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Abstract. In finite labelled transition systems the problems of deciding strong
bisimilarity, observation equivalence and observation congruence are P-complete
under many-one NC -reducibility. As a consequence, algorithms for automated
analysis of finite state systems based on bisimulation seem to be inherently
sequential in the following sense: the design of an NC algorithm to solve any
of these problems will require an algorithmic breakthrough, which is exceedingly
hard to achieve.

1. Introduction

Given the intrinsic difficulty of designing large software systems, it is natural that
software tools would be designed to help to perform this task. The possibility of
formalising both specifications and implementations in the same or in a closely
related formal language yields the potential of automated analysis, allowing for
early checking of correctness and provably correct prototypes.

The design of correct concurrent programs is even more difficult, and their
verification using formal systems may give rise to formidable computational
problems. For instance, already the study of the correctness and liveness properties
of mutual exclusion algorithms for just two processes obtains substantial help
from computerised analysis [WaI89]; if even more processes are considered then
the state space soon becomes intractable.

One reason to develop concurrent programs stems from the fact that important
advantages can be gained from the use of massive parallelism. One hopes that
such an application would be the study of concurrent systems, and that algorithms
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running on highly parallel machines could perform automated analysis of large
concurrent programs substantially faster than sequential algorithms. A possible
way of modelising this requirement is to try to attain a running time roughly
logarithmic in the size of the state space of the concurrent program (assumed
finite); moreover, to be able to tackle problems of relevant size, the algorithms
must be restricted to a large but feasible number of processors (cf. the definition
of the class NC below).

In particular, it seems natural to expect from such a software tool the capability
to decide some form of equivalence of finite state systems. This problem plays
a fundamental role in the study of concurrent systems, and has been widely
studied both from a theoretical and practical point of view. Milner specifies in
[MiI89b] a complete set of axioms for proving equivalence of finite state agents.
Kanellakis and Smolka consider in [KaS90] efficient sequential algorithms to
solve this problem. On the more practical side, the prototype named Concurrency
Workbench [CPS89], implemented in Standard ML, has been used by Walker
[WaI89] for undertaking the automated analysis of mutual exclusion algorithms.
Finite state systems can be used for that purpose, since the state space of all these
algorithms is finite.

Until now the analysis of concurrent systems by means of bisimulation tech
niques has been based on sequential algorithms. However, in view of the advan
tages that might be obtained from their parallelisation, and of the large number

.of parallel algorithms discovered in recent years (for overviews see [KaR90] and
[GiR8.8]), a natural question to ask about these bisimulation techniques is: do
they admit solution by means of fast parallel algorithms?

In this paper we give a strong evidence that unfortunately the answer to the
above question is negative. More precisely, we prove that deciding bisimulation in
finite transition systems, and other related problems are P-complete. P-complete
problems have efficient sequential algorithms but it is widely believed that they do
not admit fast parallel ones. Thus our negative results raise in turn more general
questions. What kind of properties of parallel and distributed systems can be
decided via fast parallel algorithms? Also, how can we avoid using bisimulation
techniques in the design of these systems?

A preliminary version of this paper was presented at the conference PARLE'91
as a part of the reference [ABG91].

2. Preliminaries

Concurrent systems can be analysed through transition systems [KeI76]. Recall
that a finite labelled transition system (FLTS for short) is a triple M = (Q, L, T),
where Q is a finite set of states (or processes), L is a finite alphabet of actions
and T £; Q x L x Q is the set of transitions. A transition (q, x, q') E T has label
x and is denoted by q~ q'. Given two states p and q, the idea of having the
same behaviour is formalised by the notion of strong-bisimulation [Par81]. The
following definitions are borrowed from [MiI89a].

A relation S £; Qx Q is a strong bisimulation if (P, q) E S implies, for all x E L,
the following bisimilarity conditions:

1. Whenever p~ p', then for some q', q~ q' and (p', q') E S.

2. Whenever q~ q', then for some p', p~ p' and (p',q') E S.
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The strong bisimilarity relation >- is defined as the union of all strong bisimula
tions, that is

'" = U{S IS is a strong bisimulation }

Notice that the strong bisimilarity relation is also a strong bisimulation.
To keep information about the internal behaviour of the system, we can

enlarge the set of actions L with an invisible action T. The new set of actions
is then Act = L + T. Given IV E Act·, we denote IV E L· the word obtained by
deleting all the occurrences of T in IV. Given IV = XI ••• x« E Act·, we usc the
notation q~ q' if there exists a path of transitions

( t ). XI (t). ( r ). x« (t). I

q- -- "'- --q
from q to q'.

To consider equivalence up to internal behaviour, we define the notion of
bisimulation. A relation S s Q x Q is a bisimulation if (P,q) E S implies, for all
u E Act, the following two conditions:

u u
1. \Vhenever p - p', then for some q', q == q' and (P',q') E S.

u u
2. Whenever q - q', then for some p', p == p' and (P',q') E S.

The observation equivalence or bisimilarity relation ~ is defined as

~ = U{S IS is a bisimulation }

Finally, to deal with internal actions just at the start of the processes, we
consider the notion of observation congruence. By definition, two states p and q
are observation congruent (in notation p = q) if for all u E Act, we have

u u
1. Whenever p - p', then for some q', q == q' and p' ~ q'.

u u
2. Whenever q - q', then for some p', p == p' and p' ~ q'.

For the formal study of the possible existence of parallel algorithms we will
consider two complexity classes: P and NC. The first one models problems
with efficient sequential computation; the second one models problems with fast
parallel computation, using a feasible number of processors. Each of these classes
has many characterisations that support this description.

By definition, the class P contains the problems for which a polynomial time
sequential algorithm exists. This can be formalised by considering an abstract
model of sequential computation for which "time" is a well-defined notion. Poly
nomial time RAM algorithms (a model quite close to a real computer [AHU75]),
polynomial time Turing machines ([AHU75], [BDG88]), or even polynomial size
uniform circuits (see below) are all suitable for this purpose, and give equivalent
definitions of the class P.

A basic computational model that we need for the definition of the class NC
and also for the proof of the main results below is the boolean circuit model. A
boolean circuit is a directed, acyclic, labelled graph of maximum indegree 2, in
which the nodes of indegree zero are the inputs, and each node of indegree k
computes the k-ary boolean function indicated in its label. The nodes of outde
gree zero are the output nodes. The size of a circuit is the number of its nodes;
the depth is the length of the longest path from an input to an output. The nodes
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Fig. 1. A monotone alternating boolean circuit
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in a circuit are called also gates. Occasionally we resort to gates with more than
two inputs. If gates with more than two inputs exist in the circuits, then they are
assumed to be shorthand forms for subcircuits of gates with two inputs, e.g. an
AND gate of indegree 3 stands for two AND gates, the first computing the AND
of two of the inputs and the second computing the AND of this result with the
third input.

Various additional hypotheses can be assumed on a given circuit. The follow
ing restriction wiII be important for us: a monotone alternating circuit is divided
into levels, so that the inputs to a gate at a given level are all outputs of gates
from the previous level. The circuit contains only AND and OR gates. To make
up for the absence of negation gates, it receives eaeh input together with its
negation. All gates in the same level are of the same type, and the levels alternate
between AND and OR levels. Gates AND and OR with only one input behave
like identity. Figure I shows an example of a monotone alternating circuit.

A boolean circuit computes a boolean function by substituting values for
the inputs, evaluating all the nodes, and collecting values at the output nodes.
Binary inputs and outputs might be binary encodings of other objects assuming
some simple coding scheme. To use boolean circuits for computing functions
on an infinite domain (e.g. on the set of all finite binary sequences), we have
to select a different circuit for each input length. In principle, such a selection
might be very hard to compute. Here we wiII explicitly rule out those families
of circuits, for which this selection is indeed hard, and wiII restrict ourselves to
uniform families. By definition, a family of circuits is uniform, if it is possible to
construct for each length 11, the circuit corresponding to this input length using an
algorithm that requires only a very small amount of resources (such as logarithmic
memory space). Discussions of the different ways of defining uniformity appear
in [BDG90] and [BIS90].

The class NC is defined as the class of all problems that can be solved by
uniform circuits of polynomial size and polylogarithmic (i.e. O(1ogk 11), for some
k > 0) depth [BDG90]. Intuitively, the depth of a circuit measures the parallel
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time needed to compute the corresponding function and its size the necessary
hardware, and this intuition is supported by existing characterisations of NC in
terms of more natural computational models such as the parallel RAM. Thus the
class NC is a plausible formalisation of the concept of efficiently parallelisable
problem.

We need from complexity theory the notion of many-one NC -reducibility
and the corresponding notion of completeness for P. By definition problem S
is many-one N C -reducible, (N C -reducible for short) to problem T if there exists
a uniform family of circuits {cn } of polynomial size and polylogarithmic depth
such that for every positive integer II and for every x E {a, l}", we have

xES <=> Cn(x) E T

where cn(x) E {a, I}' denotes the output of the circuit Cn with input x [AII89].
A problem S is Pi-complete under NC-reduction if S E P and every problem
in P is NC -reducible to S. In a sense, P-complete problems could be identified
as inherently sequential ones: an NC algorithm found for a P-complete problem
would imply the existence of very fast parallel algorithms for every problem in P.
However, the conjecture of many researchers in the field is that such an algorithm
does not exist at all. Surveys of P-complete problems have appeared in [HoR84]
and [MSS89]. Our main results prove the P-completeness of several problems
on LFTSs.

Since NC -reducibility is transitive, the usual way of proving the P-complete
ness of a problem in P is to reduce some known other complete problem in P to
it. There are several standard P-complete problems which are natural candidates
for the reduction. One of these is the Circuit Value Problem. The input to this
problem is a pair formed by a circuit and an input to the circuit. The problem
consists of computing the output of the circuit on the given input. When suitable
additional hypotheses are assumed on the given circuit, we obtain variants of
this problem that still are P-complete. In order to prove our results we consider
such a variant [HoR84]. The Monotone Alternating Circuit value problem is
P-complete under many-one NC-reductions:

Input: an encoding of a monotone alternating circuit c with one output, together
with boolean input values XI,XI, ••• ,Xn,xn•

Output: the value of c on these input values.

3. Main Results

Our main goal is to prove that the Strong Bisimilarity problem is P-compJete
under many-one NC-reduction.

Input: an encoding of a finite transition system with two selected states p' and
q'.
Output: decide if p' and q' are strongly bisimilar.

It is well known that deciding strong bisimilarity in a LFTS is a P problem
[KaS90]. To see this, it suffices to construct the strong bisimilarity relation", as
intersection of the sequence of relations =0,=1,... , which are defined by induction
as follows (see [Mil80]):
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1. For every (p,q) E Q x Q, P =0 q

2. P =i+l q if for every x E L,
x x

whenever P~ p', then for some q', q~ q' and p' =i q';
x x

whenever q~ q', then for some p', p~ p' and p' =i q'.
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Then it can be seen immediately that the relation ,..., can be constructed in
polynomial time since it is just the relation =k where k is the number of states
in the finite transition system. More efficient algorithms to solve this problem
have been considered in [PaTS?] and [KaS90]. The P-completeness of the Strong
Bisimilarity problem will follow from the following lemma which constitutes the
main part of our result.

Lemma 1. The Circuit Value Problem for Monotone Alternating Circuits can be
many-one NC -reduced to the Strong Bisimilarity Problem.

Proof. We will transform an instance of the Circuit Value Problem for Monotone
Alternating Circuits into an instance of the Strong Bisimilarity Problem in three
steps. In the first step we design an auxiliary circuit. In the second step we
combine it with the original circuit C to get a new circuit C'. Finally, in the third
step we transform C' into a finite labelled transition system.

Let us suppose that we are given a monotone alternating circuit C which has
k levels. The input gates of the circuits are on the first level, and the output gate
is on the kth level. This number can be found fast in parallel.

1. We define the k-alternating pattern Ak. This is a monotone alternating
circuit of depth k, where every level has two gates. One of the two gates computes
the constant 0, and the other the constant 1. At the input level (first level) the
two gates are the constants 0 and 1. At an OR level, the gate with value 0 gets
a unique wire from the gate of the previous level which has the value 0; the gate
with value I gets a wire from both gates of the previous level. The wires entering
an AND level are defined in a complementary way: the gate with value I gets a
unique wire from the gate of the previous level which has the value I; the gate
with value 0 gets a wire from both gates of the previous level. It is easy to check
then that in Ak the following two conditions are satisfied:

Every OR gate has an input with value O.
Every AND gate has an input with value 1.

The gates at the kth level of Ak are respectively called the O-output and the
l-output, We can construct Ak fast in parallel since it has a very regular structure.
Figure 2 gives us A4 •

2. We couple the k-alternating pattern Ak with the circuit C to get a new
circuit C'. The gates of C' are the gates of Ak and C, and all the wires of these
two circuits are also wires of C'. In addition, to every gate of C we add a wire
coming from the preceding level of the k-alternating pattern. If the gate is an OR,
the wire comes from the gate with value O. If the gate is an AND, the wire comes
from the gate with value 1. The circuit C' satisfies the following three properties:

Every OR gate has at least an input with value O.
Every AND gate has at least an input with value 1.
Every gate of C' evaluates equally to the corresponding gate in Ak or C.

Figure 3 shows C' in our example.
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l-Output Q-Output

Level 4

Level 3

Level 2

Levell

Fig. 2. The 4-alternating pattern A~

3. We now transform the circuit C' into an FLTS M over a one-letter
alphabet. M contains a state corresponding to each gate of C. These states arc
called ordinary states. They are naturally distributed on k levels, corresponding to
the k levels of C'. In addition M contains 11 + 1 auxiliary states, associated with
the 11 + 1 inputs of C which evaluate to 1 (the 11 inputs of C of value 1, and the
constant 1 input of Ad. We say that these auxiliary states are on level O.

To each wire of C' corresponds a transition of M. The transition goes from the
output of the wire to its input. In addition, there is a transition from each state on
the first level corresponding to a gate which evaluates to 1, to its auxiliary state
at level O. All the transitions are labelled by the unique letter in the alphabet.
Finally, let us specify two states p" and q" of M_ State p* is the one which
corresponds in M to the output gate of C. State q' is the one which corresponds
to the l-output gate of Ak. Figure 4 shows M in our example.

We are now ready to show that the circuit C evaluates to 1 with the given
input values if and only if states p' and q* in M are strongly bisimilar. We will
show the implication in both directions.

(=»: Let us suppose that C evaluates to 1. We define a binary relation S over the
states of M. Let us say that an ordinary state of M is a O-state, if it corresponds
to a gate of C which evaluates to O. A l-state is defined similarly. Let p and q be
two states of of M. Then we define S such that (p,q) E S if one of the following
conditions is satisfied:

p and q are both auxiliary states.
p and q are on the same level and they are both O-states.
p and q are on the same level and they are both I-states.

We will show that S is a strong bisimulation. By definition (p',q*) E S, this will
imply that p' and q* are strongly bisimilar. Let p and q be states such that
(p, q) E S. We will show that the bisimilarity conditions are satisfied by the couple
(p, q). There is nothing to show for the states on level O. There is nothing to show
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C

C'

Fig. 3. The coupling of C and A4 into C'

either for the O-states of levell, and the l-states of level 1 satisfy the conditions
since all the states of level 0 are in relation according to S.

Let us suppose that states p and q are from level 111 > 1. Without loss of
generality we can suppose that the mth level corresponds to an OR level in C'
(the argument is complementary for an AND level). The states p and q are either
O-states or l-states. In the first case we claim that all the successors of both p and
q are O-states. This is indeed true since otherwise the corresponding OR gates
in C' would not evaluate to O. Therefore by the definition of the relation S, for
every successor p' of p and every successor q' of q, we have (p',q') E S.

Let us now suppose that p and q are l-states, Then we claim that they both
have at least one l-state and at least one O-state as successor. The claim about
the l-states follows from an argument complementary to our previous one. The
claim about the O-states follows from our construction: as we observed in C'
every OR gate has at least one O-entry. In fact, this is the point where we need
the alternating pattern.

(<=): Let us suppose that C evaluates to O. We will show that p' and q' cannot
be bisimilar. This will follow from the following claim: for any input assignment,
for every O-state p and every l-state q, for every bisimulation S, if p and q are on
the same level, then (p,q) f{. S. The claim is proved by induction on the level of
the states.

If they are on the first level then this follows from the fact that q has a
transition while p has none. If they are on a levelm > 1 then we can suppose that
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Fig. 4. The transition system AI corresponding to C'

this is an OR level (as usual, the argument for an AND level is complementary).
Obviously, q must have a l-state successor q'. On the other hand, for any successor
p' of p, we know that p' is a O-state. By our inductive hypothesis, p' and q' are
not bisimilar. Thus p and q are not bisimilar either. This completes the induction
and the proof of the lemma. 0

As a consequence of Lemma I and the discussion preceding it we obtain our
main result.

Theorem 1. The Strong Bisimilarity problem is P-complete under NC-reduction.

Input: an encoding of a finite transition system and two selected states p and q.
Output: decide whether p and q are strongly bisimilar.

The problem of Strong Bisimilarity can trivially be NC -reduced to both Obser
vation Equivalence and Observation Congruence. Moreover, these two problems
can be solved in P by reducing them in polynomial time via a transitive clo
sure algorithm to Strong Bisimilarity. As a corollary, we have the following two
P -completeness results.
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Theorem 2. The Observation Equivalence problem is P-complete under NC
reduction.

Input: an encoding of a finite transition system and two states p and q.
Output: decide whether p and q are observation equivalent.

Theorem 3. The Observation Congruence problem is P-complete under NC
reduction.

Input: an encoding of a finite transition system and two states p and q.
Output: decide whether p and q are observation congruent.

4. Conclusions

We have presented quite a precise classification of the problem of deciding strong
bisimilarity in LFTSs in terms of its computational complexity, by showing that
it is complete for the class P. We have also discussed the intuitive implications
of this result. We now want to complete the discussion by raising two sorts of
questions.

1. First comes the question of whether it could be possible to work with
some useful concept similar to bisimulation, adequate to describe appropriately
some sort of process equivalence, but having efficient parallel NC algorithms.
Regarding this question we can consider two different aspects:

• Are there useful subclasses of bisimulations which are not P-complete? For
instance, are there useful particular cases of LFTS for which deciding bisim
ulation is in NC? Natural candidates are the processes of in degree 1. For
processes of in degree bounded by any constant larger than lour construction
here can be easily adjusted to prove P-completeness.

• Are there some kind of approximations to bisimulations which are easier to
compute? What good might they be?

2. Second, we must acknowledge some limitations of the notions we use.
We have accepted here NC to capture the proper notion of efficient parallel

. computation. Therefore, the P-completeness of a problem reminds us strongly of
the lack of efficient parallel algorithms to solve it. However, a significant number
of reserchers feel unease with this approach. For large problems, nk processors
with large k may seem unreasonable, and on the contrary, speeding problems
up to polylog time may seem excessively demanding; see [ViS86] for alternative
definitions of complexity classes addressing these issues. It would be interesting
to study the complexity of bisimilarity under this other approach.
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