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MOTIVATIONS FOR THE COURSE

» Well-quasi-orderings (wqo’s) proved to be a powerful tool for
decidability/termination in logic, Al, program verification, etc. NB:
they can be seen as a version of well-founded orderings with
more flexibility

» In program verification, wqo’s are prominent in well-structured
transition systems (WSTS’s), a generic framework for
infinite-state systems with good decidability properties.
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» Well-quasi-orderings (wqo’s) proved to be a powerful tool for
decidability/termination in logic, Al, program verification, etc. NB:
they can be seen as a version of well-founded orderings with
more flexibility

» In program verification, wqo’s are prominent in well-structured
transition systems (WSTS’s), a generic framework for
infinite-state systems with good decidability properties.

» Analysing the complexity of wqo-based algorithms is still one of
the dark arts ...

» Purposes of these lectures = to disseminate the basic concepts
and tools one uses for the wqo-based algorithms and their
complexity analysis.



OUTLINE OF THE COURSE

» (This) Lecture 1 = Basics of WQO’s. Rather basic material:
explaining and illustrating the definition of wqo’s. Building new
wqo’s from simpler ones.

» Lecture 2 = Algorithmic Applications of WQO’s.
Well-Structured Transition Systems, Program Termination,
Relevance Logic, etc.

» Lecture 3 = Complexity Analysis for WQO’s. Fast-growing
complexity, Hardy computations, Length function theorems.

» Lecture 4 = Ideals of WQO'’s. Basic concepts, Representations,
Algorithms.

» Lecture 5 = Application of Ideals. Complete WSTS,
Computation of downward-closures
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Def. A non-empty (X, <) is a quasi-ordering (qo) %

and transitive relation.
(=~ a partial ordering without requiring antisymmetry, technically
simpler but essentially equivalent)

< is a reflexive

Examples. (IN, <

)
divisibility: (Z,-|_) where x |y & 3a: ax =1y
tuples: (IN3,<proq), OF simply (N3,< ), where (0,1,2) <« (10,1,5)
and (1,2,3)#«(3,1,2).
words: (£*,<pret) for some alphabet £ ={a,b,...} and ab <pf abba.

(¥, <jex) With e.g. abba < abe (NB: this assumes X is linearly
ordered: a<b <)

(Z*, <subword)> OF simply (Z*,<.), with aba <, baabbaa.

,also (R, <), (NU{w}, <), ...



(RECALLS) ORDERED SETS

Def. (X,<) is linear if for any x,y € X either x <y ory < x. (l.e., there
is no x#y.)

Def. (X,<) is well-founded if there is no infinite strictly decreasing
sequence xg > X1 >Xp > -+

linear? | well-founded?

N, <

Z,|

N U{w}, <
N3, <x
z*»gpref
Z*zglex
¥, <y




(RECALLS) ORDERED SETS

Def. (X,<) is linear if for any x,y € X either x <y ory < x. (l.e., there
is no x#y.)

Def. (X,<) is well-founded if there is no infinite strictly decreasing
sequence xg > X1 >Xp > -+

linear? | well-founded?

IN, <

Z,| X
NU{w} <

IN3,§X X

1", <pref X
Z*zglex

2 <y X




(RECALLS) ORDERED SETS

Def. (X,<) is linear if for any x,y € X either x <y ory < x. (l.e., there
is no x#y.)

Def. (X,<) is well-founded if there is no infinite strictly decreasing
sequence xg > X1 >Xp > -+

linear? | well-founded?
N, <
Z,| X
NU{w} <
IN3,§X X
1", <pref X
¥, <jex X
2 <y X




WELL-QUASI-ORDERING (WQO)

. def T .
Def1. (X,<) isawqo & any infinite sequence xg,x1,%>,... contains
an increasing pair: x; < x; for some i <j.



WELL-QUASI-ORDERING (WQO)

. def T .
Def1. (X,<) isawqo & any infinite sequence xg,x1,%>,... contains
an increasing pair: x; < x; for some i <j.

. def TI .
Def2. (X,<) isawqo & any infinite sequence xg,x1,%>,... contains
an infinite increasing subsequence: xn, < xn; <Xn, < ...



WELL-QUASI-ORDERING (WQO)

. def T .
Def1. (X,<) isawqo & any infinite sequence xg,x1,x>,... contains
an increasing pair: x; < x; for some i <j.

. def TI .
Def2. (X,<) isawqo & any infinite sequence xg,x1,x2,... contains
an infinite increasing subsequence: xn, < xn; <Xn, < ...

Def3. (X,<) isawqo % there is no infinite strictly decreasing
sequence xg > x1 > xp > ... —i.e., (X,<) is well-founded— and no
infinite set {xo,x1,x2,...} of mutually incomparable elements x; #x;
when i = j —we say “(X, <) has no infinite antichain™—.



WELL-QUASI-ORDERING (WQO)

. def T .
Def1. (X,<) isawqo & any infinite sequence xg,x1,x>,... contains
an increasing pair: x; < x; for some i <j.

. def TI .
Def2. (X,<) isawqo & any infinite sequence xg,x1,x2,... contains
an infinite increasing subsequence: xn, < xn; <Xn, < ...

Def3. (X,<) isawqo % there is no infinite strictly decreasing
sequence xg > x1 > X2 > ... —i.e., (X,<) is well-founded— and no
infinite set {xo,x1,x2,...} of mutually incomparable elements x; #x;
when i = j —we say “(X, <) has no infinite antichain™—.

Fact. These three definitions are equivalent.
Clearly, Def2 = Def1 and Def1 = Def3 (think contrapositively). But
the reverse implications are non-trivial.



WELL-QUASI-ORDERING (WQO)

. def T .
Def1. (X,<) isawqo & any infinite sequence xg,x1,x>,... contains
an increasing pair: x; < x; for some i <j.

. def TI .
Def2. (X,<) isawqo & any infinite sequence xg,x1,x2,... contains
an infinite increasing subsequence: xn, < xn; <Xn, < ...

Def3. (X,<) isawqo % there is no infinite strictly decreasing
sequence xg > x1 > X2 > ... —i.e., (X,<) is well-founded— and no
infinite set {xo,x1,x2,...} of mutually incomparable elements x; #x;
when i = j —we say “(X, <) has no infinite antichain™—.

Fact. These three definitions are equivalent.

Clearly, Def2 = Def1 and Def1 = Def3 (think contrapositively). But
the reverse implications are non-trivial.

Recall Infinite Ramsey Theorem: “Let X be some countably infinite

set and colour the elements of X(™) (the subsets of X of size n) in ¢
different colours. Then there exists some infinite subset M of X s.t.

the size n subsets of M all have the same colour.”
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Infinite Ramsey Theorem:

there is an infinite subset {xn, }i—0,1,2,... that is monochromatic

X .. Xn, . Xns . Xn; . Xy
0

What color?
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PROVING DEF3 = DEF2

Infinite Ramsey Theorem:

there is an infinite subset {xn,}i=0,1,2,.. that is monochromatic

Must be green = infinite increasing sequence! QED
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SPOT THE WQO’S

linear? | well-founded? | wqo?

N, <
Z,| X

N U{w}, <
N3, <« X
L7, <pref X

L%, <lex X

X<y X

More generally
Fact. For linear qo’s: well-founded < wqo.
Cor. Any ordinal is wqo.



SPOT THE WQO’S

linear? | well-founded? | wqo?
N, <
Zr' X X

N U{w}, <
11\13,<X X
2%, pref X

Z*! Slex X

X<, X

(Z,]): The prime numbers {2,3,5,7,11,...} are an infinite antichain.
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linear? | well-founded? | wqo?
N, <
Z,| X X

N U{w}, <
IN3,<X X
z*fgpref X

r Slex X

2F, < X

More generally

(Generalized) Dickson’s lemma. If (X1,<1), ..., (Xn,<n)’s are
wqo’s, then [T, Xi, <« is wqo.

Proof. Easy with Def2. Otherwise, an application of the Infinite
Ramsey Theorem.

(Usual) Dickson’s Lemma. (IN%,<) is wqo for any k.



SPOT THE WQO’S

linear? | well-founded? | wqo?
N, <
Z,| X X
N U{w}, <
11\13,\X X
Z:\pref X X
2", <lex X X
Z*,g* X

(Z*,<pret) has an infinite antichain

b, ab, aab, aaab, ...

(£*,<jex) is not well-founded:

b >ex ab > aab > aaab >y -



SPOT THE WQO’S

linear? | well-founded? | wqo?
N, <
Zr‘ X X
N U{w}, <
1N3,<X X
¥, <pret X X
¥, <jex X X
2F, < X

(£*,<,) is wgo by Higman’s Lemma (see next slide).

We can get some feeling by trying to build a bad sequence, i.e., some
Wo, W1, W2,... without an increasing pair wi <. wj.
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Ew <« v’ for a length-n subsequence v/ of v

Higman’s Lemma. (X*,<.) is a wqo iff (X,<) is.
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Def. The sequence extension of a gqo (X, <) is the go (X*, <) of finite
sequences over X ordered by embedding:

def X1 <Yy, N...A\xn <y
W=x%X1...xXn < =v & 1 n
1o Xn S« Y1---Ym forsomel<li<lb<..<l,<m

f
& < v/ for a length-n subsequence v’ of v

Higman’s Lemma. (X*,<.) is a wqo iff (X,<) is.

With (£*,<.), we are considering the sequence extension of (X,=)
which is finite, hence necessarily wqo.

Later we’ll consider the sequence extension of more complex wqo’s,
e.g., N?:
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Let (X, <) be wgo and assume by way of contradiction that (X*, <)
admits infinite bad sequences (sequences with no increasing pairs).

Let wo € X* be a shortest word that can start an infinite bad
seguence.

Let wy; € X* be a shortest word that can continue, i.e., such that there
is an infinite bad sequence starting with wg, w1

Continue. This way we pick an infinite sequence S =wg, w1, w>,ws, ...
Claim. S too is bad (easy with Def1)

Write w; under the form w; = x;v;. Since X is wqo, there is an infinite
increasing sequence xn, < Xn, < Xn, < --- (here we use Def2)

. def
Now consider S’ = wo,W1,..., Wny—1,Vng, Vi Vi)« --
It cannot be bad (otherwise wy, would not have been shortest).

But an increasing pair like v, <i vin in S’ leads to xnvn <& XmVm,
i.e., wn <, wmn, a contradiction.



MORE WQO’S

> Finite Trees ordered by embeddings (Kruskal's Tree Theorem)

R N
SN\ I\
R b d f
| AN
d c. b
« /N



PROOF OF KRUSKAL'S TREE THEOREM

Let (X, <) be wgo and assume, b.w.o.c., that (7(X),E) is not wqo.
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Write every t; under the form t; = fi(wq1,..., Uik, )-
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Let (X, <) be wgo and assume, b.w.o.c., that (7(X),E) is not wqo.

We pick a “minimal” bad sequence S = tg,t1,t5,... —Def1
Write every t; under the form t; = fi(wq1,..., Uik, )-

Claim. The set U = {u; ;} of the immediate subterms is wqo.

(Indeed, an infinite bad sequence . ; ,uy, ;.- could be used to
show that t;, was not “shortest”).

Since U is wqo, and using Higman’s Lemma on U*, there is some
(unl,l;---;unl,kn ) <>}< (unz,l:---;unz,kn ) g* (un3,1)---1un3,kn ) g*
1 2 3
—Def2

Further extracting some fnil < fn12 < --- exhibits an infinite
increasing subsequence tn; Ctny, £ - in S, a contradiction
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» Finite Trees ordered by embeddings (Kruskal’'s Tree Theorem)

N
b/li\f

d a

b

» Finite Graphs ordered by minor (Robertson-Seymour Theorem)
Cn <minor Kn and Cy, <minor Cn+1
» (X9, <) for X linear wqo.

» (P¢(X),Cn) for X wgo, where

Ucy vEvwel:JyeVix<y



FINITE-BASIS CHARACTERIZATION

Defn. (X,<) isawqo & every non-empty subset V of X has at least
one and at most finitely many (non-equivalent) minimal elements.

Say V C X is upward-closed if x >y € Vimplies x € V. (There is a
similar notion of downward-closed sets).

For B C X, the upward-closure 1B of B is {x | x > b for some b € B}.
Note that 1(|; Bi) = U; 1Bi, and that V is upward-closed iff V =1V.
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Defn. (X, <) is awqo % every non-empty subset V of X has at least
one and at most finitely many (non-equivalent) minimal elements.

Say V C X is upward-closed if x >y € Vimplies x € V. (There is a
similar notion of downward-closed sets).

For B C X, the upward-closure 1B of B is {x | x > b for some b € B}.
Note that 1(|; Bi) = U; 1Bi, and that V is upward-closed iff V =1V.

Cor1. Any upward-closed U C X has a finite basis, i.e., UL is some
Hmy,...,my}

Cor2. Any downward-closed V C X can be defined by a finite set of
excluded minors:

xeVemp £xA--Amy £x

E.g, Kuratowksi Theorem: a graph is planar iff it does not contain Kg
or K3’3.

Gives polynomial-time characterization of closed sets.



FINITE-BASIS CHARACTERIZATION

Defn. (X,<) is awqo % every non-empty subset V of X has at least
one and at most finitely many (non-equivalent) minimal elements.

Say V C X is upward-closed if x >y € Vimplies x € V. (There is a
similar notion of downward-closed sets).

For B C X, the upward-closure 1B of B is {x | x > b for some b € B}.
Note that 1(|J; Bi) = J; TBi, and that V is upward-closed iff V =1V.

Cor1. Any upward-closed U C X has a finite basis, i.e., U is some
Hmy,...,mgl

Cor2. Any downward-closed V C X can be defined by a finite set of
excluded minors:

xeVemp£xA--Amg £x

Cor3. Any sequence 1Vy C 1V7 €1V, C --- of upward-closed
subsets converges in finite-time: Im: (J; Vi) = tVin = Vi1 =...
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For (X, <), we consider (P(X),Cs) defined with
ucsVEwevixeu:ix<y (E1uo1v)

Fact. P(X) is well-founded iff X is wqo —Defn’

NB. X well-founded = P(X) well-founded
Question. Does X wgo = P(X) wqgo? (Equivalently P¢(X) wqo?)

o

0,4 1,4 2,4 3,4

e o

i0,3 1,3 2, a

- dei
012 1T2 (a,b) < [a b’ JR=> {
I

0,1

X% ((4,b) e N2 | a < b)

a=a’ and b < b’
orb<a’

Fact. (X, <) is WQO
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For (X, <), we consider (P(X),Cs) defined with

ucsVEwevixeuix<y (E1uo1v)

Fact. P(X) is well-founded iff X is wqo —Defn’

NB. X well-founded = P(X) well-founded
Question. Does X wgo = P(X) wqo? (Equivalently P¢(X) wqo?)

o

0,4 1,4 2,4 34

A X ((a,b) € N? | a < b}
E'Of lyi 23] def a=a’ and b < b’
0,2 1,2 (a,b) < (a’,b") = { orb<a

T

0,1

Fact. (X, <) is WQO

Thm. 1. (P¢(X),Cs) is not wqo: rows are incomparable
2. (P(Y),Cs) is wqo iff Y does not contain X



