
The Effects of Adding Reachability Predicates in
Propositional Separation Logic

A. Mansutti
Joint work with S. Demri and E. Lozes

INFINI - November 2017

Motivation

Many tools support separation logic as an assertion language;

Growing demand to consider more powerful extensions;

Focus of the community:

user-defined inductive predicates;
magic wand operator −∗;
closure under boolean connectives.

Results

We consider propositional separation logic SL(∗,−∗)

+

list segment predicate ls.

We show that its satisfiability problem is undecidable, but
removing −∗ makes the logic PSPACE-complete.

Separation logic as an assertion language

Verification of imperative programs based on Hoare triples:

{P} C {Q}

where C is a program and P, Q are assertions in some logical
language.

Any (memory) state that satisfies P will satisfy Q after being
modified by C .

Hoare calculus: Proof rules manipulating Hoare triples.

Separation logic as an assertion language

The so-called frame rule

{P} C {Q}
{F ∧ P} C {F ∧ Q}

fails in standard Hoare logic: C can change the satisfaction of F .

Separation logic add the notion of separation (∗) of a state, so
that the frame rule

{P} C {Q} modv(C) ∩ fv(F) = ∅
{F ∗ P} C {F ∗ Q}

is valid.

Separation logic as an assertion language

The so-called frame rule

{P} C {Q}
{F ∧ P} C {F ∧ Q}

fails in standard Hoare logic: C can change the satisfaction of F .

Separation logic add the notion of separation (∗) of a state, so
that the frame rule

{P} C {Q} modv(C) ∩ fv(F) = ∅
{F ∗ P} C {F ∗ Q}

is valid.

Separation logic

Separation logic is interpreted over memory states (s, h) where:

s is a store, s : PVAR→ LOC;

h is a heap, h : LOC→fin LOC.

where LOC and PVAR are countable infinite sets, e.g. N.

Propositional separation logic

Syntax:

φ := ¬φ | φ1∧φ2 | x = y | emp | x 7→ y | φ1 ∗φ2 | φ1−∗φ2

Semantics: standard for ¬ and ∧,

(s, h) |= x = y ⇐⇒ s(x) = s(y)

(s, h) |= emp ⇐⇒ dom(h) = ∅
(s, h) |= x 7→ y ⇐⇒ h(s(x)) = s(y) and dom(h) = {x}

(s, h) |= φ1 ∗ φ2 ⇐⇒ ∃h1, h2 s.t. h = h1 + h2 and

(s, h1) |= φ1 and (s, h2) |= φ2

(s, h) |= φ1 −∗ φ2 ⇐⇒ ∀h′ if h, h′are disjoint and (s, h′) |= φ1

then (s, h + h′) |= φ2

SL + Reachability predicates

(s, h) |= ls(x, y)
⇐⇒ if s(x) = s(y) then h is empty, otherwise

h = {`0 7→ `1, `1 7→ `2, . . . , `n−1 7→ `n} with n ≥ 1,
`0 = s(x), `n = s(y) and for all i 6= j ∈ [0, n], `i 6= `j

(s, h) |= reach(x, y)
⇐⇒ h w {s(x) 7→ `1, `1 7→ `2, . . . , `n−1 7→ s(y)}

(s, h) |= reach+(x, y)
⇐⇒ h w {s(x) 7→ `1, `1 7→ `2, . . . , `n−1 7→ s(y)} with n ≥ 1

Reachability predicates

SL(∗,−∗,ls) and SL(∗,−∗,reach) are interdefinable;

both logics can be seen as fragments of SL(∗,−∗,reach+).

Main contribution:

We show the undecidability of SL(∗,−∗,ls)

and the PSPACE-completeness of SL(∗,reach+).

Undecidability: Reduction of SL(∀,−∗) to SL(∗,−∗,ls)

We consider the first-order extension of SL(−∗) obtained by adding
the universal quantifier ∀.

(s, h) |= ∀x .φ if and only if for all ` ∈ LOC, (s[x ← `], h) |= φ

The satisfiability problem for SL(∀,−∗) is undecidable. (IAC 2012)

Undecidability: Reduction of SL(∀,−∗) to SL(∗,−∗,ls)

Suppose we can express the following properties in SL(∗,−∗,ls)

alloc−1(x) :
x

n(x) = n(y) :
x y

n(x) ↪→ n(y) :
x y

Then we can encode formulae of SL(∀,−∗) in SL(∗,−∗,ls) by using
part of the heap to mimic the store’s updates.

Translation from SL(∀,−∗) to SL(∗,−∗,ls)

Formula ψ of SL(∀,−∗) with variables x1, . . . , xq.
For the translation we use X ⊇ {x1, . . . xq} variables.

T(ψ1 ∧ ψ2,X)
def
= T(ψ1,X) ∧ T(ψ2,X)

T(¬ψ,X)
def
= ¬T(ψ,X)

T(xi = xj ,X)
def
= n(xi) = n(xj)

T(xi ↪→ xj ,X)
def
= n(xi) ↪→ n(xj)

T(∀xi ψ,X)
def
= (alloc(xi) ∧ size = 1)−∗ (OK(X)⇒ T(ψ,X))

where OK(X) is the formula (
∧

i 6=j xi 6= xj) ∧ (
∧

i ¬alloc−1(xi))

Translation from SL(∀,−∗) to SL(∗,−∗,ls)

To correctly translate T(ψ1 −∗ ψ2,X) we need one copy x̄i of each
variable xi .
The translation

(ALLOC ONLY(fv(ψ1)) ∧ T(ψ1,X)[x← x̄]) −∗

(((
∧

z∈fv(ψ1)

n(z) = n(z̄)) ∧OK(X))⇒

(DEALLOC ONLY(fv(ψ1)) ∗ T(ψ2,X)))

Memory states

Separation logic is interpreted over memory states (s, h) where:

s is a store, s : PVAR→ LOC;

h is a heap, h : LOC→fin LOC.

where LOC and PVAR are countable infinite sets.

Generalized memory states

Separation logic interpreted over generalized memory states
(L, s, h) where:

s is a store, s : PVAR→ L;

h is a heap, h : L→fin L.

where L and PVAR are countable infinite sets.

Generalized memory states: Encoding relation

X = {x1, x1, . . . , xq, xq}, Y ⊆ {x1, . . . , xq}.

(LOC1, s1, h1) �Y
q (LOC2, s2, h2) if it holds that:

LOC1 = LOC2 \ {s2(x) | x ∈ X},
for all x, y ∈ X , s2(x) 6= s2(y),

h2 = h1 + {s2(x) 7→ s1(x) | x ∈ Y }.

Example: Y = {x , y , z}, ∈ LOC1, ∈ LOC2

x=y

z

x

y

z

Undecidability result

Lemma

X = {x1, x1, . . . , xq, xq}, Y ⊆ {x1, . . . , xq}, ψ be a formula in
SL(∀,−∗) with free variables among Y that does not contain any
bound variable of ψ and (LOC1, s1, h1) �Y

q (LOC2, s2, h2).

We have (s1, h1) |= ψ iff (s2, h2) |= T(ψ,X).

Theorem

A closed formula ψ of SL(∀,−∗) with variables in {x1, . . . , xq} is
satisfiable whenever∧

i∈[1,q]

(¬alloc(xi) ∧ ¬alloc(xi)) ∧OK(X) ∧ T(ψ,X)

is satisfiable.

Undecidability result

Lemma

X = {x1, x1, . . . , xq, xq}, Y ⊆ {x1, . . . , xq}, ψ be a formula in
SL(∀,−∗) with free variables among Y that does not contain any
bound variable of ψ and (LOC1, s1, h1) �Y

q (LOC2, s2, h2).

We have (s1, h1) |= ψ iff (s2, h2) |= T(ψ,X).

Theorem

A closed formula ψ of SL(∀,−∗) with variables in {x1, . . . , xq} is
satisfiable whenever∧

i∈[1,q]

(¬alloc(xi) ∧ ¬alloc(xi)) ∧OK(X) ∧ T(ψ,X)

is satisfiable.

Expressing the auxiliary atomic predicates

n(x) = n(y), n(x) ↪→ n(y), alloc−1(x) definable in SL(∗,−∗, ls).

Idea: I can express that there exists a subheap of size n that
satisfies a formula φ with [φ]n , (φ ∧ size = n) ∗ >.

Example: n(x) = n(y) expressed with

[alloc(x) ∧ alloc(y) ∧ ψ]2

where ψ exactly characterize all the heaps of size 2 where it holds

x y

Results

The following fragments have undecidable satisfiability problem:

SL(∗, −∗) + n(x) = n(y), n(x) ↪→ n(y) and alloc−1(x);

SL(∗, −∗, ls);

SL(∗, −∗) + reach(x , y) = 2 and reach(x , y) = 3;

We consider now SL(∗,reach+)

To show decidability:

Find properties that can be expressed using ∗ and reach+

and make atomic (test) formulae for these properties;

∗ elimination: show that boolean combinations of these
fomulae are sufficiently expressive to capture SL(∗,reach+);

show a small-model property for the logic of test formulae.
Apply it to SL(∗,reach+).

Actually, we study SL(∗,reach+,alloc). This logic is at least as
expressive as SL(∗,−∗).

Example: SL(∗,−∗)

In (standard) separation logic we can express:

size ≥ β, i.e. that the heap has size at least β:

¬emp ∗ ¬emp ∗ . . . ∗ ¬emp β times

alloc(x), i.e. s(x) is in the domain of definition of h:

(x 7→ x) −∗ ⊥

x ↪→ y , i.e. h(s(x)) = s(y):

x 7→ y ∗ >

where > ≡ emp ∨ ¬emp.

Example: SL(∗,−∗)

In (standard) separation logic we can express:

size ≥ β, i.e. that the heap has size at least β:

¬emp ∗ ¬emp ∗ . . . ∗ ¬emp β times

alloc(x), i.e. s(x) is in the domain of definition of h:

(x 7→ x) −∗ ⊥

x ↪→ y , i.e. h(s(x)) = s(y):

x 7→ y ∗ >

where > ≡ emp ∨ ¬emp.

Each Separation Logic formula is equivalent to
a boolean combinations of formulae of the form

x = y , alloc(x), x ↪→ y , size ≥ β.

This leads to PSPACE-completeness for the sat-
isfiability problem of SL formulae.

SL(∗,reach+,alloc): What can be distinguished?

x

z

y

x

z

y

Same reach+ formulae are satisfied;

(alloc(x) ∧ size = 1) ∗ reach+(z , y) satisfied only by the
second memory state.

The order in which variables are reached from a variable is
important!

SL(∗,reach+,alloc): What can be distinguished?

x

z

y

x

z

y

Same reach+ formulae are satisfied;

(alloc(x) ∧ size = 1) ∗ reach+(z , y) satisfied only by the
second memory state.

The order in which variables are reached from a variable is
important!

SL(∗,reach+,alloc): What can be distinguished?

x

z

y x

z

y

Same reach+ formulae are satisfied;

size = 1 ∗ (¬reach+(x , z)∧¬reach+(y , z)) satisfied only by
the second memory state.

The existence of “shared paths” between variables is important!

SL(∗,reach+,alloc): What can be distinguished?

x

z

y x

z

y

Same reach+ formulae are satisfied;

size = 1 ∗ (¬reach+(x , z)∧¬reach+(y , z)) satisfied only by
the second memory state.

The existence of “shared paths” between variables is important!

SL(∗,reach+,alloc): What can be distinguished?

yx

z

yx

z

Same reach+ formulae are satisfied;

Same “order”, same “shared path”;

size = 1 ∗ (¬reach+(z , z) ∧ alloc(z) ∧ reach+(x , z))
satisfied only by the second memory state.

The existence of “meet points” is important!

SL(∗,reach+,alloc): What can be distinguished?

yx

z

yx

z

Same reach+ formulae are satisfied;

Same “order”, same “shared path”;

size = 1 ∗ (¬reach+(z , z) ∧ alloc(z) ∧ reach+(x , z))
satisfied only by the second memory state.

The existence of “meet points” is important!

Meet points

Memory state (s, h). Set of variables {x1, . . . , xq}.
We define meet-point [[mq(xi , xj)]]s,h.

xi

mq(xi , xj) = mq(xj , xi)

xk

xj

xjxi

mq(xi , xj) mq(xj , xi)

xk

Test formulae

Given {x1, . . . , xq} and α ∈ N, we define Test(q, α) as the set of
following test formulae:

v = v ′ v ↪→ v ′ alloc(v) seesq(v , v ′) ≥ β+1 sizeRq ≥ β,

where β ∈ [1, α] and v , v ′ are variables xi or meet points mq(xi , xj),
for i , j ∈ [1, q].

Theorem (that we want to prove)

Let ψ be in SL(∗, reach+, alloc) built over the variables in
x1, . . . , xq. Then ψ is logically equivalent to a boolean combination
of test formulae from Test(q, |ψ|).

Test formulae: seesq

(s, h) |= seesq(v , v ′) ≥ β + 1

if and only if

[[v ′]]qs,h is the first location correspondant to program variables

xi or meet points mq(xi , xj) reached from [[v]]qs,h;

the path from [[v]]qs,h to [[v ′]]qs,h is at least of length β + 1.

Recall: The order in which variables are reached from a variable is
important!

Test formulae: sizeRq

(s, h) |= sizeRq ≥ β

if and only if the number of locations in dom(h) that are not
corresponding to program variables xi or in the path between two
program variables xi , xj is greater or equal than β, where
β ∈ [1, α], i , j ∈ [1, q].

Rationale:

ϕx ,y = reach(x , y)=3 ∧ alloc(y) ∧ ¬reach(y , x)

ϕx ,y ∧ (ϕx ,y ∗ size ≥ 4)

Atomic formulae are combinations of test formulae

Lemma

Given α, q ≥ 1, i , j ∈ [1, q], for any atomic formula among
reach+(xi , xj), ls(xi , xj), reach(xi , xj) and size ≥ β with β ≤ α,
there is a Boolean combination of test formulae from Test(q, α)
logically equivalent to it.

For example, reach+(xi , xj) can be shown equivalent to∨
v1,...,vn∈Termsq ,

xi=v1,xj=vn

∧
1≤δ≤n−1

seesq(vδ, vδ+1) ≥ 1.

where Termsq is the set of program varibles xi and meet points
mq(xi , xj), i , j ∈ [1, q].

Indistinguishability of two memory states

Lemma

Let q, α, α1, α2 ≥ 1 with α = α1 + α2 and (s, h), (s ′, h′) be such
that (s, h) ≈q

α (s ′, h′). For all heaps h1, h2 such that h = h1 + h2

there are heaps h′1, h′2 such that

h′ = h′1 + h′2
(s, h1) ≈q

α1 (s, h′1)

(s, h2) ≈q
α2 (s, h′2).

where (s, h) ≈q
α (s ′, h′) whenever (s, h) and (s ′, h′) satisfy the

same test formulae of Test(q, α).

Test formulae capture SL(∗,reach+,alloc)

Theorem

Let ϕ be in SL(∗, reach+, alloc) with variables x1, . . . , xq.

For all α ≥ |ϕ| and all memory states (s, h), (s ′, h′) such that
(s, h) ≈q

α (s ′, h′), we have (s, h) |= ϕ iff (s ′, h′) |= ϕ.

ϕ is logically equivalent to a Boolean combination of test
formulae from Test(q, |ϕ|).

Results

Theorem

Let ϕ be a satisfiable SL(∗, reach+) formula built over x1, . . . , xq.
There is (s, h) such that (s, h) |= ϕ and

card(dom(h)) ≤ (q2 + q) · (|ϕ|+ 1) + |ϕ|

The satisfiability problem for SL(∗, reach+, alloc) is
PSPACE-complete.

The satisfiability problem for SL(∗, −∗, reach+) in which
reach+ is not in the scope of −∗ is in EXPSPACE.

Concluding Remarks

Main results:

SL(∗, −∗, ls) admits an undecidable satisfiability problem, but

if ls is not in the scope of −∗ then the problem is decidable.

What’s next? Satisfiability problem of fragments with ls in the
scope of −∗.

Little to no result in the litterature.

SL(−∗) + n(x) = n(y), n(x) ↪→ n(y) and alloc−1(x);

SL(−∗, ls) and SL(−∗, reach);

SL(∗, −~, ls) with negation only on atomic proposition.

