Algorithmic Aspects

of WQO (Well-Quasi-Ordering) Theory
Part 1V: Ideals of WQOs and Their Algorithms

Sylvain Schmitz & Philippe Schnoebelen
LSV, CNRS & ENS Cachan

ESSLLI 2016, Bozen/Bolzano, Aug 22-26, 2016

Lecture notes & exercises available at
http://www.lsv.fr/~schmitz/teach/2016_esslli

http://www.lsv.fr/~schmitz/teach/2016_esslli

IF YOU MISSED PART |

(X,<) is a well-quasi-ordering (a wqo) if any infinite sequence
X0,X1,X2... Over X contains an increasing pair x; < x; (for some i <j)

Examples.
1. (N*,<) is a wqo (Dickson’s Lemma)
where, e.g., (3,2,1) <« (5,2,2) but (1,2,3) €« (5,2,2)

2. (Z*,<4) is awgo (Higman’s Lemma)
where, e.g., abc <4 bacbc but cba €4 bacbce

IF YOU MISSED PART |

(X,<) is a well-quasi-ordering (a wqo) if any infinite sequence
X0,X1,X2... Over X contains an increasing pair x; < x; (for some i <j)

Examples.
1. (N*,<) is a wqo (Dickson’s Lemma)

where, e.g., (3,2,1) <« (5,2,2) but (1,2,3) €« (5,2,2)
2. (Z*,<4) is awgo (Higman’s Lemma)

where, e.g., abc <4 bacbc but cba €4 bacbce

Motivation for remaining two lectures:

e WQO-based algorithms often have to handle/reason about infinite
upward- or downward-closed sets

e This is a non-trivial subtask

e But there exists a powerful & generic approach via ideals

OUTLINE FOR PART IV

» The need for data structure and algorithms for closed subsets
» |deals and filters : basics
» Effective ideals and filters

» The Valk-dantzen-Goubault-Larrecq algorithm

v

Building complex effective wqos from simpler ones : tuples,
sequences, powersets, substructures, weakening, etc.

HANDLING UPWARD-CLOSED SUBSETS

When verifying safety for a WSTS we computed upward-closed
subsets :

B < PreSY(B) € PreS?(B) < --- < UPregm(B) = Pre*(B)
m

How does one do this? Let’s assume we are in (N2,<) and
consider upward-closed subsets U,U’,V, ..

HANDLING UPWARD-CLOSED SUBSETS

When verifying safety for a WSTS we computed upward-closed
subsets :

B < PreSY(B) € PreS?(B) < --- < UPregm(B) = Pre*(B)
m

How does one do this? Let’s assume we are in (N2,<) and
consider upward-closed subsets U,U’,V, ..

There is the finite basis presentation:

U=1(a;,by)u---ul(agby) V=1(c1,d1)u---Ul(cm,dm)

HANDLING UPWARD-CLOSED SUBSETS

When verifying safety for a WSTS we computed upward-closed
subsets :

B < PreSY(B) € PreS?(B) < --- < UPregm(B) = Pre*(B)
m

How does one do this? Let’s assume we are in (N2,<) and
consider upward-closed subsets U,U’,V, ..

There is the finite basis presentation:
U="1(ay,br)u---ut(agby) V=1(c1,d1)u---Ul(cm,dm)

How does one compute with this representation:
» How do we compare U ? E.g. test whether Uc V' ?

HANDLING UPWARD-CLOSED SUBSETS

When verifying safety for a WSTS we computed upward-closed
subsets :

B < PreSY(B) € PreS?(B) < --- < UPregm(B) = Pre*(B)
m

How does one do this? Let’s assume we are in (N2,<) and
consider upward-closed subsets U,U’,V, ..

There is the finite basis presentation:
U="1(ay,br)u---ut(agby) V=1(c1,d1)u---Ul(cm,dm)

How does one compute with this representation:
» How do we compare U ? E.g. test whether Uc V' ?

» How dowe addto U ? E.g. perform U —UuV

HANDLING UPWARD-CLOSED SUBSETS

When verifying safety for a WSTS we computed upward-closed
subsets :

B < PreSY(B) € PreS?(B) < --- < UPregm(B) = Pre*(B)
m

How does one do this? Let's assume we are in (N2,<y) and
consider upward-closed subsets U,U’,V, ..

There is the finite basis presentation:
U="1(ay,br)u---ut(agby) V=1(c1,d1)u---Ul(cm,dm)

How does one compute with this representation:
» How do we compare U ? E.g. test whether Uc V' ?

» How dowe addto U ? E.g. perform U —UuV

» How do we remove from U ? E.g. perfform U —UnV

UPWARD-CLOSED SUBSETS OF (X*,<,)

Let us consider words with subword ordering, e.g., for lossy channel
systems:

U="tabcu---utddca V=1bbu---

UPWARD-CLOSED SUBSETS OF (X, <,)

Let us consider words with subword ordering, e.g., for lossy channel
systems:

U="tabcu---utddca V=1bbu---

How do we compare such sets?

How do we add to them ?

UPWARD-CLOSED SUBSETS OF (X, <,)

Let us consider words with subword ordering, e.g., for lossy channel
systems:

U="tabcu---utddca V=1bbu---

How do we compare such sets?
How do we add to them ?

How do we remove from them ? E.g., how do we perform U — U nV?

UPWARD-CLOSED SUBSETS OF (X, <,)

Let us consider words with subword ordering, e.g., for lossy channel
systems:

U="tabcu---utddca V=1bbu---

How do we compare such sets?

How do we add to them ?

How do we remove from them ? E.g., how do we perform U — U nV?
And howdowedo U« U\ |ba ?

UPWARD-CLOSED SUBSETS OF (X*,<,)

Let us consider words with subword ordering, e.g., for lossy channel
systems:

U=1tabcu---utddca V=1bbu---

How do we compare such sets?

How do we add to them ?

How do we remove from them ? E.g., how do we perform U — U nV?
And howdowedo U« U\ |ba ?

Bottom line: These are feasible but not trivial !

Question 1: Can we handle IN* and £* efficiently ?

Question 2: And what about other WQOs? Recall the example with
(N?)*

WHAT ABOUT DOWNWARD-CLOSED SUBSETS?

Problem: can’t always be represented under the form
D=|xqu---uUlxg

WHAT ABOUT DOWNWARD-CLOSED SUBSETS?

Problem: can’t always be represented under the form
D=|xqu---uUlxg

Recall: D can always be represented by excluded minors:
D=X\xtTmi\Tmy---\Tmy

This amountsto D = -UwithU=1Tmj u--- U Tmy.

WHAT ABOUT DOWNWARD-CLOSED SUBSETS?

Problem: can’t always be represented under the form
D=|xiu---ulxg

Recall: D can always be represented by excluded minors:
D=X\tTmy\ITmy--- N\ Tmy
This amounts to D = U with U = tmj u--- U Tm,.

Problem: Not very convenient for simple sets:
— How do you represent [(2,2) ? |ab ?
— How do you compute D uD’ ?

WHAT ABOUT DOWNWARD-CLOSED SUBSETS?

Problem: can’t always be represented under the form
D=|xiu---ulxg

Recall: D can always be represented by excluded minors:
D=X\tTmy\ITmy--- N\ Tmy
This amounts to D = U with U = tmj u--- U Tm,.

Problem: Not very convenient for simple sets:
— How do you represent [(2,2) ? |ab ?
— How do you compute D uD’ ?

There is a better solution: decompose into primes!

PRIMES, UP AND DOWN

Fix (X,<) WQO and consider Up(X) = {U,U’,...} and
Down(X) = {D,D’,...}

Def. 1. U (# &) is (up-) prime Euc (U; uUy) implies U< U; or
ucu,.

2. D (# &) is (down-) prime D (D7 uDy) implies D < D; or
D < D».

Examples: for any x € X, 1x is up-prime and |x is down-prime

Lem. (Irreducibility)
1. Uis prime iff U=U; u---u Uy implies U = U; for some i
2.Disprimeiff D=Dju---uDy implies D = D; for some i

Lem. (Existence of Prime Decompositions, aka Completeness)
1. Every U e Up is a finite union of up-primes
2. Every D € Down is a finite union of down-primes

MINIMAL PRIME DECOMPOSITIONS

Def. A prime decomposition U (or D) = P; U --- U Py, is minimal

% vi,j: P; = P; implies i = j.

Thm. Every U (or D) has a unique minimal prime decomposition. It is
called its canonical decomposition

MINIMAL PRIME DECOMPOSITIONS

Def. A prime decomposition U (or D) = P; U --- U Py, is minimal
def
< Vi,j:Py < Py implies i =j.

Thm. Every U (or D) has a unique minimal prime decomposition. It is
called its canonical decomposition

Thm. (Primes are Filters/Ideals)
1. The up-primes of X are exactly the 1x for x € X (the principal filters)
2. The down-primes of X are exactly the ideals of X (see below)

Def. An ideal I of X is a non-empty directed downward-closed subset
Recall: I directed & x,yel = Jzel:x<z>y
Example: any |x is an ideal (called a principal ideal)

Example: If x; <x, <xz...is an increasing sequence then [J; |x; is
an ideal

Exercise: Take D = {(a,b) | min(a,b) <3 v max(a,b) < 7} in N?

NAILING DOWN THE IDEALS

The ideals of (IN, <) are exactly all |n together with IN itself
Hence (IdI(N),c) = (Nu{w}, <), denoted N, (= w + 1)

NAILING DOWN THE IDEALS

The ideals of (IN, <) are exactly all |n together with IN itself
,<

Hence (IdI(N),c) = (N u {w}, <), denoted N, (= w + 1)

Thm. The ideals of (X1 x X,,<x) are exactly the J; x J, for J; an
ideal of X; (i=1,2)

NAILING DOWN THE IDEALS

The ideals of (IN, <) are exactly all |n together with IN itself
,<

Hence (IdI(IN),c) = (N u {w}, <), denoted N, (= w + 1)

Thm. The ideals of (X1 x X,,<x) are exactly the J; x J, for J; an
ideal of X; (i=1,2)

Hence (Idl(X1 x X3),€) = Idl(X1,<) x I[dl(X3,<) Very nice Il
Coro. The ideals of (N¥,<) are handled like N,

Example: Assume U =1(2,2)and D = |[(4,w) U |(6,3).
What is U\ D and D\ U?

IDEALS FOR (X*,<.)?

Recall: |w is an ideal for any w e £*.
E.g. labc = {abc,ab,ac,bc,a,b,c, e}

IDEALS FOR (X*,<.)?

Recall: |w is an ideal for any w e £*.
E.g. labc = {abc,ab,ac,bc,a,b,c, e}

What else?

o X*7?

e (ab)* = {e,ab,abab,ababab,...} ?

e a*+b*={€,q,aqa,aaq,...,b,bb,bbb,...} ?
e (a+b)*?

IDEALS FOR (X*,<.)?
Recall: |w is an ideal for any w e £*.
E.g. labc = {abc,ab,ac,bc,a,b,c, e}
What else?
o X* 7
e (ab)* = {e,ab,abab,ababab,...} ?

e a*+b*={€,a,aq,aaq,...,b,bb,bbb,..

e (a+b)*?

Lem. I-JeIdi(X*) forall I,] € IdI(Z*)

17

IDEALS FOR (Z*,<,)?

Recall: |w is an ideal for any w e £*.
E.g. labc = {abc,ab,ac,bc,a,b,c, e}

What else?

o X*7?

e (ab)* = {e,ab,abab,ababab,...} ?

e a*+b*={€,q,aqa,aaq,...,b,bb,bbb,...} ?
e (a+b)*?

Lem. I-JeIdi(X*) forall I,] € IdI(Z*)
Thm. The ideals of Z* are exactly the concatenation products

P=A;-A,---A, for atoms of the form A = |a = {a,e} withae Z or
A=T*withTc L.

IDEALS FOR (Z*,<,)?

Recall: |w is an ideal for any w e £*.
E.g. labc = {abc,ab,ac,bc,a,b,c, e}

What else?

o X*7?

e (ab)* = {e,ab,abab,ababab,...} ?

e a*+b*={€,q,aqa,aaq,...,b,bb,bbb,...} ?

e (a+b)*?

Lem. I-JeIdi(X*) forall I,] € IdI(Z*)

Thm. The ideals of Z* are exactly the concatenation products
P=A;-A,---A, for atoms of the form A = |a = {a,e} withae Z or

A=T*withl'cX.

Exercise. Use this to compute X* \ tbad

WHAT DO WE WANT FOR HANDLING (X, <)?

Def. X is ideally effective &

R): X is recursive

D): < is decidable over X
R): IdI(X) is recursive
D): c is decidable over IdI(X)

F):F=1x——F= X\F—Ilu -u I, is recursive

) () Fl,FzHFl ﬂF2=TX1U-~~ and 11,12'—>11m12=]1u---

e recursive
M): membership x € 1 is decidable over X and Idl(X)
F)&(XD):X=F,u---Fpand X =1; u--- 1, are effective

(X
©
(1
(I
(C
(Ch:I+— —I=1x1U-- U Txn is recursive
(I
ar
(I
(X
(Pl): x — |x is recursive

WHAT DO WE WANT FOR HANDLING (X, <)?

Def. X is ideally effective &

R): X is recursive

D): < is decidable over X
R): IdI(X) is recursive
D): c is decidable over IdI(X)

F):F=1x——F= X\F—Ilu -u I, is recursive

) () Fl,FZHFl ﬂF2=TX1U-~~ and 11,12'—>11m12=]1u---

X
©
(I
(I
(C
(Ch:I+— —I=1x1U-- U Txn is recursive
(I
are recursive

(IM): membership x € I is decidable over X and IdI(X)
(XF) & (X): X=F,u---Fpand X =1; u--- I}, are effective
(P1): x — |x is recursive

Examples: Is (IN, <) ideally effective?

What about (Z*, <) ?

VALK-JANTZEN-GOUBAULT-LARRECQ ALGORITHM

Thm. If (X, <) satisfies the first 4 axioms above and (CF), (Il),
(PD,(XI) then it is ideally effective.

VALK-JANTZEN-GOUBAULT-LARRECQ ALGORITHM

(XR): Xis recursive

(OD): < is decidable over X

(IR): IdI(X) is recursive

(ID): < is decidable over IdI(X)

(CF):F=1x— —-F=X\F=1; u---ul, is recursive
(Ch:1— —=I=1x7 U---U Txp, iS recursive

(|F) & (”) Fi,Fo—F ﬂFZ =TXxX1uU--- and I,L—I1nl = Il U
are recursive

(IM): membership x € I is decidable over X and IdI(X)
(XF) & (XI): X=F, u---Fpand X =1; u --- 11 are effective
(Pl): x — |x is recursive

Proof. We first show (CD) %' that one can design a recursive
D=11U---InHﬁD=u=TX1UTX2U---

For this, set Uy = & and, as long as —U; & D, we pick some

x € —U; n—D and set U;; = U; u Tx. Eventually U; = —D will
happen

VALK-JANTZEN-GOUBAULT-LARRECQ ALGORITHM

XR): X is recursive

OD): < is decidable over X

IR): IdI(X) is recursive

D): c is decidable over IdI(X)
(CF):F=1x——-F=X\F=1; u---ul, is recursive

(Cl): I— —I=1x1uU--- U Txn IS recursive

(IF) & (I): F1,F2 = Fy ﬂFzzTMU'“ and I, b—>Iinla=J1u--
are recursive

(IM): membership x € I is decidable over X and Idl(X)

(XF) & (X): X=F,u---Fpand X =1; u--- I}, are effective
(Pl): x — |x is recursive

(
(
(
(

[
C
C
IF

Proof. Then we get (IF) from (CD) and (Cl), by expressing
intersection as dual of union, (IM) from (PI) and (ID), (XF) from (CD)
by computing - &

CONSTRUCTING IDEALLY EFFECTIVE WQOSs

e (X xY,<y) isideally effective when X and Y are.

CONSTRUCTING IDEALLY EFFECTIVE WQOs

o (X xY,<yx) is ideally effective when X and Y are.

e (X*, <) is ideally effective when X is. The ideals are the products
of atoms A = D* for D € Down(X) and A = |I for I € IdI(X)

CONSTRUCTING IDEALLY EFFECTIVE WQOs

o (X xY,<yx) is ideally effective when X and Y are.

e (X*, <) is ideally effective when X is. The ideals are the products
of atoms A = D* for D € Down(X) and A = |I for I € IdI(X)

e (XuY,<,) is ideally effective when X and Y are.
[AI(XuY) = [dI(X) uIdl(Y).

CONSTRUCTING IDEALLY EFFECTIVE WQOs

o (X xY,<yx) is ideally effective when X and Y are.

e (X*, <) is ideally effective when X is. The ideals are the products
of atoms A = D* for D € Down(X) and A = |I for I € IdI(X)

e (XuY,<,) is ideally effective when X and Y are.
[AI(XuY) = [dI(X) uIdl(Y).

o X Xjex Y and X L Y are ideally effective when ..

CONSTRUCTING IDEALLY EFFECTIVE WQOs

o (X xY,<yx) is ideally effective when X and Y are.

e (X*, <) is ideally effective when X is. The ideals are the products
of atoms A = D* for D € Down(X) and A = |I for I € Idl(X)

e (XuY,<,) is ideally effective when X and Y are.
[AI(XuY) = [dI(X) uIdl(Y).

o X Xjex Y and X L Y are ideally effective when ..

e P¢(X) and M¢(X) are ideally ..

CONSTRUCTING IDEALLY EFFECTIVE WQOs

o (X xY,<yx) is ideally effective when X and Y are.

e (X*, <) is ideally effective when X is. The ideals are the products
of atoms A = D* for D € Down(X) and A = |I for I € Idl(X)

e (XuY,<,) is ideally effective when X and Y are.
[AI(XuY) = [dI(X) uIdl(Y).

o X Xjex Y and X L Y are ideally effective when ..
e P¢(X) and M¢(X) are ideally ..

e T(X) is ideally effective when X is but the ideals are highly complex

CONSTRUCTING MORE IDEALLY EFFECTIVE WQOSs

e Assume (X, <) is an extension of (X,<), i.e., <c<’. Then
(X, <) = {l< 1| Teldl(X,<)}.

Furthermore (X, <’) is ideally effective when (X, <) is and the
functions

I—=|ol=Tu---ulp and Tx—=Tgax=Tx1 U U TxXm

are recursive

Example. Subwords cum conjugacy:
abcd <() acbadbbdbdbdbadbc

CONSTRUCTING MORE IDEALLY EFFECTIVE WQOSs

e Assume (X, <’) is an extension of (X,<), i.e., <c<’. Then
X, <) ={l< 1| Teldl(X,<)}.

Furthermore (X, <’) is ideally effective when (X, <) is and the
functions

I—=|ol=Tu---ulp and Tx—=Tgax=Tx1 U U TxXm
are recursive

Example. Subwords cum conjugacy:
abed <) acbadbbdbdbdbadbce

Now a new research program :
» Characterize ideals

» Find algorithms for ideally effective wqos

» Find smarter algorithms and data structures

