
Test Formulae Approach

Alessio Mansutti

Barbizon 2018



Memory states

A memory state is a pair (s, h) where:

s : VAR→ LOC is called store;

h : LOC→fin LOC is called heap.

where VAR = {x, y, z, . . . } set of (program) variables;
LOC set of locations (typically LOC ∼= N ∼= VAR).

s(x)

Generalisation:
h could be any finite graph

Note: Memory states are the standard model in Separation Logic



Splitting a Heap

h :

h2 :

h1 :

h = h1 + h2 whenever

Dom(h1) ∩ Dom(h2) = ∅;
h is the sum of the two functions h1 and h2.



What we want? To build Test Formulae

Fix X ⊆fin VAR and let n ∈ N;

TestX (n) definable finite set of sets of memory states

{(s, h) | in h there is a path from s(x) to s(y)}, x , y ∈ X ;
{(s, h) | h has a loop}.

or, equivalently TestX (n) finite set of predicates and their
semantics.

Indistinguishability relation (s, h) ≈n (s
′, h′)

holds whenever ∀T ∈ TestX (n), (s, h) ∈ T ⇐⇒ (s ′, h′) ∈ T ;

Property: for all n,m ∈ N, if m ≥ n then ≈m⊆≈n.



EF-style Game

Spoiler chose two structures (s, h) and (s ′, h′), and n ∈ N resources
so that (s, h) ≈n (s ′, h′). Then the games continue as follows:

If (s, h) 6≈n (s ′, h′) then Spoiler wins;

If (s, h) ≈n (s ′, h′) and n = 1 then Duplicator wins;

Otherwise,

Spoiler choses n1, n2 ∈ N so that n = n1 + n2 and two heaps
h1, h2 so that h = h1 + h2;

Duplicator choses two heaps h′1, h
′
2 so that h′ = h′1 + h′2;

Spoiler choses i ∈ {1, 2}. The game continues on the
structures (s, hi ) and (s ′, h′i ), with ni resources.



EF-style Game

Spoiler chose two structures (s, h) and (s ′, h′), and n ∈ N resources
so that (s, h) ≈n (s ′, h′). Then the games continue as follows:

If (s, h) 6≈n (s ′, h′) then Spoiler wins;

If (s, h) ≈n (s ′, h′) and n = 1 then Duplicator wins;

Otherwise,

Spoiler choses n1, n2 ∈ N so that n = n1 + n2 and two heaps
h1, h2 so that h = h1 + h2;

Duplicator choses two heaps h′1, h
′
2 so that h′ = h′1 + h′2;

Spoiler choses i ∈ {1, 2}. The game continues on the
structures (s, hi ) and (s ′, h′i ), with ni resources.

Problem:
Given TestX (1), find sufficient conditions on
TestX (n), for all n ∈ N, so that Duplicator has
a winning strategy.



Example: A family that works

Given n ∈ N, let

#loops(β) ≥ β′ be the set

{(s, h) | h with at least β′ loops of size β ≤ n}

#loops↑ ≥ β′ be the set

{(s, h) | h with at least β′ loops of size n + 1}

garbage ≥ β the set

{(s, h) | in Dom(h) at least β locations are not part of any loop}



Example: A family that works

Given n ∈ N, let

#loops(β) ≥ β′ be the set

{(s, h) | h with at least β′ loops of size β ≤ n}

#loops↑ ≥ β′ be the set

{(s, h) | h with at least β′ loops of size n + 1}

garbage ≥ β the set

{(s, h) | in Dom(h) at least β locations are not part of any loop}

Defining TestX (n) as#loops(β) ≥ β′, #loops↑ ≥ β′,
garbage ≥ β

∣∣∣∣∣∣∣
β ∈ [1, n]

β′ ∈
[

1,
1

2
n(n + 3)− 1

]
Guarantees a strategy for Duplicator.


