Test Formulae Approach

Alessio Mansutti

Barbizon 2018



Memory states

A memory state is a pair (s, h) where:
m s : VAR — LOC is called store;
m h:LOC —, LOC is called heap.

where VAR = {x,y,z,...} set of (program) variables;
LOC set of locations (typically LOC = N 2 VAR).

/‘ s(x) «—e

Q/ I Generalisation:
/ h could be any finite graph

N

Note: Memory states are the standard model in Separation Logic



Splitting a Heap

|

?HH
AN .

h = hy + hy whenever
= Dom(h;) N Dom(hy) = 0;

m his the sum of the two functions h; and hs.



What we want? To build Test Formulae

m Fix X Cg, VAR and let n € N;

m Testy(n) definable finite set of sets of memory states
m {(s,h) | in hthereis a path from s(x) to s(y)},x,y € X;
m {(s, h) | h has a loop}.

or, equivalently Testy(n) finite set of predicates and their
semantics.

Indistinguishability relation (s, h) ~, (s', h’)

m holds whenever VT € Testx(n), (s,h) € T < (s/,h) e T,
m Property: for all n,m € N, if m > n then ~,,C~,,.



EF-style Game

Spoiler chose two structures (s, h) and (s, #"), and n € N resources
so that (s, h) ~, (s’, ’). Then the games continue as follows:

m If (s, h) %, (s, h') then Spoiler wins;
m If (s, h) =, (s',h') and n =1 then Duplicator wins;

m Otherwise,

m Spoiler choses ny, n; € N so that n = n; + np and two heaps
hi, hy so that h = hy + hy;

m Duplicator choses two heaps hj, h} so that b’ = h} + hj;

m Spoiler choses i € {1,2}. The game continues on the
structures (s, h;) and (s’, h?), with n; resources.



EF-style Game

Spoiler chose two structures (s, h) and (s’, h"), and n € N resources
so that (s, h) &, (s’, /). Then the games continue as follows:

f| Problem:

Given Testy(1), find sufficient conditions on
Testy(n), for all n € N, so that Duplicator has
a winning strategy.

=

O

m Spoiler choses ny, n; € N so that n = n; + np and two heaps
h1, hy so that h = hy + hy;

m Duplicator choses two heaps hj, b} so that h' = h} + hj;

m Spoiler choses i € {1,2}. The game continues on the
structures (s, h;) and (s’, h?), with n; resources.



Example: A family that works

Given n € N, let
m #loops(f) > /' be the set

{(s, h) | h with at least 3’ loops of size 8 < n}
m #loops' > 3’ be the set

{(s, h) | h with at least 3’ loops of size n+ 1}
m garbage > (3 the set

{(s,h) | in Dom(h) at least 3 locations are not part of any loop}



Example: A family that works

Given n € N, let
_m #loops(B) > 3’ be the set

Defining Testx(n) as

#loops(B8) > 8, #loops' > 3, pelln]
garbage > f3 = [1, %n(n +3)— 1}

Guarantees a strategy for Duplicator.

{(s,h) | in Dom(h) at least (3 locations are not part of any loop}



