The Effects of Adding Reachability Predicates in
Propositional Separation Logic

A. Mansutti
Joint work with S. Demri and E. Lozes

INFINI - November 2017

Motivation

m Many tools support separation logic as an assertion language;

m Growing demand to consider more powerful extensions;

m Focus of the community:
m user-defined inductive predicates;
m magic wand operator —x;
m closure under boolean connectives.

Results

We consider propositional separation logic SL(,—)
'

list segment predicate 1s.

We show that its satisfiability problem is undecidable, but
removing — makes the logic PSPACE-complete.

Separation logic as an assertion language

Verification of imperative programs based on Hoare triples:
{P} C{Q}

where C is a program and P, @ are assertions in some logical
language.

Any (memory) state that satisfies P will satisfy Q after being
modified by C.

Hoare calculus: Proof rules manipulating Hoare triples.

Separation logic as an assertion language

The so-called frame rule

{P} C{Q}
{FAP} C{FAQ}

fails in standard Hoare logic: C can change the satisfaction of F.

Separation logic as an assertion language

The so-called frame rule

{P} C{Q}
{FAP} C{FAQ}

fails in standard Hoare logic: C can change the satisfaction of F.

Separation logic add the notion of separation (x) of a state, so
that the frame rule
{P} C{Q} modv(C)Nfv(F)=10
{FxP} C{F=xQ}

is valid.

Separation logic

Separation logic is interpreted over memory states (s, h) where:
m s is a store, s : PVAR — LOC,
m his a heap, h: LOC —, LOC.

where LOC and PVAR are countable infinite sets, e.g. N.

Propositional separation logic

Syntax:
= =¢ | p1Ag2 | x=y | emp | x>y | d1x¢2 | d1x¢2

Semantics: standard for — and A,
(s,h)Ex=y = s(x)=s(y)
(s,h) = emp <= dom(h)
(s,h) Ex—y <~ h(s(x))

s(y) and dom(h) = {x}

(S, h) ': ¢1 * (o <= dhi,hyst. h=hy+ hy and
(s,h1) = ¢1 and (s, h2) = 2

(s,h) = ¢1 =+ ¢ <= VH if h,Hare disjoint and (s, ') = ¢1
then (s,h+ H') = ¢

SL + Reachability predicates

(s, h) = 1s(x,y)
<= if s(x) = s(y) then h is empty, otherwise
h= {60 '—>€1,£1 —lo, ... lh 1 '—)fn} with n > 1,
lg = s(x), £n = s(y) and for all i #j € [0,n], £; #¢;

(s,) |= reach(x.y)
<~ hg{S(X)'—>€1,£10—>€2,...,£n_1'—>S(y)}

(s, h) = reacht(x,y)
<~ hQ{s(x)»—)él,élwﬁz,...,én_l»—>s(y)} with n>1

Reachability predicates

m SL(%,—,1s) and SL(*,—,reach) are interdefinable;

m both logics can be seen as fragments of SL(*,—,reach™).

Main contribution:
m We show the undecidability of SL(x*,—,1s)
m and the PSPACE-completeness of SL(*,reach™).

Undecidability: Reduction of SL(V,—) to SL(x*,—,1s)

We consider the first-order extension of SL(—) obtained by adding
the universal quantifier V.

(s, h) = Vx.¢ if and only if for all £ € LOC, (s[x < {],h) = ¢

The satisfiability problem for SL(V,—) is undecidable. (IAC 2012)

Undecidability: Reduction of SL(V,—) to SL(x*,—,1s)

Suppose we can express the following properties in SL(%,—,1s)

alloc }(x) : e——e
n(x) = n(y) :—>o<—z
n(x) = n(y) ﬁ—»o—»«—{

Then we can encode formulae of SL(V,—x) in SL(*,—,1s) by using
part of the heap to mimic the store's updates.

Translation from SL(V,—) to SL(*,—*,1s)

Formula ¢ of SL(V,—) with variables xi, ..., xq.
For the translation we use X D {x1,...xq} variables.

o

ef

T(vh1 Atp2, X) = T(¢h1, X) A T(t2, X)
T(~¢, X) = =T(), X)
T(xi = %, X) = n(x;) = n(x))
T(xi = xj,)d:e n(x;) = n(x;)
E

T(Vx; 1, X) = (alloc(x;) A size = 1) - (OK(X) = T (¢, X))

where OK(X) is the formula (A,_; % # xj) A (/\; —alloc™1(x/))

Translation from SL(V,—) to SL(*,—*,1s)

To correctly translate T(t1 — 12, X) we need one copy X; of each
variable x;.
The translation

(ALLOC_ONLY(fv(t1)) A T(¢01, X)[x < X]) —*

(C A\ n(z)=n(z)) A OK(X)) =

zefv(yr)
(DEALLOC_ONLY(fv(3/1)) * T(¢2, X)))

Memory states

Separation logic is interpreted over memory states (s, h) where:
m s is a store, s : PVAR — LOC;
m his a heap, h: LOC —¢, LOC.

where LOC and PVAR are countable infinite sets.

Generalized memory states

Separation logic interpreted over generalized memory states
(L, s, h) where:

m s is a store, s : PVAR — L;

m his a heap, h: L —, L.

where L and PVAR are countable infinite sets.

Generalized memory states: Encoding relation

X ={x1,%1,...,%¢,Xq}, Y C {x1,...,%xq}.

(LOCy, s1, 1) DQ,/ (LOCy, s2, ho) if it holds that:
m LOC; =LOC \ {s2(x) | x € X},
m for all x,y € X, s2(x) # s2(y),
B hy=h +{s(x)—s(x)|xe Y}

Example: Y = {x,y,z}, ® € LOCy, ® € LOC;

y

X @——
z
z

Undecidability result

Lemma

X ={x1,%1,...,%q,Xq}, Y C{x1,...,%q}, ¢ be a formula in
SL(Y, —) with free variables among Y that does not contain any
bound variable of 1) and (LOCy, s1, h1) DZ,/ (LOCy, 52, h).

We have (s1, h1) = ¥ iff (s2, h2) = T(v, X).

Undecidability result

Lemma

X ={x1,%1,...,%q,Xq}, Y C{x1,...,%q}, ¢ be a formula in
SL(Y, —) with free variables among Y that does not contain any
bound variable of 1) and (LOCy, s1, h1) D;/ (LOCy, 52, h).

We have (s1, h1) = ¥ iff (s2, h2) = T(v, X).

Theorem

A closed formula) of SL(V,—) with variables in {x1,...,xq} is
satisfiable whenever

/\ (-alloc(x;) A —alloc(s;)) A OK(X) A T(4, X)
i€[1,q]

is satisfiable.

Expressing the auxiliary atomic predicates

n(x) = n(y), n(x) = n(y), alloc1(x) definable in SL(*, —,1s).

Idea: | can express that there exists a subheap of size n that
satisfies a formula ¢ with [¢], = (¢ A size = n) x T.

Example: n(x) = n(y) expressed with
[alloc(x) A alloc(y) A ¥)2

where ¢ exactly characterize all the heaps of size 2 where it holds

X y
*———>0+—0

Results

The following fragments have undecidable satisfiability problem:
m SL(*, =) + n(x) = n(y), n(x) = n(y) and alloc™!(x);
m SL(x, =, 1s);

m SL(%, =) + reach(x,y) = 2 and reach(x, y) = 3;

We consider now SL(*,reach™)

To show decidability:

m Find properties that can be expressed using * and reach™
and make atomic (test) formulae for these properties;

m x elimination: show that boolean combinations of these
fomulae are sufficiently expressive to capture SL(*,reach™);

m show a small-model property for the logic of test formulae.
Apply it to SL(x,reach™).

Actually, we study SL(*,reach™,alloc). This logic is at least as
expressive as SL(x,—x).

Example: SL(x*,—x)

In (standard) separation logic we can express:
m size > (3, i.e. that the heap has size at least 5:

—emp * Temp * . .. * Jemp B times
m alloc(x), i.e. s(x) is in the domain of definition of h:
(x = x) = L
B x =y, ie h(s(x))=s(y):
X y*x T

where T = emp V —emp.

Example: SL(x*,—x)

In (standard) separation logic we can express:

m s
Each Separation Logic formula is equivalent to
a boolean combinations of formulae of the form
. a x =y, alloc(x), x <y, size > 3.

This leads to PSPACE-completeness for the sat-
isfiability problem of SL formulae.

| X Yo e IMMS(XJJ — S\ /-

X—=yxT

where T = emp V —emp.

SL(x,reach™,alloc): What can be distinguished?

m Same reach® formulae are satisfied:;

m (alloc(x) A size = 1) x reach™(z, y) satisfied only by the
second memory state.

SL(x,reach™,alloc): What can be distinguished?

m Same reach™ formulae are satisfied;
m (alloc(x) A size = 1) x reach™(z, y) satisfied only by the
second memory state.

The order in which variables are reached from a variable is
important!

SL(x,reach™,alloc): What can be distinguished?

X y X y

N\

N

m Same reach™ formulae are satisfied:;

m size = 1x(—reach™(x,z) A —reach™(y, z)) satisfied only by
the second memory state.

SL(x,reach™,alloc): What can be distinguished?

X y X y

N\

Z)

N®

m Same reach? formulae are satisfied:

m size = 1x(—reach™(x,z) A —reach™(y, z)) satisfied only by
the second memory state.

The existence of “shared paths” between variables is important!

SL(x,reach™,alloc): What can be distinguished?

XEjIy ng

m Same reach™ formulae are satisfied;

m Same “order”, same “shared path”;

m size = 1 % (—reach™(z,z) A alloc(z) A reach™(x, 2))
satisfied only by the second memory state.

SL(x,reach™,alloc): What can be distinguished?

m Same reach® formulae are satisfied:;

y

m Same “order”, same “shared path”;
m size = 1 % (—reach™(z,z) A alloc(z) A reach™(x, 2))
satisfied only by the second memory state.

The existence of “meet points” is important!

Meet points

Memory state (s, h). Set of variables {x1,...,xq}.
We define meet-point [mgq(x;, x;)]s h.

Xi Xj

mq(xi, ;) = mg(xj, x;) i %

mq(xi, X;) mq(xj, x;)

Xk

Test formulae

Given {x1,...,Xxg} and a € N, we define Test(q, o) as the set of
following test formulae:

v=v' vV alloc(v) seesq(v,Vv')>fB+1 sizeRqy > f3,

where (3 € [1,] and v, v/ are variables x; or meet points mg(x;, X;),
for i,j € [1,q].

Theorem (that we want to prove)

Let ¢ be in SL(*, reach™, alloc) built over the variables in
X1,...,Xq. Then 1 is logically equivalent to a boolean combination
of test formulae from Test(q, |¢|).

Test formulae: sees,

(s, h) = seesq(v,V') > B+1
if and only if
m [V gh is the first location correspondant to program variables
Xj or meet points mq(x;, xj) reached from [v]?,;

m the path from [v]?, to [v/], is at least of length § + 1.

Recall: The order in which variables are reached from a variable is
important!

Test formulae: sizeR,

(s,h) = sizeRqg >

if and only if the number of locations in dom(h) that are not
corresponding to program variables x; or in the path between two
program variables x;, x; is greater or equal than 3, where

Be[l,al, i,je[lql
Rationale:
¢x,y = reach(x,y)=3Aalloc(y) A —reach(y,x)

Oxy N (x,y * size > 4)

Atomic formulae are combinations of test formulae

Lemma

Given o, q > 1, i,j € [1,q], for any atomic formula among
reach™(x;, x;), 1s(x;, x;j), reach(x;, x;) and size > 3 with 8 < «,
there is a Boolean combination of test formulae from Test(q,)
logically equivalent to it.

For example, reach™ (x;, %) can be shown equivalent to

\/ /\ seesqg(vs, vs+1) > 1.

vi,...,Vvp€Termsgq, 1<6<n—1
X,':Vl,Xj:Vn

where Terms, is the set of program varibles x; and meet points
mq(xi, %), i,j € [1,q].

Indistinguishability of two memory states

Lemma
Let q,, 1,00 > 1 with o = ag + ap and (s, h), (s', h') be such
that (s, h) ~& (s',). For all heaps hy, hy such that h = hy + hy
there are heaps hy, h} such that

m W =h+H,

m (s, h) =3 (s, h)

u (57 h2) R’ng (57 h/2)

where (s, h) 3 (s', ') whenever (s, h) and (s', h') satisfy the
same test formulae of Test(q, @).

Test formulae capture SL(*,reach™,alloc)

Theorem
Let ¢ be in SL(x,reach™, alloc) with variables x1, . .., xq.
m For all & > |p| and all memory states (s, h), (s, h") such that
(s, h) =& (s', H'), we have (s, h) = ¢ iff (s, h) = .
m ¢ is logically equivalent to a Boolean combination of test
formulae from Test(q, |¢|).

Results

Theorem

Let o be a satisfiable SL(*,reach™) formula built over x1, ..., xq.
There is (s, h) such that (s, h) = ¢ and

card(dom(h)) < (¢° + q) - (l¢| + 1) + |¢|

m The satisfiability problem for SL(x, reach™, alloc) is
PSPACE-complete.

m The satisfiability problem for SL(x, —, reach™) in which
reach™ is not in the scope of — is in EXPSPACE.

Concluding Remarks

Main results:
m SL(*, =, 1s) admits an undecidable satisfiability problem, but

m if 1s is not in the scope of — then the problem is decidable.

What's next? Satisfiability problem of fragments with 1s in the
scope of —k.

m Little to no result in the litterature.
m SL(—=) + n(x) = n(y), n(x) <= n(y) and alloc_l(x);
m SL(—, 1s) and SL(—*, reach);

m SL(%, -, 1s) with negation only on atomic proposition.

