations are space-bounded on every input. In particular, remember that $\text{SPACE}(f(n))$ is defined as the class of languages L for which there exists some deterministic Turing machine M that always halts (i.e. on every input), whose computations are $f(n)$ space-bounded (on every input), such that M decides L.

Now, consider the following two classes of languages:

- $\text{SPACE}'(f(n))$ is the class of languages L such that there exists a deterministic Turing machine M, running in space bounded by $f(n)$, such that M accepts x iff $x \in L$. Note that if $x \notin L$, M may not terminate.

- $\text{SPACE}''(f(n))$ is the class of languages L such that there exists a deterministic Turing machine M such that M accepts x using space bounded by $f(n)$ iff $x \in L$ (M may use more space and not even halt when $x \notin L$).

1. Show that for a space-constructible function f, $\text{SPACE}'(f) = \text{SPACE}(f)$
2. Show that for a space-constructible function f, $\text{SPACE}''(f) = \text{SPACE}(f)$

Exercise 4 (Inclusions of complexity classes). Show that for a space-constructible function f,

$$\text{NSPACE}(f(n)) \subseteq \text{DTIME}(2^{O(f(n))} + O(n))$$

Exercise 5 (Dyck’s language). Let A be the language of balanced parentheses (i.e. generated by the grammar $S \rightarrow (S) | SS | \varepsilon$). Show that $A \in L$. What about the language of balanced parentheses of two types (i.e. generated by $S \rightarrow (S) | [S] | SS | \varepsilon$)?

Exercise 6 (A few NL-complete problems). Show that the following problems are NL-complete.

1. Deciding if a non-deterministic automaton A accepts a word w.
2. Deciding if a directed graph is strongly connected.
3. Deciding if a directed graph has a cycle.

Bonus (Space hierarchy theorem). Consider two space-constructible functions f and g such that $f = o(g)$. Prove that $\text{DSPACE}(f) \subseteq \text{DSPACE}(g)$.

2