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MOTIVATIONS FOR THE COURSE

I Well-quasi-orderings (wqo’s) proved to be a powerful tool for
decidability/termination in logic, AI, program verification, etc. NB:
they can be seen as a version of well-founded orderings with
more flexibility

I In program verification, wqo’s are prominent in well-structured
transition systems (WSTS’s), a generic framework for
infinite-state systems with good decidability properties.

I Analysing the complexity of wqo-based algorithms is still one of
the dark arts . . .

I Purposes of these lectures = to disseminate the basic concepts
and tools one uses for the wqo-based algorithms and their
complexity analysis.
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OUTLINE OF THE COURSE
I (This) Lecture 1 = Basics of WQO’s. Rather basic material:

explaining and illustrating the definition of wqo’s. Building new
wqo’s from simpler ones.

I Lecture 2 = Algorithmic Applications of WQO’s.
Well-Structured Transition Systems, Program Termination,
Relevance Logic, etc.

I Lecture 3 = Complexity Analysis for WQO’s. Fast-growing
complexity, Hardy computations, Length function theorems.

I Lecture 4 = Ideals of WQO’s. Basic concepts, Representations,
Algorithms.

I Lecture 5 = Application of Ideals. Complete WSTS,
Computation of downward-closures
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(RECALLS) ORDERED SETS

Def. A non-empty (X,6) is a quasi-ordering (qo) def⇔ 6 is a reflexive
and transitive relation.
(≈ a partial ordering without requiring antisymmetry, technically
simpler but essentially equivalent)

Examples. (N,6), also (R,6), (N∪ {ω},6), . . .

divisibility: (Z, | ) where x | y def⇔∃a : a.x= y

tuples: (N3,6prod), or simply (N3,6×), where (0,1,2)<× (10,1,5)
and (1,2,3)#×(3,1,2).
words: (Σ∗,6pref) for some alphabet Σ= {a,b, . . .} and ab <pref abba.
(Σ∗,6lex) with e.g. abba6lex abc (NB: this assumes Σ is linearly
ordered: a < b < c)
(Σ∗,6subword), or simply (Σ∗,6∗), with aba6∗ baabbaa.
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(RECALLS) ORDERED SETS

Def. (X,6) is linear if for any x,y ∈ X either x6 y or y6 x. (I.e., there
is no x#y.)
Def. (X,6) is well-founded if there is no infinite strictly decreasing
sequence x0 > x1 > x2 > · · ·

linear? well-founded?
N,6
Z, |

N∪ {ω},6
N

3,6×
Σ∗,6pref
Σ∗,6lex
Σ∗,6∗
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WELL-QUASI-ORDERING (WQO)
Def1. (X,6) is a wqo def⇔ any infinite sequence x0,x1,x2, . . . contains
an increasing pair: xi 6 xj for some i < j.

Def2. (X,6) is a wqo def⇔ any infinite sequence x0,x1,x2, . . . contains
an infinite increasing subsequence: xn0 6 xn1 6 xn2 6 . . .

Def3. (X,6) is a wqo def⇔ there is no infinite strictly decreasing
sequence x0 > x1 > x2 > . . . —i.e., (X,6) is well-founded— and no
infinite set {x0,x1,x2, . . .} of mutually incomparable elements xi#xj
when i , j —we say “(X,6) has no infinite antichain”—.

Fact. These three definitions are equivalent.
Clearly, Def2⇒ Def1 and Def1⇒ Def3 (think contrapositively). But
the reverse implications are non-trivial.
Recall Infinite Ramsey Theorem: “Let X be some countably infinite
set and colour the elements of X(n) (the subsets of X of size n) in c
different colours. Then there exists some infinite subset M of X s.t.
the size n subsets of M all have the same colour.”
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PROVING DEF3 ⇒ DEF2

x0 x1 x2 x3 x4 · · ·

Infinite Ramsey Theorem:

there is an infinite subset {xi}i∈I that is monochromatic
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PROVING DEF3 ⇒ DEF2

x0 x1 x2 x3 x4 · · ·
>

#
>

≤

Infinite Ramsey Theorem:

there is an infinite subset {xi}i∈I that is monochromatic
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PROVING DEF3 ⇒ DEF2

Infinite Ramsey Theorem:

there is an infinite subset {xni
}i=0,1,2,... that is monochromatic

xn0 xn1 xn2 xn3 xn4 · · ·.. .. .. .. .. ..

What color?
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PROVING DEF3 ⇒ DEF2

Infinite Ramsey Theorem:

there is an infinite subset {xni
}i=0,1,2,... that is monochromatic

xn0 xn1 xn2 xn3 xn4 · · ·.. .. .. .. .. ..

>

Blue⇒ infinite strictly decreasing sequence, contradicts WF
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PROVING DEF3 ⇒ DEF2

Infinite Ramsey Theorem:

there is an infinite subset {xni
}i=0,1,2,... that is monochromatic

xn0 xn1 xn2 xn3 xn4 · · ·.. .. .. .. .. ..

#

Red⇒ infinite antichain, contradicts FAC
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PROVING DEF3 ⇒ DEF2

Infinite Ramsey Theorem:

there is an infinite subset {xni
}i=0,1,2,... that is monochromatic

xn0 xn1 xn2 xn3 xn4 · · ·.. .. .. .. .. ..

≤

Must be green⇒ infinite increasing sequence! QED
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SPOT THE WQO’S

linear? well-founded? wqo?
N,6 X X
Z, | × X

N∪ {ω},6 X X

N
3,6× × X

Σ∗,6pref × X
Σ∗,6lex X ×
Σ∗,6∗ × X
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Z, | × X

N∪ {ω},6 X X X

N
3,6× × X

Σ∗,6pref × X
Σ∗,6lex X ×
Σ∗,6∗ × X

More generally
Fact. For linear qo’s: well-founded⇔ wqo.
Cor. Any ordinal is wqo.
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SPOT THE WQO’S

linear? well-founded? wqo?
N,6 X X X
Z, | × X ×

N∪ {ω},6 X X X

N
3,6× × X

Σ∗,6pref × X
Σ∗,6lex X ×
Σ∗,6∗ × X

(Z, |): The prime numbers {2,3,5,7,11, . . .} are an infinite antichain.
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SPOT THE WQO’S

linear? well-founded? wqo?
N,6 X X X
Z, | × X ×

N∪ {ω},6 X X X

N
3,6× × X X

Σ∗,6pref × X
Σ∗,6lex X ×
Σ∗,6∗ × X

More generally
(Generalized) Dickson’s lemma. If (X1,61), . . . , (Xn,6n)’s are
wqo’s, then

∏n
i=1Xi,6× is wqo.

Proof. Easy with Def2. Otherwise, an application of the Infinite
Ramsey Theorem.

(Usual) Dickson’s Lemma. (Nk,6×) is wqo for any k.
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SPOT THE WQO’S

linear? well-founded? wqo?
N,6 X X X
Z, | × X ×

N∪ {ω},6 X X X

N
3,6× × X X

Σ∗,6pref × X ×
Σ∗,6lex X × ×
Σ∗,6∗ × X

(Σ∗,6pref) has an infinite antichain

b, ab, aab, aaab, . . .

(Σ∗,6lex) is not well-founded:

b >lex ab >lex aab >lex aaab >lex · · ·
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SPOT THE WQO’S

linear? well-founded? wqo?
N,6 X X X
Z, | × X ×

N∪ {ω},6 X X X

N
3,6× × X X

Σ∗,6pref × X ×
Σ∗,6lex X × ×
Σ∗,6∗ × X X

(Σ∗,6∗) is wqo by Higman’s Lemma (see next slide).

We can get some feeling by trying to build a bad sequence, i.e., some
w0,w1,w2, . . . without an increasing pair wi 6∗ wj.
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HIGMAN’S LEMMA

Def. The sequence extension of a qo (X,6) is the qo (X∗,6∗) of finite
sequences over X ordered by embedding:

w= x1 . . .xn 6∗ y1 . . .ym = v
def⇔ x1 6 yl1 ∧ . . .∧ xn 6 yln

for some 16 l1 < l2 < . . .< ln 6m
def⇔w6× v

′ for a length-n subsequence v ′ of v

Higman’s Lemma. (X∗,6∗) is a wqo iff (X,6) is.

With (Σ∗,6∗), we are considering the sequence extension of (Σ,=)
which is finite, hence necessarily wqo.

Later we’ll consider the sequence extension of more complex wqo’s,
e.g., N2:

| 0
1 | 2

0 | 0
2 6∗? | 2

0 | 0
2 | 0

2 | 2
2 | 2

0 | 0
1
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PROOF OF HIGMAN’S LEMMA

Let (X,6) be wqo and assume by way of contradiction that (X∗,6∗)
admits infinite bad sequences (sequences with no increasing pairs).
Let w0 ∈ X∗ be a shortest word that can start an infinite bad
sequence.
Let w1 ∈ X∗ be a shortest word that can continue, i.e., such that there
is an infinite bad sequence starting with w0,w1

Continue. This way we pick an infinite sequence S=w0,w1,w2,w3, . . .

Claim. S too is bad (easy with Def1)

Write wi under the form wi = xivi. Since X is wqo, there is an infinite
increasing sequence xn0 6 xn1 6 xn2 6 · · · (here we use Def2)

Now consider S ′ def
= w0,w1, . . . ,wn0−1,vn0 ,vn1 ,vn2 , . . .

It cannot be bad (otherwise wn0 would not have been shortest).
But an increasing pair like vn 6∗ vm in S ′ leads to xnvn 6∗ xmvm,
i.e., wn 6∗ wm, a contradiction.
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Now consider S ′ def
= w0,w1, . . . ,wn0−1,vn0 ,vn1 ,vn2 , . . .

It cannot be bad (otherwise wn0 would not have been shortest).
But an increasing pair like vn 6∗ vm in S ′ leads to xnvn 6∗ xmvm,
i.e., wn 6∗ wm, a contradiction.
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MORE WQO’S

I Finite Trees ordered by embeddings (Kruskal’s Tree Theorem)
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PROOF OF KRUSKAL’S TREE THEOREM

Let (X,6) be wqo and assume, b.w.o.c., that (T(X),v) is not wqo.

We pick a “minimal” bad sequence S= t0,t1,t2, . . . —Def1

Write every ti under the form ti = fi(ui,1, . . . ,ui,ki
).

Claim. The set U= {ui,j} of the immediate subterms is wqo.
(Indeed, an infinite bad sequence ui0,jo ,ui1,ji , .. could be used to
show that ti0 was not “shortest”).

Since U is wqo, and using Higman’s Lemma on U∗, there is some
(un1,1, . . . ,un1,kn1

)6∗ (un2,1, . . . ,un2,kn2
)6∗ (un3,1, . . . ,un3,kn3

)6∗
· · · —Def2

Further extracting some fni1
6 fni2

6 · · · exhibits an infinite
increasing subsequence tni1

v tni2
v ·· · in S, a contradiction
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MORE WQO’S
I Finite Trees ordered by embeddings (Kruskal’s Tree Theorem)

I Finite Graphs ordered by minor (Robertson-Seymour Theorem)

Cn 6minor Kn and Cn 6minor Cn+1

I (Xω,6∗) for X linear wqo.

I (Pf(X),vH) for X wqo, where

UvH V
def⇔∀x ∈U : ∃y ∈ V : x6 y
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FINITE-BASIS CHARACTERIZATION

Defn. (X,6) is a wqo def⇔ every non-empty subset V of X has at least
one and at most finitely many (non-equivalent) minimal elements.

Say V ⊆ X is upward-closed if x> y ∈ V implies x ∈ V. (There is a
similar notion of downward-closed sets).
For B⊆ X, the upward-closure ↑B of B is {x | x> b for some b ∈ B}.
Note that ↑(

⋃
iBi) =

⋃
i ↑Bi, and that V is upward-closed iff V = ↑V.

Cor1. Any upward-closed U⊆ X has a finite basis, i.e., U is some
↑{m1, . . . ,mk}.

Cor2. Any downward-closed V ⊆ X can be defined by a finite set of
excluded minors:

x ∈ V ⇔m1 � x∧ · · ·∧mk � x
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Cor1. Any upward-closed U⊆ X has a finite basis, i.e., U is some
↑{m1, . . . ,mk}.

Cor2. Any downward-closed V ⊆ X can be defined by a finite set of
excluded minors:

x ∈ V ⇔m1 � x∧ · · ·∧mk � x

E.g, Kuratowksi Theorem: a graph is planar iff it does not contain K5
or K3,3.

Gives polynomial-time characterization of closed sets.
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↑{m1, . . . ,mk}.

Cor2. Any downward-closed V ⊆ X can be defined by a finite set of
excluded minors:

x ∈ V ⇔m1 � x∧ · · ·∧mk � x

Cor3. Any sequence ↑V0 ⊆ ↑V1 ⊆ ↑V2 ⊆ ·· · of upward-closed
subsets converges in finite-time: ∃m : (

⋃
i ↑Vi) = ↑Vm = ↑Vm+1 = . . .
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BEYOND WQO’S

For (X,6), we consider (P(X),vS) defined with

UvS V
def⇔ ∀y ∈ V : ∃x ∈U : x6 y (

def⇔ ↑U⊇ ↑V)

Fact. P(X) is well-founded iff X is wqo —Defn ′

NB. X well-founded ; P(X) well-founded
Question. Does X wqo⇒ P(X) wqo? (Equivalently Pf(X) wqo?)
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def⇔ ∀y ∈ V : ∃x ∈U : x6 y (

def⇔ ↑U⊇ ↑V)

Fact. P(X) is well-founded iff X is wqo —Defn ′

NB. X well-founded ; P(X) well-founded
Question. Does X wqo⇒ P(X) wqo? (Equivalently Pf(X) wqo?)

Thm. 1. (Pf(X),vS) is not wqo: rows are incomparable
2. (P(Y),vS) is wqo iff Y does not contain X
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