
Extending propositional separation logic for
robustness properties

Alessio Mansutti

LSV, CNRS, ENS Paris-Saclay, Université Paris-Saclay, Cachan, France

FSTTCS - December 2018

Separation logic and program verification

Hoare calculus is based on proof rules manipulating Hoare triples.

{ϕ} C {ϕ′}

where

C is a program

ϕ (precondition) and ϕ′ (postcondition)
are assertions in some logical language.

Any (memory) model that satisfies ϕ will satisfy ϕ′ after being
modified by C .

Programming languages with pointers

The so-called rule of constancy

{ϕ} C {ϕ′}
{ϕ ∧ ψ} C {ϕ′ ∧ ψ}

“C does not mess with ψ”

is generally not valid: it is unsound if C manipulates pointers.

Example:

{∃u.[x] = u} [x]← 4 {[x] = 4}
{[y] = 3 ∧ ∃u.[x] = u} [x]← 4 {[y] = 3 ∧ [x] = 4}

not true if x and y are in aliasing.

Programming languages with pointers

The so-called rule of constancy

{ϕ} C {ϕ′}
{ϕ ∧ ψ} C {ϕ′ ∧ ψ}

“C does not mess with ψ”

is generally not valid: it is unsound if C manipulates pointers.

Example:

{∃u.[x] = u} [x]← 4 {[x] = 4}
{[y] = 3 ∧ ∃u.[x] = u} [x]← 4 {[y] = 3 ∧ [x] = 4}

not true if x and y are in aliasing.

Separation logic (Reynolds’02)

Separation logic add the notion of separation (∗) of a state, so
that the frame rule

{ϕ} C {ϕ′} modv(C) ∩ fv(ψ) = ∅
{ϕ ∗ ψ} C {ϕ′ ∗ ψ}

is valid.
Intuitively, separation means ([x] = n ∗ [y] = m) =⇒ x 6= y

Automatic Verifiers: Infer, SLAyer, Predator

Semi-automatic Verifiers: Smallfoot, Verifast

Also, see “Why Separation Logic Works” (Pym et al. ‘18)

Separation logic (Reynolds’02)

Separation logic add the notion of separation (∗) of a state, so
that the frame rule

{ϕ} C {ϕ′} modv(C) ∩ fv(ψ) = ∅
{ϕ ∗ ψ} C {ϕ′ ∗ ψ}

is valid.
Intuitively, separation means ([x] = n ∗ [y] = m) =⇒ x 6= y

Automatic Verifiers: Infer, SLAyer, Predator

Semi-automatic Verifiers: Smallfoot, Verifast

Also, see “Why Separation Logic Works” (Pym et al. ‘18)

Memory states

Separation Logic is interpreted over memory states (s, h) where:

store, s : VAR→ LOC heap, h : LOC→fin LOC

where VAR = {x, y, z, . . . } set of (program) variables,
LOC set of locations (typically LOC ∼= N ∼= VAR).

s(z)s(y)

s(x)

h

Disjointed heaps: dom(h1) ∩ dom(h2) = ∅
Sum of disjoint heaps (h1 + h2) = sum of partial functions

Propositional Separation Logic SL(∗,−∗)

ϕ := ¬ϕ | ϕ1∧ϕ2 | emp | x = y | x ↪→ y | ϕ1 ∗ϕ2 | ϕ1−∗ϕ2

Semantics

standard for ∧ and ¬;

(s, h) |= emp ⇐⇒ dom(h) = ∅

(s, h) |= x = y ⇐⇒ s(x) = s(y)

(s, h) |= x ↪→ y ⇐⇒ h(s(x)) = s(y), (previously [x] = y)

Separating conjunction (∗)
(s, h) |= ϕ1 ∗ ϕ2 if and only if

(s, h2) |= ϕ2

(s, h1) |= ϕ1

and

∃h2

∃h1

There is a way to split the heap into two so that, together with the
store, one part satisfies ϕ1 and the other satisfies ϕ2.

Separating implication (−∗)
(s, h) |= ϕ1 −∗ ϕ2 if and only if

(s, h + h1) |= ϕ2

dom(h) ∩ dom(h1) = ∅
(s, h1) |= ϕ1

∀h1

ww�

Whenever a (disjoint) heap that, together with the store, satisfies
ϕ1 is added, the resulting memory state satisfies ϕ2.

Decision Problems

Hoare proof-system requires to solve classical problems:

satisfiability/validity/entailment

weakest precondition/strongest postcondition

P =⇒ P ′ {P ′} C {Q ′} Q ′ =⇒ Q

{P} C {Q}
consequence rule

satisfiability is PSpace-complete for SL(∗,−∗)

Note: entailment and validity reduce to satisfiability for SL(∗,−∗).

Robustness properties

Acyclicity holds for ϕ iff every model of ϕ is acyclic

Garbage freedom holds for ϕ iff in every model of ϕ, each
memory cell is reachable from a program variable of ϕ

C. Jansen et al., ESOP’17

Checking for robustness properties is ExpSpace-complete for
Symbolic Heaps with Inductive Predicates.

Symbolic Heaps =⇒ no negation, no −∗, no ∧ inside ∗
Inductive Predicates: akin of Horn clauses where ∗ replaces ∧

P(~x)⇐ ∃~z Q1

∗
��ZZ∧ . . .

∗
��ZZ∧Qn fv(Qi) ⊆ ~x,~z

Our Goal
Provide similar results, but for propositional separation logic.

Desiderata

We aim to an extension of propositional separation logic where

satisfiability, validity and entailment are decidable

in PSpace (as propositional separation logic)

robustness properties reduce to one of these problems

Known extensions

SL(∀, ∗,−∗)

SL(∀, ∗)

2SL(∗,−∗)

1SL(∗,−∗)

SL(∗,−∗, reach)

SL(∗,−∗) SL(∗, reach)

undecidable

PSpace

SL(∗,−∗) + reachability and one quantified variable

(s, h) |= reach+(x, y) ⇐⇒ hL(s(x)) = s(y) for some L ≥ 1

(s, h) |= ∃u ϕ ⇐⇒ there is ` ∈ LOC s.t. (s[u← `], h) |= ϕ

It is only possible to quantify over the variable name u.

Robustness properties reduce to entailment

Acyclicity: ϕ |= ¬∃u reach+(u, u)

Garbage freedom: ϕ |= ∀u (alloc(u)⇒
∨

x∈fv(ϕ)

reach(x, u))

where u 6∈ fv(ϕ) and

alloc(x)
def
= x ↪→ x −∗ ⊥

reach(x, y)
def
= x = y ∨ reach+(x, y)

Restrictions
The logic 1SL(∗,−∗, reach+) is undecidable. We syntactically
restrict the logic so that for each occurrence of reach+(x, y):

R1 it is not on the right side of its first −∗ ancestor
(seeing the formula as a tree)

R2 if x = u then y = u (syntactically)

For example, given ϕ,ψ satisfying these conditions,

reach+(u, x) ∗ (ϕ−∗ ψ) only satisfies R1

ϕ−∗ (reach+(x, u)−∗ ψ) satisfies both R1 and R2

ϕ−∗ (ψ ∗ reach+(u, u)) only satisfies R2

Note: robustness properties are expressible in this fragment.

Results

0 Weakening even slightly R1 leads to undecidability

1 1SLR1(∗,−∗, reach+): satisfiability is non-elementary
(more precisely, tower-hard)

2 1SLR2
R1(∗,−∗, reach+): satisfiability is PSpace-complete

Proof Techniques

(1) reduce Propositional interval temporal logic under locality
principle (PITL) to a logic captured by 1SLR1(∗,−∗, reach+)

(2) extend the test formulae technique used for SL(∗, reach)

PITL (Moszkowski’83)

ϕ := pt | a | ϕ1 ϕ2 | ¬ϕ | ϕ1 ∧ ϕ2

interpreted on finite non-empty words over a finite alphabet Σ

w |= pt ⇐⇒ |w| = 1

w |= a ⇐⇒ w headed by a (locality principle)

w |= ϕ1 ϕ2 ⇐⇒ w[1 : j] |= ϕ1 and w[j : |w|] |= ϕ2

for some j ∈ [1, |w|]

w1 . . .wj−1 wj+1 . . .w|w|wj

ϕ2

ϕ1

Satisfiability is decidable, but non-elementary

Auxiliary Logic on Trees (ALT)

ϕ := ϕ1 ∧ ϕ2 | ¬ϕ | ϕ1 ∗ ϕ2 | ∃u ϕ | T(u) | G(u)

interpreted on acyclic memory states

one special location: the root ρ of a tree

(s, h) |= T(u) iff s(u) ∈ dom(h) and it does reach ρ

(s, h) |= G(u) iff s(u) ∈ dom(h) and it does not reach ρ

∃u ϕ and ϕ1 ∗ ϕ2 as before

Note: ALT is captured by 1SLR1(∗,−∗, reach+).

Reducing PITL to ALT

Easy to encode words as acyclic memory states

abaa

ρ

a b a a

Set of models encoding words can be characterised in ALT

However, difficult to translate ϕ1 ϕ2:
ALT cannot express properties about the set of locations in
dom(h) that do not reach ρ, apart from its size

ρ

a b a a

×
ϕ2

ϕ1

After the cut, left side does not reach ρ anymore.

Reducing PITL to ALT: alternative semantics for PITL

a marked representation of a

w1 . . .wj−1 wj wj+1 . . . w|w|

ϕ ψ on standard semantics:

w1 . . .wj−1 wj

ϕ1

wj wj+1 . . .w|w|

ϕ2

ϕ ψ on marked semantics (can be simulated in ALT)

w1 . . .wj−1 wj+1 . . .wj w|w|

ϕ1

wjwj+1 . . . w|w|

ϕ2

1 ALT and 1SLR1(∗,−∗, reach+) are non-elementary

2 ALT is decidable in tower, as it is captured by SL(∀, ∗)

1SLR2
R1(∗,−∗, reach+) is in PSpace

Test Formulae “technique”

1SLR2
R1(∗,−∗, reach+) is in PSpace

Test Formulae “technique”

Test formulae example on a Toy Logic

ϕ := ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∗ ϕ2 | ∃u ϕ | alloc(u) | u 2
↪→ u

where (s, h) |= u
2
↪→ u iff h(s(u)) = ` 6= s(u) and h(`) = s(u).

Some formulae:

#loops(2) ≥ β def
=

β−1 times ∗︷ ︸︸ ︷
∃u u

2
↪→ u ∗ . . . ∗ ∃u u

2
↪→ u

H1
def
= ∃u alloc(u) ∧ ¬(∃u alloc(u) ∗ ∃u alloc(u))

rem ≥ 0
def
= >

rem ≥ β+1
def
=

∃u : alloc(u) ∧ ¬u 2
↪→ u ∧ ((alloc(u) ∧ H1) ∗ rem ≥ β))

Test Formulae

1 Design an equivalence relation on models, based on the
satisfaction of atomic predicates (test formulae), e.g.

#loops(2) ≥ β rem ≥ β

2 Show that any formula of our logic is equivalent to a
Boolean combination of test formulae, e.g.

#loops(2) ≥ 3 ∗#loops(2) ≥ 5 ⇐⇒ #loops(2) ≥ 8

3 Prove small-model property for the logic of test formulae.

(1) Designing Test Formulae

Fix α ∈ N+

Let Test(α) be the finite set of predicates:

{#loops(2) ≥ β, rem ≥ γ | β ∈ [1,L(α)], γ ∈ [1,G(α)]}

for some functions L and G in [N→ N]

Indistinguishability relation (s, h) ≈α (s ′, h′)

for every T ∈ Test(α), (s, h) |= T iff (s ′, h′) |= T

Note: α is related to the number of occurrences of ∗ and −∗ in a
formula of separation logic.

(2) ∗ elimination Lemma

We want to design Test(α) so that the following result holds

Hypothesis:

(s, h) ≈α (s ′, h′)

α1, α2 ∈ N+ s.t. α1 + α2 = α

h1 + h2 = h

Thesis: there are h′1, h
′
2 s.t.

h′1 + h′2 = h′

(s, h1) ≈α1 (s ′, h′1)

(s, h2) ≈α2 (s ′, h′2)

Note: it can be restated as an EF-style game. Spoiler splits α and
h, Duplicator has to mimic the split on h′ so that ≈ still holds.

(2) ∗ elimination Lemma

We want to design Test(α) so that the following result holds

Hypothesis:

(s, h) ≈α (s ′, h′)

α1, α2 ∈ N+ s.t. α1 + α2 = α

h1 + h2 = h

Thesis: there are h′1, h
′
2 s.t.

h′1 + h′2 = h′

(s, h1) ≈α1 (s ′, h′1)

(s, h2) ≈α2 (s ′, h′2)

Note: it can be restated as an EF-style game. Spoiler splits α and
h, Duplicator has to mimic the split on h′ so that ≈ still holds.

{
#loops(2) ≥ β,

rem ≥ γ

∣∣∣∣∣ β ∈ [1,L(α)]

γ ∈ [1,G(α)]

}

find L and G so that lemma holds.

Finding G for rem ≥ γ formulae

Given h = h1 + h2, every location not in a loop of size 2 of h
cannot be in a loop of size 2 of h1 or h2. Then G must satisfy

G(α) ≥ max
α1,α2∈N+

α1+α2=α

(G(α1) + G(α2))

Finding L for #loops(2) ≥ β formulae

Take h = h1 + h2. Given a loop of size 2 of h, two cases:

both locations of the loop are in the same heap (h1 or h2);

one location of the loop is in h1 and the other is in h2.

L(α) ≥ max
α1,α2∈N+

α1+α2=α

(L(α1) + L(α2) + G(α1) + G(α2))

Finding L and G
We have the inequalities

G(1) ≥ 1 G(α) ≥ max
α1,α2∈N+

α1+α2=α

(G(α1) + G(α2))

L(1) ≥ 1 L(α) ≥ max
α1,α2∈N+

α1+α2=α

(L(α1) + L(α2) + G(α1) + G(α2))

Which admit G(α) = α and L(α) = 1
2α(α + 3)− 1 as a solution.

An indistinguishability relation built on the set#loops(2) ≥ β,
rem ≥ γ

∣∣∣∣∣∣∣
β ∈

[
1,

1

2
α(n + 3)− 1

]
γ ∈ [1, α]


satisfy the ∗ elimination Lemma.

(3) Test formulae, after ∗ elimination

Hypothesis: Two family of test formulae, such that

captures the atomic predicates of the Toy Logic

satisfies the ∗ elimination Lemma (and ∃ elimination Lemma)

Thesis: for every formulae ϕ of Toy Logic,
by taking α ≥ |ϕ| we have

If (s, h) ≈α (s, h′) then we have (s, h) |= ϕ iff (s, h′) |= ϕ.

ϕ is equivalent to a Boolean combination of test formulae.

Small-model property

1 Small-model property for Boolean combination of test
formulae carries over to Toy Logic.

2 All bounds are polynomial =⇒ test formulae in PSpace

3 Toy Logic is in PSpace

1SLR2
R1(∗,−∗, reach+) is in PSpace

π := x = y | x ↪→ y | emp | A −∗ C (R1)

C := π | C ∧ C | ¬C | ∃u C | C ∗ C
A := π | reach+(v1, v2) | A ∧ A | ¬A | ∃u A | A ∗ A

where (R2) if v1 = u then v2 = u

Not so easy...

Find the right set of test formulae that capture the logic

Asymmetric A−∗ C.

two indistinguishability relation, two sets of test formulae
two ∗ and two ∃ elimination Lemmata
−∗ elimination Lemma that glues the two relations

If you like bounds: Test(X, α) for the A fragment



v1 = v2, seesX(v1, v2) ≥ β

#loopX(β) ≥ β	, #loop
⇑
X ≥ β	

#predAX (x) ≥ β, sizeAX ≥ β

u∈seesX(v1, v2) ≥ (
←−
β ,
−→
β)

u = v1, u∈loopX(β), u∈loop⇑X
u∈predAX (x), u∈sizeAX

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

β

∈
[
1, 1

6 (α + 1)(α + 2)(α + 3)
]

β	∈
[
1, 1

2α(α + 3)− 1
]
, β ∈ [1, α]

←−
β ∈

[
1, 1

6α(α + 1)(α + 2) + 1
]

−→
β ∈

[
1, 1

2α(α + 3)
]

x ∈ X, v1, v2 ∈ ATERMX



Recap
SL(∗,−∗, reach)

undec.

1SLR1(∗,−∗, reach+)
unk. non-elem.

1SLR2
R1(∗,−∗, reach+)

PSpace-complete

1SL(∗,−∗)
PSpace-complete

SL(∗, reach)
PSpace-complete

ALT
dec. non-elem.

PITL
dec. non-elem.

1SLR2
R1(∗,−∗, reach+) strictly generalise other

PSpace-complete extensions of propositional separation logic

Can be used to check for robustness properties

Recap
SL(∗,−∗, reach)

undec.

1SLR1(∗,−∗, reach+)
unk. non-elem.

1SLR2
R1(∗,−∗, reach+)

PSpace-complete

1SL(∗,−∗)
PSpace-complete

SL(∗, reach)
PSpace-complete

ALT
dec. non-elem.

PITL
dec. non-elem.

ALT seems to be an interesting tool for reductions, as it is a
fragment or it is easily captured by many logics in tower
e.g. QCTL(U), MSL(3, 〈U〉, ∗), 2SL(∗)

