Extending propositional separation logic for
robustness properties

Alessio Mansutti

LSV, CNRS, ENS Paris-Saclay, Université Paris-Saclay, Cachan, France

FSTTCS - December 2018

Separation logic and program verification

Hoare calculus is based on proof rules manipulating Hoare triples.

{o} C{¥'}

where

m C is a program

m ¢ (precondition) and ¢’ (postcondition)
are assertions in some logical language.

Any (memory) model that satisfies ¢ will satisfy ¢’ after being
modified by C.

Programming languages with pointers

The so-called rule of constancy

{e} C{¢'}
{pAY} C{¢ A}

is generally not valid: it is unsound if C manipulates pointers.

“C does not mess with 1"

Programming languages with pointers

The so-called rule of constancy

{e} C{¢'}
{pAY} C{¢ A}

is generally not valid: it is unsound if C manipulates pointers.

“C does not mess with 1"

Example:

Bu[x] = u} [x] « 4 {[x] =4}
{b1=3 A Fufx]=u}] 4{[y]=3 A [x] =4}

not true if x and y are in aliasing.

Separation logic (Reynolds'02)

Separation logic add the notion of separation (x) of a state, so
that the frame rule

{¢} C{¢'} modv(C)Nfv(y) =0
{oxv} C{¢ =}

is valid.
Intuitively, separation means ([x] = n *[y] =m) = x#y

Separation logic (Reynolds'02)

Separation logic add the notion of separation (x) of a state, so
that the frame rule

{¢} C{¢'} modv(C)Nfv(y) =0
{oxv} C{¢ =}

is valid.
Intuitively, separation means ([x] = n *[y] =m) = x#y

m Automatic Verifiers: Infer, SLAyer, Predator

m Semi-automatic Verifiers: Smallfoot, Verifast

Also, see “Why Separation Logic Works" (Pym et al. ‘18)

Memory states

Separation Logic is interpreted over memory states (s, h) where:

m store, s : VAR — LOC m heap, h: LOC —¢, LOC

where VAR = {x,y,z,...} set of (program) variables,
LOC set of locations (typically LOC = N 2 VAR).

o—h>o—>o—> s(y) s(z) “«——e<c—e

s(x) /%‘/

7 N

= Disjointed heaps: dom(h;) N dom(hy) =0
m Sum of disjoint heaps (h; + h2) = sum of partial functions

Propositional Separation Logic SL(*, —)

pi="p | p1Apy | emp | x=y | x =y | prxp2 | p1%p2
Semantics

m standard for A and —;
m(s,h)Eemp <= dom(h)=10
= (s,hEx=y <= s(x)=s(y)

m(s,h)Ex—y <= h(s(x)) =s(y), (previously [x] =7y)

Separating conjunction ()

(s, h) = o1 * @ if and only if

.\1_04—0
— 3 (J (s, 1) E o1

/1
/ \ "y ;I\

(s, h2) = 2

There is a way to split the heap into two so that, together with the
store, one part satisfies 1 and the other satisfies 5.

Separating implication (—)
(s, h) = @1 = @3 if and only if

TN L, dom(h) Ndom(hy) =0
vy Q/ (s,h) E o1

N
/N D

/I (s;h+ M) E e
7N\

Whenever a (disjoint) heap that, together with the store, satisfies
1 is added, the resulting memory state satisfies (5.

Decision Problems

m Hoare proof-system requires to solve classical problems:

m satisfiability /validity /entailment

m weakest precondition/strongest postcondition

P— P {PIC{Q} @ =@
PrC{Q)

consequence rule

m satisfiability is PSPACE-complete for SL(x, —)

Note: entailment and validity reduce to satisfiability for SL(x, —).

Robustness properties

m Acyclicity holds for ¢ iff every model of ¢ is acyclic

m Garbage freedom holds for ¢ iff in every model of ¢, each
memory cell is reachable from a program variable of ¢

C. Jansen et al., ESOP'17

Checking for robustness properties is EXPSPACE-complete for
Symbolic Heaps with Inductive Predicates.

m Symbolic Heaps = no negation, no —, no A inside %

m Inductive Predicates: akin of Horn clauses where * replaces A

* *
P(x) < 3Z QuX... XQ, Q) C % Z

Our Goal

Provide similar results, but for propositional separation logic.

Desiderata

We aim to an extension of propositional separation logic where
m satisfiability, validity and entailment are decidable
m in PSPACE (as propositional separation logic)

@ robustness properties reduce to one of these problems

Known extensions

/_\’ SL(V, x, =) @

2SL(#*, =) ® <— SL(x, =, reach) ®
\ UNDECIDABLE

[
SL(V, *) @
*

1SL(x, —) SL(*, —) SL(*, reach) PSpace

SL(*, =) + reachability and one quantified variable

m (s,h) = reacht(x,y) <= h(s(x)) = s(y) for some L > 1

B (s,h) |=TJup <= thereis { € LOCs.t. (sflu<{],h) =

It is only possible to quantify over the variable name u.

Robustness properties reduce to entailment

= Acyclicity: ¢ = —3u reach™(u,u)

m Garbage freedom: ¢ = Vu (alloc(u) = \/reach(x,u))
xefv(p)

where u & fv(p) and
= alloc(x) Ex < x — L

= reach(x,y) = x =y V reacht(x,y)

Restrictions

The logic 1SL(*, -, reach™) is undecidable. We syntactically
restrict the logic so that for each occurrence of reach™(x,y):

R1 it is not on the right side of its first — ancestor
(seeing the formula as a tree)

R2 if x = u then y = u (syntactically)
For example, given ¢, ¢ satisfying these conditions,
m reach™(u,x) * (p =) only satisfies R1
m ¢ = (reach™(x,u) -«) satisfies both R1 and R2

m ¢ — (1) x reach’(u,u)) only satisfies R2

Note: robustness properties are expressible in this fragment.

Results

[Weakening even slightly R1 leads to undecidability

1SLg1(*, =, reach™): satisfiability is NON-ELEMENTARY
(more precisely, TOWER-hard)

1SLE2(%, +,reach™): satisfiability is PSPACE-complete
Proof Techniques
(1) reduce Propositional interval temporal logic under locality

principle (PITL) to a logic captured by 1SLgy(*, =, reach™)

(2) extend the test formulae technique used for SL(x, reach)

PITL (Moszkowski'83)

e=pt | a| vl | ¢ | p1Ag2

m interpreted on finite non-empty words over a finite alphabet &
® v = pt — |w|=1
EwkE=a <= v headed by a (locality principle)

== p1lpy <= w[l:] @1 and w[j : [w] = ¢
for some j € [1, |w]]

01...105-1 | 10; W41 Wiy

2 ~ g
©2

m Satisfiability is decidable, but NON-ELEMENTARY

Auxiliary Logic on Trees (ALT)

p=p1ANp2 | ~p | prxpx | FJugp | T(u) | G(u)

m interpreted on acyclic memory states

m one special location: the root p of a tree

m (s, h) = T(u) iff s(u) € dom(h) and it does reach p

m (s, h) = G(u) iff s(u) € dom(h) and it does not reach p

m Ju ¢ and @1 * @7 as before

Note: ALT is captured by 1SLg; (x, =, reach™).

Reducing PITL to ALT

m Easy to encode words as acyclic memory states

— \,f_,\l./_k./_}L,

m Set of models encoding words can be characterised in ALT

= However, difficult to translate 1] po:
ALT cannot express properties about the set of locations in
dom(h) that do not reach p, apart from its size

a b a a
VVVY.,
—_

P2
After the cut, left side does not reach p anymore.

p

¥1

Reducing PITL to ALT: alternative semantics for PITL

® [a] marked representation of a

01... 1051 vy ij.A.

® |t on standard semantics:

|m1...mj,1mj | |mj mj“...m‘m‘ |

$1 ©2

m ©|Y on marked semantics (can be simulated in ALT)

$1 P2

ALT and 1SLg;(*, =, reach™) are NON-ELEMENTARY

ALT is decidable in TOWER, as it is captured by SL(V,)

1SLi2 (%, =, reach™) is in PSPACE

R2 +
R 9 B

Test Formulae “technique”

Test formulae example on a Toy Logic

2
= "9 | p1Ap2 | pr*xp2 | Fup | alloc(u) | u—u

where (s, h) = u < u iff h(s(u)) = £ # s(u) and h(¢) = s(u).

Some formulae:
B—1 times *

» #loops(2) >3 ¥ TuuSus...xJuusu

= H £ Jualloc(u) A —(Ju alloc(u) * Ju alloc(u))

def

mrem>0 = T

m rem > $+1 «

Ju: alloc(u) A —u Eun ((alloc(u) A Hy) * rem > f3))

Test Formulae

Design an equivalence relation on models, based on the
satisfaction of atomic predicates (test formulae), e.g.

#loops(2) > rem > 3

Show that any formula of our logic is equivalent to a
Boolean combination of test formulae, e.g.

#loops(2) > 3 #loops(2) > 5 <= #loops(2) > 38

Prove small-model property for the logic of test formulae.

(1) Designing Test Formulae

m Fix o € Nt

m Let Test(a) be the finite set of predicates:

{#loops(2) > 5, rem >~ | B € [1,L(a)], v € [1,G(a)]}
for some functions £ and G in [N — N]

Indistinguishability relation (s, h) ~, (s', i)
for every T € Test(a), (s,h) = Tiff (s, W) =T

Note: « is related to the number of occurrences of * and — in a
formula of separation logic.

(2) * elimination Lemma

We want to design Test(«) so that the following result holds

Hypothesis:
m (s,h) =, (s, H)
Bo, a0 ENT st a1 +ap =«
mhh+h=h

Thesis: there are b}, h) s.t.
mh+h,=H
m (s,h1) =g, (s, h)
m (s,) =aq, (5, H)

Note: it can be restated as an EF-style game. Spoiler splits « and
h, Duplicator has to mimic the split on A’ so that ~ still holds.

(2) * elimination Lemma

We want to design Test(«) so that the following result holds

Hypothesis:
m (s, h) =, (s, H)

= ol {#loops(2) > 8,

" e [1,.c(a)1}
Thesi rem > v | v € [1,G(a)]
m h

m (s find £ and G so that lemma holds.

u (57 h2) Ray (5’7 h’2)

Note: it can be restated as an EF-style game. Spoiler splits o and
h, Duplicator has to mimic the split on A’ so that ~ still holds.

Finding G for rem > ~ formulae

Given h = hy 4 hy, every location not in a loop of size 2 of h
cannot be in a loop of size 2 of h; or hy. Then G must satisfy

G(a) = max (G(en)+ G(az))

ay,00€N
al1tar=a

Finding L for #1loops(2) > (3 formulae

Take h = hy + hy. Given a loop of size 2 of h, two cases:
m both locations of the loop are in the same heap (h; or hy);
m one location of the loop is in h; and the other is in hy.
Lla) = max (L(a1)+L(a2) +G(o1) +G(a2))

1,002
al1tax=o

Finding £ and G

We have the inequalities

1) =1 Gla)= max (G(a1)+G(az))
alftz)zg:a

L) z1 Lle)z max (L(a1)+L{az2) +G(a1) + G(e2))
alfggza

Which admit G(a) = o and £() = Ja(a + 3) — 1 as a solution.
An indistinguishability relation built on the set

#loops(2) > B, | B € {1, %a(n +3) - 1]

Tem 27y v el al

satisfy the * elimination Lemma.

(3) Test formulae, after * elimination

Hypothesis: Two family of test formulae, such that
m captures the atomic predicates of the Toy Logic
m satisfies the * elimination Lemma (and = elimination Lemma)

Thesis: for every formulae ¢ of Toy Logic,
by taking a > || we have

m If (s, h) =4 (s, ') then we have (s, h) = ¢ iff (s, 1) |= ¢.
m ¢ is equivalent to a Boolean combination of test formulae.

Small-model property

Small-model property for Boolean combination of test
formulae carries over to Toy Logic.

All bounds are polynomial = test formulae in PSPACE
Toy Logic is in PSPACE

1SLi% (%, =, reach™) is in PSPACE

T =x=y | x—=y | emp | AxC (RI)
C=n | CAC| ~C | JuC | CxC
A =7 | reacht(vi,w) | ANA| A | JuAd | AxA

where (R2) if vi = u then v», =u

Not so easy...

m Find the right set of test formulae that capture the logic
m Asymmetric A = C.

m two indistinguishability relation, two sets of test formulae
® two * and two 3 elimination Lemmata
m — elimination Lemma that glues the two relations

vi = v, seesx(vi, Vo) > 5i
#1oopy () > °, #loopf > B°
#predA() > B, sizeX >

> (3, 8)

u=v, ueloopx(ﬁ)7 ueloopl

u€eseesx(vy, v2)

u€predy'(x), u€sizey

If you like bounds: Test(X, «v) for the A fragment

pe(L j(a+ 1(a+2)(a+3)]
Boe[l,ta(a+3)—1], B€[L,q]
B e [1, 2o+ 1)(a+2) +1]

B €1, 3o +3)]

x €X, vi,v» € ATERMy

Recap
SL(*, =, reach)
undec.
1SLg1(*, —, reach™)
unk. non-elem.

™~

1SLE2(x, -+, reach™) ALT
PSPACE-complete dec. non-elem.
1SL(x, —) SL(*, reach) PITL

PSPACE-complete PSPACE-complete dec. non-elem.

m 1SL}2(*, =, reach™) strictly generalise other
PSPACE-complete extensions of propositional separation logic

m Can be used to check for robustness properties

Recap
SL(*, =, reach)
undec.
1SLgs (%, =, reach™)
unk. non-elem.

™~

1SLE2(x, -, reach™) ALT
PSPACE-complete dec. non-elem.
ISL(x*, —) SL(*, reach) PITL

PSPACE-complete PSPACE-complete dec. non-elem.

m ALT seems to be an interesting tool for reductions, as it is a
fragment or it is easily captured by many logics in TOWER
e.g. QCTL(U), MSL(<, (U),), 2SL(x*)

