Algorithmic Aspects of WQO (Well-Quasi-Ordering) Theory Part IV: Ideals of WQOs and Their Algorithms

Sylvain Schmitz & Philippe Schnoebelen

LSV, CNRS & ENS Cachan

ESSLLI 2016, Bozen/Bolzano, Aug 22-26, 2016

Lecture notes & exercises available at

http://www.lsv.fr/~schmitz/teach/2016_esslli

IF YOU MISSED PART I

 (X, \leqslant) is a well-quasi-ordering (a wqo) if any <u>infinite</u> sequence $x_0, x_1, x_2...$ over X contains an increasing pair $x_i \leqslant x_j$ (for some i < j)

Examples.

- 1. $(\mathbb{N}^k, \leq_{\times})$ is a wqo (Dickson's Lemma) where, e.g., $(3,2,1) \leq_{\times} (5,2,2)$ but $(1,2,3) \leq_{\times} (5,2,2)$
- 2. (Σ^*, \leq_*) is a wqo (Higman's Lemma) where, e.g., $abc \leq_* bacbc$ but $cba \leq_* bacbc$

Motivation for remaining two lectures:

• WQO-based algorithms often have to handle/reason about infinite upward- or downward-closed sets

- This is a non-trivial subtask
- But there exists a powerful & generic approach via ideals

IF YOU MISSED PART I

 (X, \leqslant) is a well-quasi-ordering (a wqo) if any <u>infinite</u> sequence $x_0, x_1, x_2...$ over X contains an increasing pair $x_i \leqslant x_j$ (for some i < j)

Examples.

- 1. $(\mathbb{N}^k, \leq_{\times})$ is a wqo (Dickson's Lemma) where, e.g., $(3,2,1) \leq_{\times} (5,2,2)$ but $(1,2,3) \leq_{\times} (5,2,2)$
- 2. (Σ^*, \leq_*) is a wqo (Higman's Lemma) where, e.g., $abc \leq_* bacbc$ but $cba \leq_* bacbc$

Motivation for remaining two lectures:

- WQO-based algorithms often have to handle/reason about infinite upward- or downward-closed sets
- This is a non-trivial subtask
- But there exists a powerful & generic approach via ideals

OUTLINE FOR PART IV

- The need for data structure and algorithms for closed subsets
- Ideals and filters : basics
- Effective ideals and filters
- The Valk-Jantzen-Goubault-Larrecq algorithm
- Building complex effective wqos from simpler ones : tuples, sequences, powersets, substructures, weakening, etc.

When verifying safety for a WSTS we computed upward-closed subsets :

$$B \subseteq Pre^{\leq 1}(B) \subseteq Pre^{\leq 2}(B) \subseteq \dots \subseteq \bigcup_{m} Pre^{\leq m}(B) = Pre^{*}(B)$$

How does one do this? Let's assume we are in $(\mathbb{N}^2, \leq_{\times})$ and consider upward-closed subsets U, U', V, ..

There is the finite basis presentation:

$$\mathbf{U} = \uparrow (\mathbf{a_1}, \mathbf{b_1}) \cup \cdots \cup \uparrow (\mathbf{a_\ell}, \mathbf{b_\ell}) \quad \mathbf{V} = \uparrow (\mathbf{c_1}, \mathbf{d_1}) \cup \cdots \cup \uparrow (\mathbf{c_m}, \mathbf{d_m})$$

- How do we compare U ? E.g. test whether $U \subseteq V$?
- ▶ How do we add to U ? E.g. perform $U \leftarrow U \cup V$
- ▶ How do we remove from U ? E.g. perform $U \leftarrow U \cap V$

When verifying safety for a WSTS we computed upward-closed subsets :

$$B \subseteq Pre^{\leq 1}(B) \subseteq Pre^{\leq 2}(B) \subseteq \dots \subseteq \bigcup_{m} Pre^{\leq m}(B) = Pre^{*}(B)$$

How does one do this? Let's assume we are in $(\mathbb{N}^2, \leq_{\times})$ and consider upward-closed subsets U, U', V, ..

There is the finite basis presentation:

$$U = \uparrow(a_1, b_1) \cup \cdots \cup \uparrow(a_\ell, b_\ell) \quad V = \uparrow(c_1, d_1) \cup \cdots \cup \uparrow(c_m, d_m)$$

- How do we compare U ? E.g. test whether $U \subseteq V$?
- ▶ How do we add to U ? E.g. perform $U \leftarrow U \cup V$
- ▶ How do we remove from U ? E.g. perform $U \leftarrow U \cap V$

When verifying safety for a WSTS we computed upward-closed subsets :

$$B \subseteq Pre^{\leq 1}(B) \subseteq Pre^{\leq 2}(B) \subseteq \dots \subseteq \bigcup_{m} Pre^{\leq m}(B) = Pre^{*}(B)$$

How does one do this? Let's assume we are in $(\mathbb{N}^2, \leq_{\times})$ and consider upward-closed subsets U, U', V, ..

There is the finite basis presentation:

$$U = \uparrow(\mathfrak{a}_1, \mathfrak{b}_1) \cup \cdots \cup \uparrow(\mathfrak{a}_{\ell}, \mathfrak{b}_{\ell}) \quad V = \uparrow(\mathfrak{c}_1, \mathfrak{d}_1) \cup \cdots \cup \uparrow(\mathfrak{c}_m, \mathfrak{d}_m)$$

- ▶ How do we compare U ? E.g. test whether $U \subseteq V$?
- ▶ How do we add to U ? E.g. perform $U \leftarrow U \cup V$
- ▶ How do we remove from U ? E.g. perform $U \leftarrow U \cap V$

When verifying safety for a WSTS we computed upward-closed subsets :

$$B \subseteq Pre^{\leq 1}(B) \subseteq Pre^{\leq 2}(B) \subseteq \dots \subseteq \bigcup_{m} Pre^{\leq m}(B) = Pre^{*}(B)$$

How does one do this? Let's assume we are in $(\mathbb{N}^2, \leq_{\times})$ and consider upward-closed subsets U, U', V, ..

There is the finite basis presentation:

$$U = \uparrow(\mathfrak{a}_1, \mathfrak{b}_1) \cup \cdots \cup \uparrow(\mathfrak{a}_{\ell}, \mathfrak{b}_{\ell}) \quad V = \uparrow(\mathfrak{c}_1, \mathfrak{d}_1) \cup \cdots \cup \uparrow(\mathfrak{c}_m, \mathfrak{d}_m)$$

- ▶ How do we compare U ? E.g. test whether $U \subseteq V$?
- ▶ How do we add to U ? E.g. perform $U \leftarrow U \cup V$
- ▶ How do we remove from U ? E.g. perform $U \leftarrow U \cap V$

When verifying safety for a WSTS we computed upward-closed subsets :

$$B \subseteq Pre^{\leq 1}(B) \subseteq Pre^{\leq 2}(B) \subseteq \dots \subseteq \bigcup_{m} Pre^{\leq m}(B) = Pre^{*}(B)$$

How does one do this? Let's assume we are in $(\mathbb{N}^2, \leq_{\times})$ and consider upward-closed subsets U, U', V, ..

There is the finite basis presentation:

$$U = \uparrow(\mathfrak{a}_1, \mathfrak{b}_1) \cup \cdots \cup \uparrow(\mathfrak{a}_{\ell}, \mathfrak{b}_{\ell}) \quad V = \uparrow(\mathfrak{c}_1, \mathfrak{d}_1) \cup \cdots \cup \uparrow(\mathfrak{c}_m, \mathfrak{d}_m)$$

- ▶ How do we compare U ? E.g. test whether $U \subseteq V$?
- ▶ How do we add to U ? E.g. perform $U \leftarrow U \cup V$
- ▶ How do we remove from U ? E.g. perform $U \leftarrow U \cap V$

Let us consider words with subword ordering, e.g., for lossy channel systems:

```
U = \uparrow abc \cup \cdots \cup \uparrow ddca \quad V = \uparrow bb \cup \cdots
```

How do we compare such sets?

How do we add to them ?

How do we remove from them ? E.g., how do we perform $U \leftarrow U \cap V$?

And how do we do $U \leftarrow U \setminus \downarrow ba$?

Bottom line: These are feasible but not trivial !

Question 1: Can we handle \mathbb{N}^k and Σ^* efficiently ? Question 2: And what about other WQOs? Recall the example

 $(\mathbb{N}^{2})^{*}$

Let us consider words with subword ordering, e.g., for lossy channel systems:

```
U = \uparrow abc \cup \dots \cup \uparrow ddca \quad V = \uparrow bb \cup \dotsb
```

How do we compare such sets?

How do we add to them ?

How do we remove from them ? E.g., how do we perform $U \leftarrow U \cap V$? And how do we do $U \leftarrow U \smallsetminus \downarrow ba$?

Bottom line: These are feasible but not trivial !

Question 1: Can we handle \mathbb{N}^k and Σ^* efficiently ? Question 2: And what about other WQOs? Recall the example with $(\mathbb{N}^2)^*$

Let us consider words with subword ordering, e.g., for lossy channel systems:

```
U = \uparrow abc \cup \dots \cup \uparrow ddca \quad V = \uparrow bb \cup \dotsb
```

How do we compare such sets?

How do we add to them ?

How do we remove from them ? E.g., how do we perform $U \leftarrow U \cap V$?

And how do we do $U \leftarrow U \setminus \downarrow ba$?

Bottom line: These are feasible but not trivial !

Question 1: Can we handle \mathbb{N}^k and Σ^* efficiently ? Question 2: And what about other WOOs2 Recall the exam

 $(\mathbb{N}^2)^*$

Let us consider words with subword ordering, e.g., for lossy channel systems:

```
U = \uparrow abc \cup \dots \cup \uparrow ddca \quad V = \uparrow bb \cup \dotsb
```

How do we compare such sets?

How do we add to them ?

How do we remove from them ? E.g., how do we perform $U \leftarrow U \cap V?$

And how do we do $U \leftarrow U \setminus \downarrow ba$?

Bottom line: These are feasible but not trivial !

Question 1: Can we handle \mathbb{N}^k and Σ^* efficiently ? Question 2: And what about other WQOs? Recall the example $(\mathbb{N}^2)^*$

Let us consider words with subword ordering, e.g., for lossy channel systems:

```
U = \uparrow abc \cup \cdots \cup \uparrow ddca \quad V = \uparrow bb \cup \cdots
```

How do we compare such sets?

How do we add to them ?

How do we remove from them ? E.g., how do we perform $U \leftarrow U \cap V$?

And how do we do $U \leftarrow U \setminus \downarrow ba$?

Bottom line: These are feasible but not trivial !

Question 1: Can we handle \mathbb{N}^k and Σ^* efficiently ? Question 2: And what about other WQOs? Recall the example with $(\mathbb{N}^2)^*$

WHAT ABOUT DOWNWARD-CLOSED SUBSETS?

Problem: can't always be represented under the form $D={\downarrow}x_1 \cup \cdots \cup {\downarrow}x_\ell$

Recall: D can always be represented by excluded minors:

 $\mathsf{D} = \mathsf{X} \smallsetminus \uparrow \mathfrak{m}_1 \smallsetminus \uparrow \mathfrak{m}_2 \cdots \smallsetminus \uparrow \mathfrak{m}_\ell$

This amounts to $D = \neg U$ with $U = \uparrow m_1 \cup \cdots \cup \uparrow m_\ell$.

Problem: Not very convenient for simple sets:

- How do you represent $\downarrow(2,2)$? $\downarrow ab$?
- How do you compute $D \cup D'$?

WHAT ABOUT DOWNWARD-CLOSED SUBSETS?

Problem: can't always be represented under the form $D = \downarrow x_1 \cup \cdots \cup \downarrow x_\ell$

Recall: D can always be represented by excluded minors:

 $D = X \smallsetminus {\uparrow} \mathfrak{m}_1 \smallsetminus {\uparrow} \mathfrak{m}_2 \cdots \smallsetminus {\uparrow} \mathfrak{m}_\ell$

This amounts to $D = \neg U$ with $U = \uparrow m_1 \cup \cdots \cup \uparrow m_\ell$.

Problem: Not very convenient for simple sets:

- How do you represent $\downarrow(2,2)$? $\downarrow ab$?
- How do you compute $D \cup D'$?

Problem: can't always be represented under the form $D={\downarrow}x_1\cup\dots\cup{\downarrow}x_\ell$

Recall: D can always be represented by excluded minors:

 $D = X \smallsetminus {\uparrow} \mathfrak{m}_1 \smallsetminus {\uparrow} \mathfrak{m}_2 \cdots \smallsetminus {\uparrow} \mathfrak{m}_\ell$

This amounts to $D = \neg U$ with $U = \uparrow m_1 \cup \cdots \cup \uparrow m_\ell$.

Problem: Not very convenient for simple sets:

- How do you represent $\downarrow(2,2)$? $\downarrow ab$?
- How do you compute $D \cup D'$?

Problem: can't always be represented under the form $D={\downarrow}x_1\cup\dots\cup{\downarrow}x_\ell$

Recall: D can always be represented by excluded minors:

 $D = X \smallsetminus {\uparrow} \mathfrak{m}_1 \smallsetminus {\uparrow} \mathfrak{m}_2 \cdots \smallsetminus {\uparrow} \mathfrak{m}_\ell$

This amounts to $D = \neg U$ with $U = \uparrow m_1 \cup \cdots \cup \uparrow m_\ell$.

Problem: Not very convenient for simple sets:

- How do you represent $\downarrow(2,2)$? $\downarrow ab$?
- How do you compute $D \cup D'$?

PRIMES, UP AND DOWN

Fix (X, \leq) WQO and consider $Up(X) = \{U, U', ...\}$ and $Down(X) = \{D, D', ...\}$

Def. 1. U ($\neq \emptyset$) is (up-) prime $\stackrel{\text{def}}{\Leftrightarrow} U \subseteq (U_1 \cup U_2)$ implies $U \subseteq U_1$ or $U \subseteq U_2$. 2. D ($\neq \emptyset$) is (down-) prime $\stackrel{\text{def}}{\Leftrightarrow} D \subseteq (D_1 \cup D_2)$ implies $D \subseteq D_1$ or $D \subseteq D_2$.

Examples: for any $x \in X$, $\uparrow x$ is up-prime and $\downarrow x$ is down-prime

Lem. (Irreducibility)

- 1. U is prime iff $U=U_1\cup\dots\cup U_n$ implies $U=U_i$ for some i
- 2. D is prime iff $D = D_1 \cup \dots \cup D_n$ implies $D = D_i$ for some i

Lem. (Existence of Prime Decompositions, aka Completeness)

- 1. Every $U \in Up$ is a finite union of up-primes
- 2. Every $D \in Down$ is a finite union of down-primes

MINIMAL PRIME DECOMPOSITIONS

 $\begin{array}{l} \text{Def. A prime decomposition } U \mbox{ (or } D) = P_1 \cup \cdots \cup P_n \mbox{ is minimal} \\ \stackrel{\text{def}}{\Leftrightarrow} \mbox{ } \forall i,j: P_i \subseteq P_j \mbox{ implies } i=j. \end{array}$

Thm. Every U (or D) has a unique minimal prime decomposition. It is called its canonical decomposition

Thm. (Primes are Filters/Ideals) 1. The up-primes of X are exactly the $\uparrow x$ for $x \in X$ (the principal filters) 2. The down-primes of X are exactly the ideals of X (see below)

Def. An ideal I of X is a non-empty directed downward-closed subset Recall: I directed $\stackrel{\text{def}}{\Leftrightarrow} x, y \in I \implies \exists z \in I : x \leq z \geq y$

Example: any $\downarrow x$ is an ideal (called a principal ideal)

Example: If $x_1 < x_2 < x_3...$ is an increasing sequence then $\bigcup_i \downarrow x_i$ is an ideal

Exercise: Take $D = \{(a,b) \mid \min(a,b) < 3 \lor \max(a,b) < 7\}$ in \mathbb{N}^2

MINIMAL PRIME DECOMPOSITIONS

 $\begin{array}{l} \text{Def. A prime decomposition } U \mbox{ (or } D) = P_1 \cup \cdots \cup P_n \mbox{ is minimal} \\ \stackrel{\text{def}}{\Leftrightarrow} \mbox{ } \forall i,j: P_i \subseteq P_j \mbox{ implies } i=j. \end{array}$

Thm. Every U (or D) has a unique minimal prime decomposition. It is called its canonical decomposition

Thm. (Primes are Filters/Ideals)

1. The up-primes of X are exactly the $\uparrow x$ for $x \in X$ (the principal filters) 2. The down-primes of X are exactly the ideals of X (see below)

Def. An ideal I of X is a non-empty directed downward-closed subset Recall: I directed $\stackrel{\text{def}}{\Leftrightarrow} x, y \in I \implies \exists z \in I : x \leq z \geq y$

Example: any $\downarrow x$ is an ideal (called a principal ideal)

Example: If $x_1 < x_2 < x_3 \dots$ is an increasing sequence then $\bigcup_i \mathop{\downarrow} x_i$ is an ideal

Exercise: Take $D = \{(a,b) \mid \min(a,b) < 3 \lor \max(a,b) < 7\}$ in \mathbb{N}^2

The ideals of (\mathbb{N}, \leq) are exactly all $\downarrow n$ together with \mathbb{N} itself Hence $(Idl(\mathbb{N}), \subseteq) \equiv (\mathbb{N} \cup \{\omega\}, \leq)$, denoted $\mathbb{N}_{\omega} (\equiv \omega + 1)$

Thm. The ideals of $(X_1 \times X_2, \leqslant_{\times})$ are exactly the $J_1 \times J_2$ for J_i an ideal of X_i (i = 1,2)

Hence $(Idl(X_1 \times X_2), \subseteq) \equiv Idl(X_1, \subseteq) \times Idl(X_2, \subseteq)$ Very nice !!!!

Coro. The ideals of $(\mathbb{N}^k, \leq_{\times})$ are handled like \mathbb{N}_{ω}^k

Example: Assume $U = \uparrow (2,2)$ and $D = \downarrow (4,\omega) \cup \downarrow (6,3)$. What is $U \setminus D$ and $D \setminus U$? The ideals of (\mathbb{N}, \leq) are exactly all $\downarrow n$ together with \mathbb{N} itself Hence $(Idl(\mathbb{N}), \subseteq) \equiv (\mathbb{N} \cup \{\omega\}, \leq)$, denoted $\mathbb{N}_{\omega} (\equiv \omega + 1)$

Thm. The ideals of $(X_1 \times X_2, \leqslant_{\times})$ are exactly the $J_1 \times J_2$ for J_i an ideal of X_i (i = 1, 2)

Hence $(Idl(X_1 \times X_2), \subseteq) \equiv Idl(X_1, \subseteq) \times Idl(X_2, \subseteq)$ Very nice !!!!

Coro. The ideals of $(\mathbb{N}^k, \leq_{\times})$ are handled like \mathbb{N}_{ω}^k

Example: Assume $U = \uparrow (2,2)$ and $D = \downarrow (4,\omega) \cup \downarrow (6,3)$. What is $U \setminus D$ and $D \setminus U$? The ideals of (\mathbb{N}, \leq) are exactly all $\downarrow n$ together with \mathbb{N} itself Hence $(Idl(\mathbb{N}), \subseteq) \equiv (\mathbb{N} \cup \{\omega\}, \leq)$, denoted $\mathbb{N}_{\omega} (\equiv \omega + 1)$

Thm. The ideals of $(X_1 \times X_2, \leqslant_{\times})$ are exactly the $J_1 \times J_2$ for J_i an ideal of X_i (i = 1,2)

 $\text{Hence } (\mathit{Idl}(X_1 \times X_2), \subseteq) \, \equiv \, \mathit{Idl}(X_1, \subseteq) \times \mathit{Idl}(X_2, \subseteq) \quad \text{Very nice } \texttt{!!!!}$

Coro. The ideals of $(\mathbb{N}^k, \leqslant_{\times})$ are handled like \mathbb{N}_{ω}^k

Example: Assume $U = \uparrow (2,2)$ and $D = \downarrow (4,\omega) \cup \downarrow (6,3)$. What is $U \setminus D$ and $D \setminus U$?

Ideals for (Σ^*, \leqslant_*) ?

Recall: $\downarrow w$ is an ideal for any $w \in \Sigma^*$. E.g. $\downarrow abc = \{abc, ab, ac, bc, a, b, c, \epsilon\}$

What else?

Σ* ?

- $(ab)^* = \{\varepsilon, ab, abab, ababab, ...\}$?
- $a^* + b^* = \{\varepsilon, a, aa, aaa, \dots, b, bb, bbb, \dots\}$?
- $(a+b)^*$?

Lem. $I \cdot J \in Idl(\Sigma^*)$ for all $I, J \in Idl(\Sigma^*)$

Thm. The ideals of Σ^* are exactly the concatenation products $P = A_1 \cdot A_2 \cdots A_n$ for atoms of the form $A = \downarrow a = \{a, \epsilon\}$ with $a \in \Sigma$ or $A = \Gamma^*$ with $\Gamma \subseteq \Sigma$.

Ideals for (Σ^*, \leqslant_*) ?

Recall: $\downarrow w$ is an ideal for any $w \in \Sigma^*$. E.g. $\downarrow abc = \{abc, ab, ac, bc, a, b, c, \epsilon\}$

What else?

- Σ* ?
- $(ab)^* = \{\varepsilon, ab, abab, ababab, ...\}$?
- $a^* + b^* = \{\varepsilon, a, aa, aaa, \dots, b, bb, bbb, \dots\}$?
- $(a+b)^*$?

Lem. $I \cdot J \in Idl(\Sigma^*)$ for all $I, J \in Idl(\Sigma^*)$

Thm. The ideals of Σ^* are exactly the concatenation products $P = A_1 \cdot A_2 \cdots A_n$ for atoms of the form $A = \downarrow a = \{a, \epsilon\}$ with $a \in \Sigma$ or $A = \Gamma^*$ with $\Gamma \subseteq \Sigma$.

Ideals for (Σ^*, \leqslant_*) ?

Recall: $\downarrow w$ is an ideal for any $w \in \Sigma^*$. E.g. $\downarrow abc = \{abc, ab, ac, bc, a, b, c, \epsilon\}$

What else?

- Σ* ?
- $(ab)^* = \{\varepsilon, ab, abab, ababab, ...\}$?
- $a^* + b^* = \{\varepsilon, a, aa, aaa, \dots, b, bb, bbb, \dots\}$?
- $(a+b)^*$?

Lem. $I \cdot J \in \mathit{Idl}(\Sigma^*)$ for all $I,J \in \mathit{Idl}(\Sigma^*)$

Thm. The ideals of Σ^* are exactly the concatenation products $P = A_1 \cdot A_2 \cdots A_n$ for atoms of the form $A = \downarrow a = \{a, \epsilon\}$ with $a \in \Sigma$ or $A = \Gamma^*$ with $\Gamma \subseteq \Sigma$.

Ideals for (Σ^*, \leq_*) ?

Recall: $\downarrow w$ is an ideal for any $w \in \Sigma^*$. E.g. $\downarrow abc = \{abc, ab, ac, bc, a, b, c, \epsilon\}$

What else?

- Σ* ?
- $(ab)^* = \{\varepsilon, ab, abab, ababab, ...\}$?
- $a^* + b^* = \{\varepsilon, a, aa, aaa, \dots, b, bb, bbb, \dots\}$?
- $(a+b)^*$?

Lem. $I \cdot J \in Idl(\Sigma^*)$ for all $I, J \in Idl(\Sigma^*)$

Thm. The ideals of Σ^* are exactly the concatenation products $P = A_1 \cdot A_2 \cdots A_n$ for atoms of the form $A = \downarrow a = \{a, \epsilon\}$ with $a \in \Sigma$ or $A = \Gamma^*$ with $\Gamma \subseteq \Sigma$.

Ideals for (Σ^*, \leq_*) ?

Recall: $\downarrow w$ is an ideal for any $w \in \Sigma^*$. E.g. $\downarrow abc = \{abc, ab, ac, bc, a, b, c, \epsilon\}$

What else?

- Σ* ?
- $(ab)^* = \{\varepsilon, ab, abab, ababab, ...\}$?
- $a^* + b^* = \{\varepsilon, a, aa, aaa, \dots, b, bb, bbb, \dots\}$?
- $(a+b)^*$?

Lem. $I \cdot J \in Idl(\Sigma^*)$ for all $I, J \in Idl(\Sigma^*)$

Thm. The ideals of Σ^* are exactly the concatenation products $P = A_1 \cdot A_2 \cdots A_n$ for atoms of the form $A = \downarrow a = \{a, \epsilon\}$ with $a \in \Sigma$ or $A = \Gamma^*$ with $\Gamma \subseteq \Sigma$.

What do we want for handling (X, \leq) ?

Def. X is ideally effective $\stackrel{\text{def}}{\Leftrightarrow}$

 $\begin{array}{l} (XR): X \text{ is recursive} \\ (OD): \leqslant \text{ is decidable over } X \\ (IR): \mathit{Idl}(X) \text{ is recursive} \\ (ID): \subseteq \text{ is decidable over } \mathit{Idl}(X) \\ (CF): F = \uparrow x \mapsto \neg F = X \smallsetminus F = I_1 \cup \cdots \cup I_n \text{ is recursive} \\ (CI): I \mapsto \neg I = \uparrow x_1 \cup \cdots \cup \uparrow x_n \text{ is recursive} \\ (IF) \& (II): F_1, F_2 \mapsto F_1 \cap F_2 = \uparrow x_1 \cup \cdots \text{ and } I_1, I_2 \mapsto I_1 \cap I_2 = J_1 \cup \cdots \\ \text{ are recursive} \\ (IM): \text{ membership } x \in I \text{ is decidable over } X \text{ and } \mathit{Idl}(X) \\ (XF) \& (XI): X = F_1 \cup \cdots F_n \text{ and } X = I_1 \cup \cdots I_m \text{ are effective} \\ (PI): x \mapsto \downarrow x \text{ is recursive} \end{array}$

Examples: Is (\mathbb{N}, \leq) ideally effective? What about (Σ^*, \leq_*) ?

What do we want for handling (X, \leq) ?

Def. X is ideally effective $\stackrel{\text{def}}{\Leftrightarrow}$

 $\begin{array}{l} (XR): X \text{ is recursive} \\ (OD): \leqslant \text{ is decidable over } X \\ (IR): \mathit{Idl}(X) \text{ is recursive} \\ (ID): \subseteq \text{ is decidable over } \mathit{Idl}(X) \\ (CF): F = \uparrow x \mapsto \neg F = X \smallsetminus F = I_1 \cup \cdots \cup I_n \text{ is recursive} \\ (CI): I \mapsto \neg I = \uparrow x_1 \cup \cdots \cup \uparrow x_n \text{ is recursive} \\ (IF) \& (II): F_1, F_2 \mapsto F_1 \cap F_2 = \uparrow x_1 \cup \cdots \text{ and } I_1, I_2 \mapsto I_1 \cap I_2 = J_1 \cup \cdots \\ \text{ are recursive} \\ (IM): \text{ membership } x \in I \text{ is decidable over } X \text{ and } \mathit{Idl}(X) \\ (XF) \& (XI): X = F_1 \cup \cdots F_n \text{ and } X = I_1 \cup \cdots I_m \text{ are effective} \\ (PI): x \mapsto \downarrow x \text{ is recursive} \end{array}$

Examples: Is (\mathbb{N}, \leq) ideally effective? What about (Σ^*, \leq_*) ?

VALK-JANTZEN-GOUBAULT-LARRECQ ALGORITHM

Thm. If (X, \leq) satisfies the first 4 axioms above and (CF), (II), (PI),(XI) then it is ideally effective.

(XR): X is recursive (OD): \leq is decidable ov

 $(OD): \leq$ is decidable over λ

(IR): Idl(X) is recursive

 (ID) : \subseteq is decidable over Idl(X)

(CF): $F = \uparrow x \mapsto \neg F = X \setminus F = I_1 \cup \cdots \cup I_n$ is recursive

(CI): $I \mapsto \neg I = \uparrow x_1 \cup \cdots \cup \uparrow x_n$ is recursive

(IF) & (II): $F_1, F_2 \mapsto F_1 \cap F_2 = \uparrow x_1 \cup \cdots$ and $I_1, I_2 \mapsto I_1 \cap I_2 = J_1 \cup \cdots$ are recursive

(IM): membership $x \in I$ is decidable over X and Idl(X)(XF) & (XI): $X = F_1 \cup \cdots F_n$ and $X = I_1 \cup \cdots I_m$ are effective (PI): $x \mapsto \downarrow x$ is recursive

VALK-JANTZEN-GOUBAULT-LARRECQ ALGORITHM

 $\begin{array}{l} (XR): X \text{ is recursive} \\ (OD): \leqslant \text{ is decidable over } X \\ (IR): \mathit{Idl}(X) \text{ is recursive} \\ (ID): \subseteq \text{ is decidable over } \mathit{Idl}(X) \\ (CF): F = \uparrow x \mapsto \neg F = X \smallsetminus F = I_1 \cup \cdots \cup I_n \text{ is recursive} \\ (CI): I \mapsto \neg I = \uparrow x_1 \cup \cdots \cup \uparrow x_n \text{ is recursive} \\ (IF) \& (II): F_1, F_2 \mapsto F_1 \cap F_2 = \uparrow x_1 \cup \cdots \text{ and } I_1, I_2 \mapsto I_1 \cap I_2 = J_1 \cup \cdots \\ \text{ are recursive} \\ (IM): \text{ membership } x \in I \text{ is decidable over } X \text{ and } \mathit{Idl}(X) \\ (XF) \& (XI): X = F_1 \cup \cdots F_n \text{ and } X = I_1 \cup \cdots I_m \text{ are effective} \\ (PI): x \mapsto \downarrow x \text{ is recursive} \end{array}$

Proof. We first show (CD) $\stackrel{\text{def}}{\Leftrightarrow}$ that one can design a recursive $D = I_1 \cup \cdots I_n \mapsto \neg D = U = \uparrow x_1 \cup \uparrow x_2 \cup \cdots$ For this, set $U_0 = \emptyset$ and, as long as $\neg U_i \notin D$, we pick some $x \in \neg U_i \cap \neg D$ and set $U_{i+1} = U_i \cup \uparrow x$. Eventually $U_i = \neg D$ will happen

VALK-JANTZEN-GOUBAULT-LARRECQ ALGORITHM

 $\begin{array}{l} (XR): X \text{ is recursive} \\ (OD): \leqslant \text{ is decidable over } X \\ (IR): Idl(X) \text{ is recursive} \\ (ID): \subseteq \text{ is decidable over } Idl(X) \\ (CF): F = \uparrow x \mapsto \neg F = X \smallsetminus F = I_1 \cup \cdots \cup I_n \text{ is recursive} \\ (CI): I \mapsto \neg I = \uparrow x_1 \cup \cdots \cup \uparrow x_n \text{ is recursive} \\ (IF) \& (II): F_1, F_2 \mapsto F_1 \cap F_2 = \uparrow x_1 \cup \cdots \text{ and } I_1, I_2 \mapsto I_1 \cap I_2 = J_1 \cup \cdots \\ \text{ are recursive} \\ (IM): \text{ membership } x \in I \text{ is decidable over } X \text{ and } Idl(X) \\ (XF) \& (XI): X = F_1 \cup \cdots F_n \text{ and } X = I_1 \cup \cdots I_m \text{ are effective} \\ (PI): x \mapsto \downarrow x \text{ is recursive} \end{array}$

Proof. Then we get (IF) from (CD) and (CI), by expressing intersection as dual of union, (IM) from (PI) and (ID), (XF) from (CD) by computing $\neg \emptyset$

• $(X \times Y, \leqslant_{\times})$ is ideally effective when X and Y are.

• (X^*, \leq_*) is ideally effective when X is. The ideals are the products of atoms $A = D^*$ for $D \in Down(X)$ and $A = \downarrow I$ for $I \in Idl(X)$

• $(X \sqcup Y, \leq_{\sqcup})$ is ideally effective when X and Y are. $Idl(X \sqcup Y) \equiv Idl(X) \sqcup Idl(Y)$.

- $X \times_{\text{lex}} Y$ and $X \sqcup_{\text{lex}} Y$ are ideally effective when ..
- $\mathcal{P}_{\mathbf{f}}(X)$ and $\mathcal{M}_{\mathbf{f}}(X)$ are ideally ..

 $\bullet \ensuremath{\,\mathbb{T}}(X)$ is ideally effective when X is but the ideals are highly complex

- $(X \times Y, \leq_{\times})$ is ideally effective when X and Y are.
- (X^*, \leq_*) is ideally effective when X is. The ideals are the products of atoms $A = D^*$ for $D \in Down(X)$ and $A = \downarrow I$ for $I \in Idl(X)$

• $(X \sqcup Y, \leq_{\sqcup})$ is ideally effective when X and Y are. $Idl(X \sqcup Y) \equiv Idl(X) \sqcup Idl(Y)$.

- $X \times_{\text{lex}} Y$ and $X \sqcup_{\text{lex}} Y$ are ideally effective when ..
- $\mathcal{P}_{\mathbf{f}}(X)$ and $\mathcal{M}_{\mathbf{f}}(X)$ are ideally ..
- $\bullet \ensuremath{\,\mathbb{T}}(X)$ is ideally effective when X is but the ideals are highly complex

- $(X \times Y, \leq_{\times})$ is ideally effective when X and Y are.
- (X^*, \leq_*) is ideally effective when X is. The ideals are the products of atoms $A = D^*$ for $D \in Down(X)$ and $A = \downarrow I$ for $I \in Idl(X)$
- $(X \sqcup Y, \leq_{\sqcup})$ is ideally effective when X and Y are. $Idl(X \sqcup Y) \equiv Idl(X) \sqcup Idl(Y)$.
- $X \times_{\text{lex}} Y$ and $X \sqcup_{\text{lex}} Y$ are ideally effective when ..
- $\mathcal{P}_{\mathbf{f}}(X)$ and $\mathcal{M}_{\mathbf{f}}(X)$ are ideally ..
- $\bullet \ensuremath{\,\mathbb{T}}(X)$ is ideally effective when X is but the ideals are highly complex

- $(X \times Y, \leq_{\times})$ is ideally effective when X and Y are.
- (X^*, \leq_*) is ideally effective when X is. The ideals are the products of atoms $A = D^*$ for $D \in Down(X)$ and $A = \downarrow I$ for $I \in Idl(X)$
- $(X \sqcup Y, \leq_{\sqcup})$ is ideally effective when X and Y are. $Idl(X \sqcup Y) \equiv Idl(X) \sqcup Idl(Y)$.
- $X \times_{\mathsf{lex}} Y$ and $X \sqcup_{\mathsf{lex}} Y$ are ideally effective when ..
- $\mathcal{P}_{\mathbf{f}}(X)$ and $\mathcal{M}_{\mathbf{f}}(X)$ are ideally ...

• $\mathcal{T}(X)$ is ideally effective when X is but the ideals are highly complex

- $(X \times Y, \leq_{\times})$ is ideally effective when X and Y are.
- (X^*, \leq_*) is ideally effective when X is. The ideals are the products of atoms $A = D^*$ for $D \in Down(X)$ and $A = \downarrow I$ for $I \in Idl(X)$
- $(X \sqcup Y, \leq_{\sqcup})$ is ideally effective when X and Y are. $Idl(X \sqcup Y) \equiv Idl(X) \sqcup Idl(Y)$.
- $X \times_{\mathsf{lex}} Y$ and $X \sqcup_{\mathsf{lex}} Y$ are ideally effective when ..
- $\bullet \ \mathfrak{P}_f(X)$ and $\mathfrak{M}_f(X)$ are ideally ..

 $\bullet \ensuremath{\,\mathbb{T}}(X)$ is ideally effective when X is but the ideals are highly complex

- $(X \times Y, \leq_{\times})$ is ideally effective when X and Y are.
- (X^*, \leq_*) is ideally effective when X is. The ideals are the products of atoms $A = D^*$ for $D \in Down(X)$ and $A = \downarrow I$ for $I \in Idl(X)$
- $(X \sqcup Y, \leq_{\sqcup})$ is ideally effective when X and Y are. $Idl(X \sqcup Y) \equiv Idl(X) \sqcup Idl(Y)$.
- $X \times_{\text{lex}} Y$ and $X \sqcup_{\text{lex}} Y$ are ideally effective when ...
- $\bullet \ \mathfrak{P}_f(X)$ and $\mathfrak{M}_f(X)$ are ideally ..

• Assume (X, \leq') is an extension of (X, \leq) , i.e., $\leq \subseteq \leq'$. Then $Idl(X, \leq') = \{\downarrow_{\leq'} I \mid I \in Idl(X, \leq)\}.$

Furthermore (X,\leqslant') is ideally effective when (X,\leqslant) is and the functions

 $I\mapsto {\downarrow_{\leqslant'}} I=I_1\cup\cdots\cup I_\ell \quad \text{ and } \quad {\uparrow_{\leqslant'}} x={\uparrow_{x_1}}\cup\cdots\cup{\uparrow_{x_m}}$

are recursive

Now a new research program :

- Characterize ideals
- Find algorithms for ideally effective wqos
- Find smarter algorithms and data structures

• Assume (X, \leq') is an extension of (X, \leq) , i.e., $\leq \subseteq \leq'$. Then $Idl(X, \leq') = \{\downarrow_{\leq'} I \mid I \in Idl(X, \leq)\}.$

Furthermore (X,\leqslant') is ideally effective when (X,\leqslant) is and the functions

 $I\mapsto {\downarrow_{\leqslant'}} I=I_1\cup\cdots\cup I_\ell \quad \text{ and } \quad {\uparrow_{\leqslant'}} x={\uparrow_{x_1}}\cup\cdots\cup{\uparrow_{x_m}}$

are recursive

Example. Subwords *cum* conjugacy: $abcd \leq_{\Omega} acbadbbdbdbdbdbdbdbc$

Now a new research program :

- Characterize ideals
- Find algorithms for ideally effective wqos
- Find smarter algorithms and data structures