Axiomatising Logics with Separating Conjunction and Modalities

Jelia'19

Stéphane Demri¹, Raul Fervari², Alessio Mansutti¹

¹LSV, CNRS, ENS Paris-Saclay, France ²CONICET, Universidad Nacional de Córdoba, Argentina

The fascinating realm of model-updating logics

Logic of bunched implication [O'Hearn, Pym – BSL'99] Separation logic [Reynolds - LICS'02] Logics of public announcement [Lutz – AAMAS'06] Sabotage modal logics [Aucher et al. – M4M'07] One agent refinement modal logic [Bozzelli et al. – JELIA'12] Modal Separation Logics (MSL) [Demri, Fervari – AIML'18] [Courtault, Galmiche – JLC'18] MSL for resource dynamics

Hilbert-style axiomatisation for model-updating logics

- Designing internal calculi for model-updating logics is not easy.
- Usually, external features are introduced in order to define sound and complete calculi:
 - nominals (e.g. Hybrid SL) [Brotherston, Villard POPL'14]
 - labels (e.g. bunched implication) [Docherty, Pym FOSSACS'18]

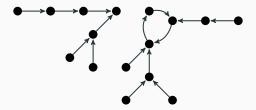
In this work: we use a "general" approach to define Hilbert-style axiom systems for MSL.

 \Rightarrow All axioms and rules involve only formulae from the target logic.

Modal separation logics

Models $\mathfrak{M} = (\mathfrak{U}, \mathfrak{R}, \mathfrak{V})$:

- $\blacksquare \ \mathfrak{U}$ infinite and countable,
- $\mathfrak{R} \subseteq \mathfrak{U} \times \mathfrak{U}$ is finite and weakly functional (deterministic),
- $\blacksquare \mathfrak{V}: \mathrm{PROP} \to \mathcal{P}(\mathfrak{U}).$
- i.e. same models of the modal logic Alt_1 .



Disjoint union $\mathfrak{M}_1 + \mathfrak{M}_2 =$ union of the accessibility relations. It is defined iff the relation we obtain is still functional.

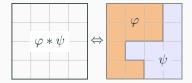
$$\varphi ::= \overbrace{p \ | \ \neg \varphi \ | \ \varphi \land \varphi \ | \ \Diamond \varphi \ | \ \langle \neq \rangle \varphi}^{\mathsf{modal logic of inequality [de Rijke, JSL'92]}} \left(\overbrace{\mathsf{emp} \ | \ \varphi \ast \varphi}^{\mathsf{separation logic}} \right)$$

Interpreted on pointed models: $\mathfrak{M} = (\mathfrak{U}, \mathfrak{R}, \mathfrak{V})$ and $\mathfrak{w} \in \mathfrak{U}$.

• $\mathfrak{M}, \mathfrak{w} \models \langle \neq \rangle \varphi$ iff there is $\mathfrak{w}' \in \mathfrak{U} \setminus \{\mathfrak{w}\}$: $\mathfrak{M}, \mathfrak{w}' \models \varphi$.

•
$$\mathfrak{M}, \mathfrak{w} \models \mathsf{emp} \text{ iff } \mathfrak{R} = \emptyset.$$

• $\mathfrak{M}, \mathfrak{w} \models \varphi * \psi$ iff $\mathfrak{M}_1, \mathfrak{w} \models \varphi, \mathfrak{M}_2, \mathfrak{w} \models \psi$ for some $\mathfrak{M}_1 + \mathfrak{M}_2 = \mathfrak{M}$.



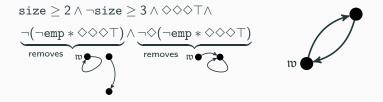
What can $MSL(*, \diamondsuit, \langle \neq \rangle)$ do?

 $MSL(*, \diamondsuit)$, i.e. $MSL(*, \diamondsuit, \langle \neq \rangle)$ without $\langle \neq \rangle$, is more expressive than Alt_1 :

• The cardinality of \Re is at least β :

$$\texttt{size} \geq \beta \stackrel{\texttt{def}}{=} \underbrace{\neg \texttt{emp} \ast \cdots \ast \neg \texttt{emp}}_{\beta \text{ times}}$$

The model is a loop of length 2 visiting the current world w:



What do we know about MSL?

- SAT($MSL(*, \diamondsuit, \langle \neq \rangle)$) is Tower-complete.
- SAT(MSL($*, \diamond$)) and SAT(MSL($*, \langle \neq \rangle$)) are NP-complete.
 - proofs are done by defining model abstractions
 - E.g. for $MSL(*, \diamond)$, $(Q_i \subseteq PROP)$

What do we know about MSL?

- SAT($MSL(*, \diamondsuit, \langle \neq \rangle)$) is Tower-complete.
- SAT($MSL(*, \diamondsuit)$) and SAT($MSL(*, \langle \neq \rangle)$) are NP-complete.
 - proofs are done by defining model abstractions
 - E.g. for $MSL(*, \diamond)$, $(Q_i \subseteq PROP)$

■ The equivalence relation ≈ induced by this abstraction characterises the indistinguishability relation of MSL(*, ◊).

Can we use this for axiomatisation?

Core formulae for $MSL(*, \diamondsuit)$

■ From the indistinguishability relation ≈, define a set of *core formulae* capturing the equivalence classes of ≈.

Theorem (A Gaifman locality result for $MSL(*, \diamondsuit)$)

Every formula of $MSL(*, \diamond)$ is logically equivalent to a Boolean combination of core formulae.

Core formulae for $MSL(*, \diamondsuit)$

■ From the indistinguishability relation ≈, define a set of *core formulae* capturing the equivalence classes of ≈.

Theorem (A Gaifman locality result for $MSL(*, \diamondsuit)$)

Every formula of $MSL(*, \diamond)$ is logically equivalent to a Boolean combination of core formulae.

■ Core formulae: Size formulae size ≥ β and graph formulae, e.g. a formula of MSL(*, ◊) that characterises

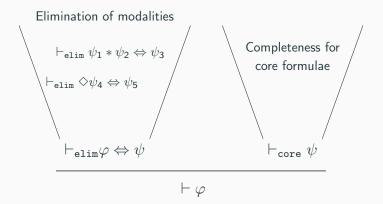
Important: The core formulae are all formulae from $MSL(*, \diamond)$.

The proof system is made of three parts:

- 1 Axioms and rules from propositional calculus;
- 2 Axioms for Boolean combinations of core formulae (Bool(Core));
- 3 Axioms and rules to transform every formula into a Boolean combination of core formulae.
 - Require for every φ, ψ in **Bool**(Core) to exhibit formulae in **Bool**(Core) that are equivalent to $\varphi * \psi$ and $\Diamond \varphi$.
 - Replay syntactically the proof of Gaifman locality for $MSL(*, \diamond)$.

(Similar to *reduction axioms* used in Dynamic epistemic logic)

Eliminating modalities & reasoning on core formulae



where φ in MSL(*, \Diamond), and ψ_i, ψ are in **Bool**(Core).

- Hilbert-style axiomatisation of $MSL(*, \diamond)$ and $MSL(*, \langle \neq \rangle)$.
- Axiomatisations derived from the abstractions used for complexity.
- Reusable method in practice: now used to axiomatise propositional SL and a guarded fragment of FOSL. [Demri, Lozes, M. – sub.]

Possible continuations:

- Axiomatisation of $MSL(*, \diamondsuit, \langle \neq \rangle)$.
- Calculi with optimal complexities.
 - tableaux calculi for $MSL(*, \diamondsuit)$.

[Fervari, Saravia - ongoing]