Algorithmic Aspects of WQO (Well-Quasi-Ordering) Theory Part I: Basics of WQO Theory

Sylvain Schmitz & Philippe Schnoebelen

LSV, CNRS & ENS Cachan

ESSLLI 2016, Bozen/Bolzano, Aug 22-26, 2016

Lecture notes & exercises available at

http://www.lsv.fr/~schmitz/teach/2016_esslli

MOTIVATIONS FOR THE COURSE

- Well-quasi-orderings (wqo's) proved to be a powerful tool for decidability/termination in logic, AI, program verification, etc. NB: they can be seen as a version of well-founded orderings with more flexibility
- In program verification, wqo's are prominent in well-structured transition systems (WSTS's), a generic framework for infinite-state systems with good decidability properties.
- Analysing the complexity of wqo-based algorithms is still one of the dark arts ...
- Purposes of these lectures = to disseminate the basic concepts and tools one uses for the wqo-based algorithms and their complexity analysis.

MOTIVATIONS FOR THE COURSE

- Well-quasi-orderings (wqo's) proved to be a powerful tool for decidability/termination in logic, AI, program verification, etc. NB: they can be seen as a version of well-founded orderings with more flexibility
- In program verification, wqo's are prominent in well-structured transition systems (WSTS's), a generic framework for infinite-state systems with good decidability properties.
- Analysing the complexity of wqo-based algorithms is still one of the dark arts ...
- Purposes of these lectures = to disseminate the basic concepts and tools one uses for the wqo-based algorithms and their complexity analysis.

OUTLINE OF THE COURSE

- (This) Lecture 1 = Basics of WQO's. Rather basic material: explaining and illustrating the definition of wqo's. Building new wqo's from simpler ones.
- Lecture 2 = Algorithmic Applications of WQO's. Well-Structured Transition Systems, Program Termination, Relevance Logic, etc.
- Lecture 3 = Complexity Analysis for WQO's. Fast-growing complexity, Hardy computations, Length function theorems.
- Lecture 4 = Ideals of WQO's. Basic concepts, Representations, Algorithms.
- Lecture 5 = Application of Ideals. Complete WSTS, Computation of downward-closures

Def. A non-empty (X, \leq) is a quasi-ordering (qo) $\stackrel{\text{def}}{\Leftrightarrow} \leq$ is a reflexive and transitive relation.

 $(\approx$ a partial ordering without requiring antisymmetry, technically simpler but essentially equivalent)

Examples. (\mathbb{N}, \leqslant) , also (\mathbb{R}, \leqslant) , $(\mathbb{N} \cup \{\omega\}, \leqslant)$, ...

divisibility: $(\mathbb{Z}, _|_)$ where $x | y \stackrel{\text{def}}{\Leftrightarrow} \exists a : a.x = y$

tuples: $(\mathbb{N}^3, \leq_{\text{prod}})$, or simply $(\mathbb{N}^3, \leq_{\times})$, where $(0,1,2) <_{\times} (10,1,5)$ and $(1,2,3)\#_{\times}(3,1,2)$.

words: (Σ^*, \leq_{pref}) for some alphabet $\Sigma = \{a, b, ...\}$ and $ab <_{pref} abba$.

 (Σ^*, \leq_{ex}) with e.g. $abba \leq_{ex} abc$ (NB: this assumes Σ is linearly ordered: a < b < c)

Def. A non-empty (X, \leq) is a quasi-ordering (qo) $\stackrel{\text{def}}{\Leftrightarrow} \leq$ is a reflexive and transitive relation.

 $(\approx$ a partial ordering without requiring antisymmetry, technically simpler but essentially equivalent)

Examples. (\mathbb{N}, \leq) , also (\mathbb{R}, \leq) , $(\mathbb{N} \cup \{\omega\}, \leq)$, ...

divisibility: $(\mathbb{Z}, | _{-})$ where $x | y \stackrel{\text{def}}{\Leftrightarrow} \exists a : a.x = y$

tuples: $(\mathbb{N}^3, \leq_{\text{prod}})$, or simply $(\mathbb{N}^3, \leq_{\times})$, where $(0, 1, 2) <_{\times} (10, 1, 5)$ and $(1, 2, 3) \#_{\times} (3, 1, 2)$.

words: (Σ^*, \leq_{pref}) for some alphabet $\Sigma = \{a, b, ...\}$ and $ab <_{pref} abba$.

 $(\Sigma^*,\leqslant_{\mathsf{lex}})$ with e.g. $\mathtt{abba}\leqslant_{\mathsf{lex}}\mathtt{abc}$ (NB: this assumes Σ is linearly ordered: $\mathtt{a}<\mathtt{b}<\mathtt{c})$

Def. A non-empty (X, \leqslant) is a quasi-ordering (qo) $\stackrel{\text{def}}{\Leftrightarrow} \leqslant$ is a reflexive and transitive relation.

 $(\approx$ a partial ordering without requiring antisymmetry, technically simpler but essentially equivalent)

Examples. (\mathbb{N}, \leq) , also (\mathbb{R}, \leq) , $(\mathbb{N} \cup \{\omega\}, \leq)$, ...

divisibility: $(\mathbb{Z}, | _{-})$ where $x | y \stackrel{\text{def}}{\Leftrightarrow} \exists a : a.x = y$

tuples: $(\mathbb{N}^3, \leqslant_{\text{prod}})$, or simply $(\mathbb{N}^3, \leqslant_{\times})$, where $(0,1,2) <_{\times} (10,1,5)$ and $(1,2,3)\#_{\times}(3,1,2)$.

words: (Σ^*, \leq_{pref}) for some alphabet $\Sigma = \{a, b, ...\}$ and $ab <_{pref} abba$. (Σ^*, \leq_{lex}) with e.g. $abba \leq_{lex} abc$ (NB: this assumes Σ is linearly ordered: a < b < c)

Def. A non-empty (X, \leqslant) is a quasi-ordering (qo) $\stackrel{\text{def}}{\Leftrightarrow} \leqslant$ is a reflexive and transitive relation.

 $(\approx$ a partial ordering without requiring antisymmetry, technically simpler but essentially equivalent)

Examples. (\mathbb{N}, \leq) , also (\mathbb{R}, \leq) , $(\mathbb{N} \cup \{\omega\}, \leq)$, ... divisibility: $(\mathbb{Z}, | | | |)$ where $x | y \stackrel{\text{def}}{\Rightarrow} \exists a : a.x = y$ tuples: $(\mathbb{N}^3, \leq_{\text{prod}})$, or simply $(\mathbb{N}^3, \leq_{\times})$, where $(0, 1, 2) <_{\times} (10, 1, 5)$ and $(1, 2, 3) \#_{\times} (3, 1, 2)$. words: $(\Sigma^*, \leq_{\text{pref}})$ for some alphabet $\Sigma = \{a, b, ...\}$ and $ab <_{\text{pref}} abba$. $(\Sigma^*, \leq_{\text{lex}})$ with e.g. $abba \leq_{\text{lex}} abc$ (NB: this assumes Σ is linearly ordered: a < b < c) $(\Sigma^*, \leq_{\text{subword}})$, or simply (Σ^*, \leq_{*}) , with $aba \leq_{*} b\underline{a}\underline{a}\underline{b}b\underline{a}\underline{a}$.

Def. A non-empty (X, \leqslant) is a quasi-ordering (qo) $\stackrel{\text{def}}{\Leftrightarrow} \leqslant$ is a reflexive and transitive relation.

 $(\approx$ a partial ordering without requiring antisymmetry, technically simpler but essentially equivalent)

Examples. (\mathbb{N}, \leq) , also (\mathbb{R}, \leq) , $(\mathbb{N} \cup \{\omega\}, \leq)$, ... divisibility: $(\mathbb{Z}, | | | |)$ where $x | y \stackrel{\text{def}}{\Rightarrow} \exists a : a.x = y$ tuples: $(\mathbb{N}^3, \leq_{\text{prod}})$, or simply $(\mathbb{N}^3, \leq_{\times})$, where $(0, 1, 2) <_{\times} (10, 1, 5)$ and $(1, 2, 3) \#_{\times} (3, 1, 2)$. words: $(\Sigma^*, \leq_{\text{pref}})$ for some alphabet $\Sigma = \{a, b, ...\}$ and $ab <_{\text{pref}} abba$. $(\Sigma^*, \leq_{\text{lex}})$ with e.g. $abba \leq_{\text{lex}} abc$ (NB: this assumes Σ is linearly ordered: a < b < c)

Def. (X, \leq) is linear if for any $x, y \in X$ either $x \leq y$ or $y \leq x$. (I.e., there is no x#y.)

Def. (X, \leq) is well-founded if there is no infinite strictly decreasing sequence $x_0 > x_1 > x_2 > \cdots$

	linear?	well-founded?
IN , ≤		
\mathbb{Z} ,		
$\mathbb{N} \cup \{\omega\}, \leqslant$		
N³,≼ _×		
Σ*,≼ _{pref}		
Σ^* , \leqslant_{lex}		
Σ*,≼∗		

Def. (X, \leq) is linear if for any $x, y \in X$ either $x \leq y$ or $y \leq x$. (I.e., there is no x#y.)

Def. (X, \leq) is well-founded if there is no infinite strictly decreasing sequence $x_0 > x_1 > x_2 > \cdots$

	linear?	well-founded?
Ⅳ ,≼	\checkmark	
\mathbb{Z} ,	×	
$\mathbb{N} \cup \{\omega\}, \leqslant$	\checkmark	
	×	
Σ*,≼ _{pref}	×	
$\Sigma^*, \leqslant_{lex}$	\checkmark	
Σ*, ≼ ∗	×	

Def. (X, \leq) is linear if for any $x, y \in X$ either $x \leq y$ or $y \leq x$. (I.e., there is no x#y.)

Def. (X, \leq) is well-founded if there is no infinite strictly decreasing sequence $x_0 > x_1 > x_2 > \cdots$

	linear?	well-founded?
N ,≤	\checkmark	\checkmark
\mathbb{Z} ,	×	\checkmark
$\mathbb{N} \cup \{\omega\}, \leqslant$	\checkmark	\checkmark
	×	\checkmark
Σ*,≼ _{pref}	×	\checkmark
Σ^* , \leqslant_{lex}	\checkmark	×
$ar{\Sigma}^*$, \leqslant_*	×	\checkmark

Well-quasi-ordering (wqo)

Def1. (X, \leqslant) is a wqo $\stackrel{\text{def}}{\Leftrightarrow}$ any infinite sequence x_0, x_1, x_2, \dots contains an increasing pair: $x_i \leqslant x_j$ for some i < j.

Def2. (X, \leq) is a wqo $\stackrel{\text{def}}{\Leftrightarrow}$ any infinite sequence x_0, x_1, x_2, \dots contains an infinite increasing subsequence: $x_{n_0} \leq x_{n_1} \leq x_{n_2} \leq \dots$

Def3. (X, \leq) is a wqo $\stackrel{\text{def}}{\Leftrightarrow}$ there is no infinite strictly decreasing sequence $x_0 > x_1 > x_2 > \ldots$ —i.e., (X, \leq) is well-founded— and no infinite set $\{x_0, x_1, x_2, \ldots\}$ of mutually incomparable elements $x_i # x_j$ when $i \neq j$ —we say " (X, \leq) has no infinite antichain"—.

Fact. These three definitions are equivalent.

Clearly, Def2 \Rightarrow Def1 and Def1 \Rightarrow Def3 (think contrapositively). But the reverse implications are non-trivial.

Well-Quasi-Ordering (WQO)

Def1. (X, \leqslant) is a wqo $\stackrel{\text{def}}{\Leftrightarrow}$ any infinite sequence x_0, x_1, x_2, \dots contains an increasing pair: $x_i \leqslant x_j$ for some i < j.

Def2. (X, \leq) is a wqo $\stackrel{\text{def}}{\Leftrightarrow}$ any infinite sequence x_0, x_1, x_2, \dots contains an infinite increasing subsequence: $x_{n_0} \leq x_{n_1} \leq x_{n_2} \leq \dots$

Def3. (X, \leq) is a wqo $\stackrel{\text{def}}{\Leftrightarrow}$ there is no infinite strictly decreasing sequence $x_0 > x_1 > x_2 > \ldots$ —i.e., (X, \leq) is well-founded— and no infinite set $\{x_0, x_1, x_2, \ldots\}$ of mutually incomparable elements $x_i # x_j$ when $i \neq j$ —we say " (X, \leq) has no infinite antichain"—.

Fact. These three definitions are equivalent.

Clearly, Def2 \Rightarrow Def1 and Def1 \Rightarrow Def3 (think contrapositively). But the reverse implications are non-trivial.

Well-quasi-ordering (wqo)

Def1. (X, \leq) is a wqo $\stackrel{\text{def}}{\Leftrightarrow}$ any infinite sequence x_0, x_1, x_2, \dots contains an increasing pair: $x_i \leq x_j$ for some i < j.

Def2. (X, \leq) is a wqo $\stackrel{\text{def}}{\Leftrightarrow}$ any infinite sequence x_0, x_1, x_2, \dots contains an infinite increasing subsequence: $x_{n_0} \leq x_{n_1} \leq x_{n_2} \leq \dots$

Def3. (X, \leqslant) is a wqo $\stackrel{\text{def}}{\Leftrightarrow}$ there is no infinite strictly decreasing sequence $x_0 > x_1 > x_2 > \ldots$ —i.e., (X, \leqslant) is well-founded— and no infinite set $\{x_0, x_1, x_2, \ldots\}$ of mutually incomparable elements $x_i \# x_j$ when $i \neq j$ —we say " (X, \leqslant) has no infinite antichain"—.

Fact. These three definitions are equivalent.

Clearly, Def2 \Rightarrow Def1 and Def1 \Rightarrow Def3 (think contrapositively). But the reverse implications are non-trivial.

Well-Quasi-Ordering (WQO)

Def1. (X, \leq) is a wqo $\stackrel{\text{def}}{\Leftrightarrow}$ any infinite sequence x_0, x_1, x_2, \dots contains an increasing pair: $x_i \leq x_j$ for some i < j.

Def2. (X, \leq) is a wqo $\stackrel{\text{def}}{\Leftrightarrow}$ any infinite sequence x_0, x_1, x_2, \dots contains an infinite increasing subsequence: $x_{n_0} \leq x_{n_1} \leq x_{n_2} \leq \dots$

Def3. (X, \leqslant) is a wqo $\stackrel{\text{def}}{\Leftrightarrow}$ there is no infinite strictly decreasing sequence $x_0 > x_1 > x_2 > \ldots$ —i.e., (X, \leqslant) is well-founded— and no infinite set $\{x_0, x_1, x_2, \ldots\}$ of mutually incomparable elements $x_i \# x_j$ when $i \neq j$ —we say " (X, \leqslant) has no infinite antichain"—.

Fact. These three definitions are equivalent.

Clearly, Def2 \Rightarrow Def1 and Def1 \Rightarrow Def3 (think contrapositively). But the reverse implications are non-trivial.

Well-Quasi-Ordering (WQO)

Def1. (X, \leq) is a wqo $\stackrel{\text{def}}{\Leftrightarrow}$ any infinite sequence x_0, x_1, x_2, \dots contains an increasing pair: $x_i \leq x_j$ for some i < j.

Def2. (X, \leq) is a wqo $\stackrel{\text{def}}{\Leftrightarrow}$ any infinite sequence x_0, x_1, x_2, \dots contains an infinite increasing subsequence: $x_{n_0} \leq x_{n_1} \leq x_{n_2} \leq \dots$

Def3. (X, \leqslant) is a wqo $\stackrel{\text{def}}{\Leftrightarrow}$ there is no infinite strictly decreasing sequence $x_0 > x_1 > x_2 > \ldots$ —i.e., (X, \leqslant) is well-founded— and no infinite set $\{x_0, x_1, x_2, \ldots\}$ of mutually incomparable elements $x_i \# x_j$ when $i \neq j$ —we say " (X, \leqslant) has no infinite antichain"—.

Fact. These three definitions are equivalent.

Clearly, Def2 \Rightarrow Def1 and Def1 \Rightarrow Def3 (think contrapositively). But the reverse implications are non-trivial.

$\mathsf{PROVING}\;\mathsf{DEF3}\Rightarrow\mathsf{DEF2}$

 x_0 x_1 x_2 x_3 x_4 \cdots

Proving Def3 \Rightarrow Def2

Proving Def3 \Rightarrow Def2

Infinite Ramsey Theorem:

there is an infinite subset $\{x_i\}_{i \in I}$ that is monochromatic

Infinite Ramsey Theorem:

there is an infinite subset $\{x_{n_i}\}_{i=0,1,2,...}$ that is monochromatic

$\dots \quad x_{n_0} \quad \dots \quad x_{n_1} \quad \dots \quad x_{n_2} \quad \dots \quad x_{n_3} \quad \dots \quad x_{n_4} \quad \dots \quad \dots$

What color?

Infinite Ramsey Theorem:

there is an infinite subset $\{x_{n_i}\}_{i=0,1,2,\dots}$ that is monochromatic

Blue \Rightarrow infinite strictly decreasing sequence, contradicts WF

Infinite Ramsey Theorem:

there is an infinite subset $\{x_{n_i}\}_{i=0,1,2,\dots}$ that is monochromatic

 $Red \Rightarrow$ infinite antichain, contradicts FAC

Infinite Ramsey Theorem:

there is an infinite subset $\{x_{n_i}\}_{i=0,1,2,\dots}$ that is monochromatic

Must be green \Rightarrow infinite increasing sequence! QED

	linear?	well-founded?	wqo?
I N,≼	\checkmark	\checkmark	
Z ,	×	\checkmark	
$\mathbb{N} \cup \{\omega\}, \leqslant$	\checkmark	\checkmark	
$\mathbb{N}^3,\leqslant_{\times}$	×	\checkmark	
Σ*,≼ _{pref}	×	\checkmark	
Σ^* , \leqslant_{lex}	\checkmark	×	
Σ*,≼∗	×	\checkmark	

	linear?	well-founded?	wqo?
	\checkmark	\checkmark	\checkmark
Z ,	×	\checkmark	
$\mathbb{N} \cup \{\omega\}, \leqslant$	\checkmark	\checkmark	
$\mathbb{N}^{3},\leqslant_{\times}$	×	\checkmark	
Σ*,≼ _{pref}	×	\checkmark	
Σ^* , \leqslant_{lex}	\checkmark	×	
Σ*,≼∗	×	\checkmark	

	linear?	well-founded?	wqo?
■N , ≤	\checkmark	\checkmark	\checkmark
Z,	×	\checkmark	
$\mathbb{N} \cup \{\omega\}, \leqslant$	\checkmark	\checkmark	\checkmark
$\mathbb{N}^{3},\leqslant_{\times}$	×	\checkmark	
Σ*,≼ _{pref}	×	\checkmark	
Σ^* , \leq_{lex}	\checkmark	×	
Σ*,≼∗	×	\checkmark	

More generally

Fact. For linear qo's: well-founded \Leftrightarrow wqo.

Cor. Any ordinal is wqo.

	linear?	well-founded?	wqo?
I N, ≤	\checkmark	\checkmark	\checkmark
Z ,	×	\checkmark	×
$\mathbb{N} \cup \{\omega\}, \leqslant$	\checkmark	\checkmark	\checkmark
\mathbb{N}^3 , \leqslant_{\times}	×	\checkmark	
Σ*,≼ _{pref}	×	\checkmark	
Σ^* , \leqslant_{lex}	\checkmark	×	
Σ*,≼∗	×	\checkmark	

 $(\mathbb{Z}, |)$: The prime numbers $\{2, 3, 5, 7, 11, ...\}$ are an infinite antichain.

	linear?	well-founded?	wqo?
I N, ≤	\checkmark	\checkmark	\checkmark
Z ,	×	\checkmark	×
$\mathbb{N} \cup \{\omega\}, \leqslant$	\checkmark	\checkmark	\checkmark
$\mathbb{N}^3,\leqslant_{ imes}$	×	\checkmark	\checkmark
Σ*,≼ _{pref}	×	\checkmark	
Σ^* , \leq_{lex}	\checkmark	×	
Σ*, ≤ ∗	×	\checkmark	

More generally

(Generalized) Dickson's lemma. If $(X_1, \leqslant_1), \ldots, (X_n, \leqslant_n)$'s are wqo's, then $\prod_{i=1}^n X_i, \leqslant_{\times}$ is wqo.

Proof. Easy with Def2. Otherwise, an application of the Infinite Ramsey Theorem.

(Usual) Dickson's Lemma. $(\mathbb{N}^k, \leq_{\times})$ is work for any k.

	linear?	well-founded?	wqo?
N, ≤	\checkmark	\checkmark	\checkmark
Z ,	×	\checkmark	×
$\mathbb{N} \cup \{\omega\}, \leqslant$	\checkmark	\checkmark	\checkmark
	×	\checkmark	\checkmark
Σ*,≼ _{pref}	×	\checkmark	×
Σ^* , \leq_{lex}	\checkmark	×	×
Σ*,≼∗	×	\checkmark	

 $(\Sigma^*, \leqslant_{\text{pref}})$ has an infinite antichain

b, ab, aab, aaab, ...

 $(\Sigma^*, \leq_{\mathsf{lex}})$ is not well-founded:

 $b >_{\mathsf{lex}} ab >_{\mathsf{lex}} aab >_{\mathsf{lex}} aaab >_{\mathsf{lex}} \cdots$

	linear?	well-founded?	wqo?
ℕ, ≤	\checkmark	\checkmark	\checkmark
Z ,	×	\checkmark	×
$\mathbb{N} \cup \{\omega\}, \leqslant$	\checkmark	\checkmark	\checkmark
\mathbb{N}^3 , $\leqslant_{ imes}$	×	\checkmark	\checkmark
Σ*,≼ _{pref}	×	\checkmark	×
Σ^* , \leqslant_{lex}	\checkmark	×	×
Σ*,≼∗	×	\checkmark	\checkmark

 (Σ^*, \leq_*) is working the second s

We can get some feeling by trying to build a bad sequence, i.e., some $w_0, w_1, w_2, ...$ without an increasing pair $w_i \leq_* w_j$.

HIGMAN'S LEMMA

Def. The sequence extension of a qo (X, \leq) is the qo (X^*, \leq_*) of finite sequences over X ordered by embedding:

 $w = x_1 \dots x_n \leqslant_* y_1 \dots y_m = \nu \stackrel{\text{def}}{\Leftrightarrow} \begin{array}{l} x_1 \leqslant y_{l_1} \wedge \dots \wedge x_n \leqslant y_{l_n} \\ \text{for some } 1 \leqslant l_1 < l_2 < \dots < l_n \leqslant m \\ \stackrel{\text{def}}{\Leftrightarrow} w \leqslant_{\times} \nu' \text{ for a length-n subsequence } \nu' \text{ of } \nu \end{array}$

Higman's Lemma. (X^*, \leq_*) is a wqo iff (X, \leq) is.

With (Σ^*, \leq_*) , we are considering the sequence extension of $(\Sigma, =)$ which is finite, hence necessarily wqo.

Later we'll consider the sequence extension of more complex wqo's, e.g., \mathbb{N}^2 :

$$| \begin{smallmatrix} 0 \\ 1 \\ \end{smallmatrix} | \begin{smallmatrix} 2 \\ 0 \\ \end{smallmatrix} | \begin{smallmatrix} 0 \\ 2 \\ \bullet \end{smallmatrix} | \begin{smallmatrix} 2 \\ 0 \\ \bullet \end{smallmatrix} | \bullet I \\ \bullet \bullet I \end{smallmatrix} | \begin{smallmatrix} 2 \\ 0 \\ \bullet \bullet I \end{smallmatrix} | \bullet I \end{smallmatrix} | I$$

HIGMAN'S LEMMA

Def. The sequence extension of a qo (X, \leq) is the qo (X^*, \leq_*) of finite sequences over X ordered by embedding:

$$w = x_1 \dots x_n \leqslant_* y_1 \dots y_m = v \stackrel{\text{def}}{\Leftrightarrow} \begin{array}{l} x_1 \leqslant y_{l_1} \land \dots \land x_n \leqslant y_{l_n} \\ \text{for some } 1 \leqslant l_1 < l_2 < \dots < l_n \leqslant m \\ \stackrel{\text{def}}{\Leftrightarrow} w \leqslant_{\times} v' \text{ for a length-n subsequence } v' \text{ of } v \end{array}$$

Higman's Lemma. (X^*, \leq_*) is a wqo iff (X, \leq) is.

With (Σ^*, \leq_*) , we are considering the sequence extension of $(\Sigma, =)$ which is finite, hence necessarily wqo.

Later we'll consider the sequence extension of more complex wqo's, e.g., \mathbb{N}^2 :

Let (X, \leq) be word and assume by way of contradiction that (X^*, \leq_*) admits infinite bad sequences (sequences with no increasing pairs).

Let $w_0 \in X^*$ be a shortest word that can start an infinite bad sequence.

Let $w_1 \in X^*$ be a shortest word that can continue, i.e., such that there is an infinite bad sequence starting with w_0, w_1

Continue. This way we pick an infinite sequence $S = w_0, w_1, w_2, w_3, ...$

Claim. S too is bad (easy with Def1)

Write w_i under the form $w_i = x_i v_i$. Since X is wqo, there is an infinite increasing sequence $x_{n_0} \leq x_{n_1} \leq x_{n_2} \leq \cdots$ (here we use Def2)

Now consider $S' \stackrel{\text{def}}{=} w_0, w_1, ..., w_{n_0-1}, v_{n_0}, v_{n_1}, v_{n_2}, ...$

It cannot be bad (otherwise w_{n_0} would not have been shortest). But an increasing pair like $v_n \leq v_m$ in S' leads to $x_n v_n \leq x_m v_m$, i.e., $w_n \leq w_m$, a contradiction.

Let (X, \leq) be wqo and assume by way of contradiction that (X^*, \leq_*) admits infinite bad sequences (sequences with no increasing pairs). Let $w_0 \in X^*$ be a shortest word that can start an infinite bad sequence.

Let $w_1 \in X^*$ be a shortest word that can continue, i.e., such that there is an infinite bad sequence starting with w_0, w_1

Continue. This way we pick an infinite sequence $S = w_0, w_1, w_2, w_3, ...$

Claim. S too is bad (easy with Def1)

Write w_i under the form $w_i = x_i v_i$. Since X is wqo, there is an infinite increasing sequence $x_{n_0} \leq x_{n_1} \leq x_{n_2} \leq \cdots$ (here we use Def2)

Now consider $S' \stackrel{\text{def}}{=} w_0, w_1, ..., w_{n_0-1}, v_{n_0}, v_{n_1}, v_{n_2}, ...$

It cannot be bad (otherwise w_{n_0} would not have been shortest). But an increasing pair like $v_n \leq v_m$ in S' leads to $x_n v_n \leq x_m v_m$, i.e., $w_n \leq w_m$, a contradiction.

Let (X, \leq) be word and assume by way of contradiction that (X^*, \leq_*) admits infinite bad sequences (sequences with no increasing pairs).

Let $w_0 \in X^*$ be a shortest word that can start an infinite bad sequence.

Let $w_1 \in X^*$ be a shortest word that can continue, i.e., such that there is an infinite bad sequence starting with w_0, w_1

Continue. This way we pick an infinite sequence $S = w_0, w_1, w_2, w_3, ...$

Claim. S too is bad (easy with Def1)

Write w_i under the form $w_i = x_i v_i$. Since X is wqo, there is an infinite increasing sequence $x_{n_0} \leq x_{n_1} \leq x_{n_2} \leq \cdots$ (here we use Def2)

Now consider $S' \stackrel{\text{def}}{=} w_0, w_1, ..., w_{n_0-1}, v_{n_0}, v_{n_1}, v_{n_2}, ...$

It cannot be bad (otherwise w_{n_0} would not have been shortest). But an increasing pair like $v_n \leq v_m$ in S' leads to $x_n v_n \leq x_m v_m$, i.e., $w_n \leq w_m$, a contradiction.

Let (X, \leq) be word and assume by way of contradiction that (X^*, \leq_*) admits infinite bad sequences (sequences with no increasing pairs).

Let $w_0 \in X^*$ be a shortest word that can start an infinite bad sequence.

Let $w_1 \in X^*$ be a shortest word that can continue, i.e., such that there is an infinite bad sequence starting with w_0, w_1

Continue. This way we pick an infinite sequence $S = w_0, w_1, w_2, w_3, ...$

Claim. S too is bad (easy with Def1)

Write w_i under the form $w_i = x_i v_i$. Since X is wqo, there is an infinite increasing sequence $x_{n_0} \leq x_{n_1} \leq x_{n_2} \leq \cdots$ (here we use Def2)

Now consider $S' \stackrel{\text{def}}{=} w_0, w_1, ..., w_{n_0-1}, v_{n_0}, v_{n_1}, v_{n_2}, ...$

It cannot be bad (otherwise w_{n_0} would not have been shortest). But an increasing pair like $v_n \leq_* v_m$ in *S'* leads to $x_n v_n \leq_* x_m v_m$, i.e., $w_n \leq_* w_m$, a contradiction.

Let (X, \leq) be word and assume by way of contradiction that (X^*, \leq_*) admits infinite bad sequences (sequences with no increasing pairs).

Let $w_0 \in X^*$ be a shortest word that can start an infinite bad sequence.

Let $w_1 \in X^*$ be a shortest word that can continue, i.e., such that there is an infinite bad sequence starting with w_0, w_1

Continue. This way we pick an infinite sequence $S = w_0, w_1, w_2, w_3, ...$

Claim. S too is bad (easy with Def1)

Write w_i under the form $w_i = x_i v_i$. Since X is wqo, there is an infinite increasing sequence $x_{n_0} \leq x_{n_1} \leq x_{n_2} \leq \cdots$ (here we use Def2)

Now consider $S' \stackrel{\text{def}}{=} w_0, w_1, ..., w_{n_0-1}, v_{n_0}, v_{n_1}, v_{n_2}, ...$

It cannot be bad (otherwise w_{n_0} would not have been shortest). But an increasing pair like $v_n \leq_* v_m$ in S' leads to $x_n v_n \leq_* x_m v_m$, i.e., $w_n \leq_* w_m$, a contradiction.

Let (X, \leq) be word and assume by way of contradiction that (X^*, \leq_*) admits infinite bad sequences (sequences with no increasing pairs).

Let $w_0 \in X^*$ be a shortest word that can start an infinite bad sequence.

Let $w_1 \in X^*$ be a shortest word that can continue, i.e., such that there is an infinite bad sequence starting with w_0, w_1

Continue. This way we pick an infinite sequence $S = w_0, w_1, w_2, w_3, ...$

Claim. S too is bad (easy with Def1)

Write w_i under the form $w_i = x_i v_i$. Since X is wqo, there is an infinite increasing sequence $x_{n_0} \leq x_{n_1} \leq x_{n_2} \leq \cdots$ (here we use Def2)

Now consider $S' \stackrel{\text{def}}{=} w_0, w_1, \dots, w_{n_0-1}, v_{n_0}, v_{n_1}, v_{n_2}, \dots$ It cannot be bad (otherwise w_{n_0} would not have been shortest). But an increasing pair like $v_n \leq_* v_m$ in S' leads to $x_n v_n \leq_* x_m v_m$, i.e., $w_n \leq_* w_m$, a contradiction.

Let (X, \leq) be word and assume by way of contradiction that (X^*, \leq_*) admits infinite bad sequences (sequences with no increasing pairs).

Let $w_0 \in X^*$ be a shortest word that can start an infinite bad sequence.

Let $w_1 \in X^*$ be a shortest word that can continue, i.e., such that there is an infinite bad sequence starting with w_0, w_1

Continue. This way we pick an infinite sequence $S = w_0, w_1, w_2, w_3, ...$

Claim. S too is bad (easy with Def1)

Write w_i under the form $w_i = x_i v_i$. Since X is wqo, there is an infinite increasing sequence $x_{n_0} \leq x_{n_1} \leq x_{n_2} \leq \cdots$ (here we use Def2)

Now consider $S' \stackrel{\text{def}}{=} w_0, w_1, ..., w_{n_0-1}, v_{n_0}, v_{n_1}, v_{n_2}, ...$

It cannot be bad (otherwise w_{n_0} would not have been shortest). But an increasing pair like $v_n \leq_* v_m$ in S' leads to $x_n v_n \leq_* x_m v_m$, i.e., $w_n \leq_* w_m$, a contradiction.

More wqo's

Finite Trees ordered by embeddings (Kruskal's Tree Theorem)

PROOF OF KRUSKAL'S TREE THEOREM

Let (X, \leq) be word and assume, b.w.o.c., that $(\mathcal{T}(X), \sqsubseteq)$ is not word. We pick a "minimal" bad sequence $S = t_0, t_1, t_2, \dots$ —Def1 Write every t_i under the form $t_i = f_i(u_{i,1}, \dots, u_{i,k_i})$.

Claim. The set $U = {u_{i,j}}$ of the immediate subterms is wqo. (Indeed, an infinite bad sequence $u_{i_0,j_o}, u_{i_1,j_1}, ...$ could be used to show that t_{i_0} was not "shortest").

Since U is wqo, and using Higman's Lemma on U*, there is some $(\mathfrak{u}_{n_1,1},\ldots,\mathfrak{u}_{n_1,k_{n_1}}) \leqslant_* (\mathfrak{u}_{n_2,1},\ldots,\mathfrak{u}_{n_2,k_{n_2}}) \leqslant_* (\mathfrak{u}_{n_3,1},\ldots,\mathfrak{u}_{n_3,k_{n_3}}) \leqslant_* \cdots$ —Def2

Further extracting some $f_{n_{i_1}} \leq f_{n_{i_2}} \leq \cdots$ exhibits an infinite increasing subsequence $t_{n_{i_1}} \sqsubseteq t_{n_{i_2}} \sqsubseteq \cdots$ in S, a contradiction

PROOF OF KRUSKAL'S TREE THEOREM

Let (X, \leq) be word and assume, b.w.o.c., that $(\mathfrak{T}(X), \sqsubseteq)$ is not word.

We pick a "minimal" bad sequence $S = t_0, t_1, t_2, ...$ —Def1

Write every t_i under the form $t_i = f_i(u_{i,1}, \dots, u_{i,k_i})$.

Claim. The set $U = \{u_{i,j}\}$ of the immediate subterms is wqo. (Indeed, an infinite bad sequence $u_{i_0,j_o}, u_{i_1,j_i}, ...$ could be used to show that t_{i_0} was not "shortest").

Since U is wqo, and using Higman's Lemma on U*, there is some $(\mathfrak{u}_{n_1,1},\ldots,\mathfrak{u}_{n_1,k_{n_1}}) \leqslant_* (\mathfrak{u}_{n_2,1},\ldots,\mathfrak{u}_{n_2,k_{n_2}}) \leqslant_* (\mathfrak{u}_{n_3,1},\ldots,\mathfrak{u}_{n_3,k_{n_3}}) \leqslant_* \ldots -Def2$

Further extracting some $f_{n_{i_1}} \leq f_{n_{i_2}} \leq \cdots$ exhibits an infinite increasing subsequence $t_{n_{i_1}} \sqsubseteq t_{n_{i_2}} \sqsubseteq \cdots$ in S, a contradiction

PROOF OF KRUSKAL'S TREE THEOREM

Let (X, \leq) be word and assume, b.w.o.c., that $(\mathfrak{T}(X), \sqsubseteq)$ is not word.

We pick a "minimal" bad sequence $S = t_0, t_1, t_2, ...$ —Def1

Write every t_i under the form $t_i = f_i(u_{i,1}, \dots, u_{i,k_i})$.

Claim. The set $U = \{u_{i,j}\}$ of the immediate subterms is wqo. (Indeed, an infinite bad sequence $u_{i_0,j_0}, u_{i_1,j_1}, ...$ could be used to show that t_{i_0} was not "shortest").

Since U is wqo, and using Higman's Lemma on U*, there is some $(u_{n_1,1},\ldots,u_{n_1,k_{n_1}}) \leqslant_* (u_{n_2,1},\ldots,u_{n_2,k_{n_2}}) \leqslant_* (u_{n_3,1},\ldots,u_{n_3,k_{n_3}}) \leqslant_* \ldots -Def2$

Further extracting some $f_{n_{i_1}} \leq f_{n_{i_2}} \leq \cdots$ exhibits an infinite increasing subsequence $t_{n_{i_1}} \sqsubseteq t_{n_{i_2}} \sqsubseteq \cdots$ in *S*, a contradiction

▶ Finite Trees ordered by embeddings (Kruskal's Tree Theorem)

Finite Graphs ordered by minor (Robertson-Seymour Theorem)

 $C_n \leq minor K_n$ and $C_n \leq minor C_{n+1}$

- (X^{ω}, \leq_*) for X linear wqo.
- $(\mathcal{P}_{f}(X), \sqsubseteq_{H})$ for X wqo, where

$$U \sqsubseteq_H V \stackrel{\text{def}}{\Leftrightarrow} \forall x \in U : \exists y \in V : x \leqslant y$$

▶ Finite Trees ordered by embeddings (Kruskal's Tree Theorem)

Finite Graphs ordered by minor (Robertson-Seymour Theorem)

 $C_n \leqslant_{\text{minor}} K_n$ and $C_n \leqslant_{\text{minor}} C_{n+1}$

- (X^{ω}, \leq_*) for X linear wqo.
- $(\mathcal{P}_{f}(X), \sqsubseteq_{H})$ for X wqo, where

$$U \sqsubseteq_H V \stackrel{\text{def}}{\Leftrightarrow} \forall x \in U : \exists y \in V : x \leqslant y$$

▶ Finite Trees ordered by embeddings (Kruskal's Tree Theorem)

Finite Graphs ordered by minor (Robertson-Seymour Theorem)

 $C_n \leqslant_{\text{minor}} K_n$ and $C_n \leqslant_{\text{minor}} C_{n+1}$

- (X^{ω}, \leq_*) for X linear wqo.
- $(\mathcal{P}_{f}(X), \sqsubseteq_{H})$ for X wqo, where

$$\mathbb{U} \sqsubseteq_{\mathbb{H}} V \stackrel{\text{def}}{\Leftrightarrow} \forall x \in \mathbb{U} : \exists y \in \mathbb{V} : x \leqslant y$$

Finite Trees ordered by embeddings (Kruskal's Tree Theorem)

Finite Graphs ordered by minor (Robertson-Seymour Theorem)

 $C_n \leqslant_{\text{minor}} K_n$ and $C_n \leqslant_{\text{minor}} C_{n+1}$

- (X^{ω}, \leq_*) for X linear wqo.
- $(\mathcal{P}_{f}(X), \sqsubseteq_{H})$ for X wqo, where

$$\mathbf{U} \sqsubseteq_{\mathbf{H}} \mathbf{V} \stackrel{\mathsf{def}}{\Leftrightarrow} \forall \mathbf{x} \in \mathbf{U} : \exists \mathbf{y} \in \mathbf{V} : \mathbf{x} \leqslant \mathbf{y}$$

Defn. (X, \leq) is a wqo $\stackrel{\text{def}}{\Leftrightarrow}$ every non-empty subset V of X has at least one and at most finitely many (non-equivalent) minimal elements.

Say $V \subseteq X$ is upward-closed if $x \ge y \in V$ implies $x \in V$. (There is a similar notion of downward-closed sets).

For $B \subseteq X$, the upward-closure $\uparrow B$ of B is $\{x \mid x \ge b \text{ for some } b \in B\}$. Note that $\uparrow(\bigcup_i B_i) = \bigcup_i \uparrow B_i$, and that V is upward-closed iff $V = \uparrow V$.

Cor1. Any upward-closed $U \subseteq X$ has a finite basis, i.e., U is some $\uparrow \{m_1, ..., m_k\}$.

Cor2. Any downward-closed $V \subseteq X$ can be defined by a finite set of excluded minors:

$$x \in V \Leftrightarrow \mathfrak{m}_1 \not\leq x \wedge \dots \wedge \mathfrak{m}_k \not\leq x$$

Defn. (X, \leq) is a wqo $\stackrel{\text{def}}{\Leftrightarrow}$ every non-empty subset V of X has at least one and at most finitely many (non-equivalent) minimal elements.

Say $V \subseteq X$ is upward-closed if $x \ge y \in V$ implies $x \in V$. (There is a similar notion of downward-closed sets).

For $B \subseteq X$, the upward-closure $\uparrow B$ of B is $\{x \mid x \ge b \text{ for some } b \in B\}$. Note that $\uparrow(\bigcup_i B_i) = \bigcup_i \uparrow B_i$, and that V is upward-closed iff $V = \uparrow V$.

Cor1. Any upward-closed $U \subseteq X$ has a finite basis, i.e., U is some $\uparrow \{m_1, \dots, m_k\}$.

Cor2. Any downward-closed $V \subseteq X$ can be defined by a finite set of excluded minors:

$$x \in V \Leftrightarrow \mathfrak{m}_1 \not\leq x \wedge \dots \wedge \mathfrak{m}_k \not\leq x$$

Defn. (X, \leq) is a wqo $\stackrel{\text{def}}{\Leftrightarrow}$ every non-empty subset V of X has at least one and at most finitely many (non-equivalent) minimal elements.

Say $V \subseteq X$ is upward-closed if $x \ge y \in V$ implies $x \in V$. (There is a similar notion of downward-closed sets).

For $B \subseteq X$, the upward-closure $\uparrow B$ of B is $\{x \mid x \ge b \text{ for some } b \in B\}$. Note that $\uparrow(\bigcup_i B_i) = \bigcup_i \uparrow B_i$, and that V is upward-closed iff $V = \uparrow V$.

Cor1. Any upward-closed $U \subseteq X$ has a finite basis, i.e., U is some $\uparrow \{m_1, \dots, m_k\}$.

Cor2. Any downward-closed $V \subseteq X$ can be defined by a finite set of excluded minors:

$$x \in V \Leftrightarrow \mathfrak{m}_1 \not\leq x \land \cdots \land \mathfrak{m}_k \not\leq x$$

E.g, Kuratowksi Theorem: a graph is planar iff it does not contain K_5 or $K_{3,3}$.

Gives polynomial-time characterization of closed sets.

Defn. (X, \leq) is a wqo $\stackrel{\text{def}}{\Leftrightarrow}$ every non-empty subset V of X has at least one and at most finitely many (non-equivalent) minimal elements.

Say $V \subseteq X$ is upward-closed if $x \ge y \in V$ implies $x \in V$. (There is a similar notion of downward-closed sets).

For $B \subseteq X$, the upward-closure $\uparrow B$ of B is $\{x \mid x \ge b \text{ for some } b \in B\}$. Note that $\uparrow(\bigcup_i B_i) = \bigcup_i \uparrow B_i$, and that V is upward-closed iff $V = \uparrow V$.

Cor1. Any upward-closed $U \subseteq X$ has a finite basis, i.e., U is some $\uparrow \{m_1, \dots, m_k\}$.

Cor2. Any downward-closed $V \subseteq X$ can be defined by a finite set of excluded minors:

$$\mathbf{x} \in \mathbf{V} \Leftrightarrow \mathfrak{m}_1 \not\leq \mathbf{x} \land \dots \land \mathfrak{m}_k \not\leq \mathbf{x}$$

Cor3. Any sequence $\uparrow V_0 \subseteq \uparrow V_1 \subseteq \uparrow V_2 \subseteq \cdots$ of upward-closed subsets converges in finite-time: $\exists \mathfrak{m} : (\bigcup_i \uparrow V_i) = \uparrow V_\mathfrak{m} = \uparrow V_\mathfrak{m+1} = \ldots$

For (X, \leq) , we consider $(\mathcal{P}(X), \sqsubseteq_S)$ defined with $U \sqsubseteq_S V \stackrel{\text{def}}{\Leftrightarrow} \forall y \in V : \exists x \in U : x \leq y \qquad (\stackrel{\text{def}}{\Leftrightarrow} \uparrow U \supseteq \uparrow V)$

Fact. $\mathcal{P}(X)$ is well-founded iff X is work

—Defn′

NB. X well-founded $\Rightarrow \mathcal{P}(X)$ well-founded **Question.** Does X wqo $\Rightarrow \mathcal{P}(X)$ wqo? (Equivalently $\mathcal{P}_{f}(X)$ wqo?)

For (X, \leqslant) , we consider $(\mathcal{P}(X), \sqsubseteq_S)$ defined with $U \sqsubseteq_S V \stackrel{\text{def}}{\Leftrightarrow} \forall y \in V : \exists x \in U : x \leqslant y \qquad (\stackrel{\text{def}}{\Leftrightarrow} \uparrow U \supseteq \uparrow V)$

Fact. $\mathcal{P}(X)$ is well-founded iff X is wqo

NB. X well-founded $\Rightarrow \mathcal{P}(X)$ well-founded **Question.** Does X wqo $\Rightarrow \mathcal{P}(X)$ wqo? (Equivalently $\mathcal{P}_{f}(X)$ wqo?)

For (X, \leq) , we consider $(\mathcal{P}(X), \sqsubseteq_S)$ defined with $U \sqsubseteq_S V \stackrel{\text{def}}{\Leftrightarrow} \forall y \in V : \exists x \in U : x \leq y \qquad (\stackrel{\text{def}}{\Leftrightarrow} \uparrow U \supseteq \uparrow V)$

Fact. $\mathcal{P}(X)$ is well-founded iff X is wqo —D **NB.** X well-founded $\Rightarrow \mathcal{P}(X)$ well-founded **Question.** Does X wqo $\Rightarrow \mathcal{P}(X)$ wqo? (Equivalently $\mathcal{P}_{f}(X)$ wqo?)

·Defn./

For (X, \leq) , we consider $(\mathcal{P}(X), \sqsubseteq_S)$ defined with $U \sqsubseteq_S V \stackrel{\text{def}}{\Leftrightarrow} \forall y \in V : \exists x \in U : x \leq y \qquad (\stackrel{\text{def}}{\Leftrightarrow} \uparrow U \supseteq \uparrow V)$

Fact. $\mathcal{P}(X)$ is well-founded iff X is wqo

—Defn'

NB. X well-founded $\Rightarrow \mathcal{P}(X)$ well-founded **Question.** Does X wqo $\Rightarrow \mathcal{P}(X)$ wqo? (Equivalently $\mathcal{P}_{f}(X)$ wqo?)

$$\begin{aligned} X &\stackrel{\text{def}}{=} \{(a,b) \in \mathbb{N}^2 \mid a < b\} \\ (a,b) < (a',b') &\stackrel{\text{def}}{\Leftrightarrow} \begin{cases} a = a' \text{ and } b < b' \\ \text{or } b < a' \end{cases} \end{aligned}$$
Fact. (X, <) is WQO

For (X, \leq) , we consider $(\mathcal{P}(X), \sqsubseteq_S)$ defined with

 $U \sqsubseteq_S V \stackrel{\text{def}}{\Leftrightarrow} \forall y \in V : \exists x \in U : x \leqslant y \qquad (\stackrel{\text{def}}{\Leftrightarrow} \uparrow U \supseteq \uparrow V)$

Fact. $\mathcal{P}(X)$ is well-founded iff X is wqo

-Defn'

NB. X well-founded $\Rightarrow \mathcal{P}(X)$ well-founded **Question.** Does X wqo $\Rightarrow \mathcal{P}(X)$ wqo? (Equivalently $\mathcal{P}_{f}(X)$ wqo?)

Thm. 1. $(\mathcal{P}_f(X), \sqsubseteq_S)$ is not wqo: rows are incomparable 2. $(\mathcal{P}(Y), \sqsubseteq_S)$ is wqo iff Y does not contain X