Extending propositional separation logic for robustness properties

Alessio Mansutti
LSV, CNRS, ENS Paris-Saclay

Ahmedabad - December 2018
Separation logic and program verification

- **Separation Logic** *(Reynolds’02)* is used in Hoare proof systems for program verification of languages with pointers.

- **Hoare calculus**: axioms and rules reason about triples:

 \[
 \{ \varphi \} \, P \, \{ \varphi' \}
 \]

 Any (memory) model that satisfies \(\varphi \) will satisfy \(\varphi' \) after being modified by the program \(P \).
Separation logic and program verification

- **Separation Logic** *(Reynolds’02)* is used in Hoare proof systems for program verification of languages with pointers.

- **Hoare calculus**: axioms and rules reason about triples:

\[
\{ \varphi \} \; P \; \{ \varphi' \}
\]

Any (memory) model that satisfies \(\varphi \) will satisfy \(\varphi' \) after being modified by the program \(P \).

- **Tools**: Infer (Facebook), SLAyer (Microsoft)...

Also, see “Why Separation Logic Works” *(Pym et al. ‘18)*
Memory states

Separation Logic is interpreted over memory states \((s, h)\) where:

- store, \(s : \text{VAR} \rightarrow \text{LOC}\)
- heap, \(h : \text{LOC} \rightarrow_{\text{fin}} \text{LOC}\)

where \(\text{VAR} = \{x, y, z, \ldots\}\) set of (program) variables, \(\text{LOC}\) set of locations. \(\text{VAR}\) and \(\text{LOC}\) are countably infinite sets.

Disjoint heaps: \(\text{dom}(h_1) \cap \text{dom}(h_2) = \emptyset\)
Sum of disjoint heaps \((h_1 + h_2)\)
 is defined as the sum of partial functions.

here, \(h(s(x)) = s(y)\)
Propositional Separation Logic $\mathsf{SL}(\ast, \ast)$

\[
\varphi ::= \neg \varphi \mid \varphi_1 \land \varphi_2 \mid \mathsf{emp} \mid x = y \mid x \leftrightarrow y \mid \varphi_1 \ast \varphi_2 \mid \varphi_1 \ast \ast \varphi_2
\]

Semantics

- standard for \land and \neg;

- $(s, h) \models \mathsf{emp} \iff \text{dom}(h) = \emptyset$

- $(s, h) \models x = y \iff s(x) = s(y)$

- $(s, h) \models x \leftrightarrow y \iff h(s(x)) = s(y)$
Separating conjunction (⋆)

\[(s, h) \models \varphi_1 \star \varphi_2 \text{ if and only if }\]

\[\exists h_1 \exists h_2\]

There is a way to split the heap into two so that, together with the store, one part satisfies \(\varphi_1\) and the other satisfies \(\varphi_2\).
Separating implication (\rightarrow^*)

\[(s, h) \models \varphi_1 \rightarrow^* \varphi_2 \text{ if and only if } \forall h_1 \quad \text{dom}(h) \cap \text{dom}(h_1) = \emptyset \quad (s, h_1) \models \varphi_1 \quad \Downarrow \quad (s, h + h_1) \models \varphi_2\]

Whenever a (disjoint) heap that, together with the store, satisfies φ_1 is added, the resulting memory state satisfies φ_2.
Decision Problems

- Hoare proof-system requires to solve classical problems: satisfiability/validity/entailment

\[
\varphi \Rightarrow \psi \quad \{\psi\} \text{P} \quad \{\psi'\} \quad \psi' \Rightarrow \varphi' \\
\{\varphi\} \text{P} \quad \{\varphi'\}
\]

consequence rule

- satisfiability is PSPACE-complete for \(SL(\ast, \ast)\)

Note: entailment and validity reduce to satisfiability for \(SL(\ast, \ast)\).
Robustness properties

- **Acyclicity** holds for φ iff every model of φ is acyclic.
- **Garbage freedom** holds for φ iff in every model of φ, each $\ell \in \text{dom}(h)$ is reachable from a program variable of φ.

C. Jansen et al., ESOP’17

Checking for robustness properties is EXPTIME-complete for Symbolic Heaps with Inductive Predicates.

- Symbolic Heaps \implies no \ast, no \land and \neg inside \ast
- Inductive Predicates \sim Horn clauses where \ast replaces \land

$$P(\vec{x}) \iff \exists \vec{z} \ 1^{\ast} \ldots \ast Q_n$$

$$\text{fv}(Q_i) \subseteq \vec{x}, \vec{z}$$

Our Goal

Provide similar results for **propositional** separation logic.
Desiderata

We aim to an extension of propositional separation logic where
- satisfiability is decidable in PSPACE (as $\text{SL}(\ast, \ast)$)
- robustness properties reduce to one of these problems

Known extensions

$2\text{SL}(\ast, \neg\ast)$ \quad $\text{SL}(\ast, \neg\ast, \text{reach})$

$\text{SL}(\forall, \ast)$ \quad (NON-ELEM.)

PSpace
SL(\textdaggerdbl, \textdagger) + reachability and 1 quantified variable

- \((s, h) \models \text{reach}^+(x, y) \iff h^L(s(x)) = s(y)\) for some \(L \geq 1\)
- \((s, h) \models \exists u \varphi \iff\) there is \(\ell \in \text{LOC}\) s.t. \((s[u \leftarrow \ell], h) \models \varphi\)

It is only possible to quantify over the variable name \(u\).

Robustness properties reduce to entailment

- **Acyclicity**: \(\varphi \models \neg \exists u \text{reach}^+(u, u)\)
- **Garbage freedom**: \(\varphi \models \forall u (\text{alloc}(u) \Rightarrow \bigvee_{x \in \text{fv}(\varphi)} \text{reach}(x, u))\)

where \(u \not\in \text{fv}(\varphi)\) and

- \(\text{alloc}(x) \overset{\text{def}}{=} (x \leftrightarrow x) \ni \perp\)
- \(\text{reach}(x, y) \overset{\text{def}}{=} x = y \lor \text{reach}^+(x, y)\)
Restrictions

The logic $1SL(\ast, \neg, \text{reach}^+)$ is undecidable. We syntactically restrict the logic so that for each occurrence of $\text{reach}^+(x, y)$:

- **R1** it is not on the right side of its first \ast ancestor (seeing the formula as a tree)
 - $\varphi \neg \ast (\psi \ast \text{reach}^+(u, u))$ violates R1

- **R2** if $x = u$ then $y = u$ (syntactically)
 - $\text{reach}^+(u, x)$ violates R2

Note: robustness properties formulae are still expressible.
Results

1. $1SL_{R1}(\ast, \neg\ast, \text{reach}^+)$: satisfiability is NON-ELEMENTARY (more precisely, TOWER-hard)

2. $1SL^2_{R1}(\ast, \neg\ast, \text{reach}^+)$: satisfiability is PSPACE-complete

Proof Techniques

(1) reduce *Propositional interval temporal logic under locality principle* (PITL) to a logic captured by $1SL_{R1}(\ast, \neg\ast, \text{reach}^+)$

(2) extend the *test formulae technique* used for $SL(\ast, \neg\ast)$
PITL (Moszkowski’83)

\[\varphi := pt \mid a \mid \varphi_1 \varphi_2 \mid \neg \varphi \mid \varphi_1 \land \varphi_2 \]

- interpreted on finite non-empty words over a finite alphabet \(\Sigma \)

- \(\mathbf{w} \models pt \iff |\mathbf{w}| = 1 \)

- \(\mathbf{w} \models a \iff \) first letter of \(\mathbf{w} \) is \(a \in \Sigma \) (locality principle)

- \(\mathbf{w} \models \varphi_1 \varphi_2 \iff \mathbf{w}[1:j] \models \varphi_1 \) and \(\mathbf{w}[j:|\mathbf{w}|] \models \varphi_2 \)

 for some \(j \in [1,|\mathbf{w}|] \)

\[\begin{array}{c}
\mathbf{w_1} \ldots \mathbf{w}_{j-1} \\
\mathbf{w}_j \\
\mathbf{w}_{j+1} \ldots \mathbf{w}_{|\mathbf{w}|}
\end{array} \]

- Satisfiability is decidable, but NON-ELEMENTARY
Auxiliary Logic on Trees (ALT)

\[\varphi := \varphi_1 \land \varphi_2 \mid \neg \varphi \mid \varphi_1 \ast \varphi_2 \mid \exists u \varphi \mid T(u) \mid G(u) \]

- interpreted on acyclic memory states (set of rooted trees)
- one special tree, rooted in \(\rho \in \text{LOC} \)
- \(\exists u \varphi \) and \(\varphi_1 \ast \varphi_2 \) as before
- \((s, h) \models_\rho T(u) \) iff \(s(u) \in \text{dom}(h) \) and it does reach \(\rho \)
- \((s, h) \models_\rho G(u) \) iff \(s(u) \in \text{dom}(h) \) and it does not reach \(\rho \)

Note: ALT is captured by \(1SL_{R1}(*, \rightarrow, \text{reach}^+) \).
Reducing PITL to ALT

- Easy to encode words as acyclic memory states

 \[
 \text{abaa} \sim \begin{array}{c}
 a \quad b \quad a \quad a \\
 \end{array} \quad \rho
 \]

- Set of models encoding words can be characterised in ALT

- However, difficult to translate \(\varphi_1 \mid \varphi_2 \): cannot express properties about the trees not rooted in \(\rho \), apart from their size

\[
\begin{array}{c}
 a \quad b \quad a \quad a \\
 \end{array} \quad \rho
 \]

\[
\begin{array}{c}
 \varphi_1 \quad \varphi_2
 \end{array}
 \]

After the cut, left side does not reach \(\rho \) anymore.
PITL to ALT: alternative semantics for PITL

- A marked representation of \(a \in \Sigma \)

\[
\begin{array}{c}
\varepsilon_1 \ldots \varepsilon_{j-1} \varepsilon_j \varepsilon_{j+1} \ldots \varepsilon_{|w|}
\end{array}
\]

- \(\varphi \mid \psi \) on standard semantics:

\[
\begin{array}{c}
\varepsilon_1 \\
\varepsilon_j
\end{array}
\]

\[
\begin{array}{c}
\varepsilon_{j+1} \ldots \varepsilon_{|w|}
\end{array}
\]

- \(\varphi \mid \psi \) on marked semantics (can be simulated in ALT)

\[
\begin{array}{c}
\varepsilon_1 \\
\varepsilon_j
\end{array}
\]

\[
\begin{array}{c}
\varepsilon_{j+1} \ldots \varepsilon_{|w|}
\end{array}
\]

1. ALT and \(1SL_{R1}(\ast, \ast, \text{reach}^+) \) are NON-ELEMENTARY

2. ALT is decidable in TOWER, as it is captured by \(SL(\forall, \ast) \)
$1\text{SL}_{R_1}^{R_2}(\ast, \ast, \text{reach}^+) \text{ is in PSPACE}$
$1SL_{R_2}^{R_1}(\ast, \ast, \text{reach}^+) \text{ is in PSPACE}$

Test Formulae “technique”
Test Formulae example on $\text{SL}(\ast, \neg\ast)$

\[\varphi := \neg \varphi \mid \varphi_1 \land \varphi_2 \mid \text{emp} \mid x = y \mid x \hookrightarrow y \mid \varphi_1 \ast \varphi_2 \mid \varphi_1 \ast \neg \varphi_2 \]

1. Design an equivalence relation on models, based on the satisfaction of atomic predicates (test formulae), e.g.

\[x = y \quad x \hookrightarrow y \quad \text{alloc}(x) \quad \text{size} \geq \beta \]

2. Show that any formula of our logic is equivalent to a Boolean combination of test formulae, e.g.

\[(x \hookrightarrow y) \ast \neg\text{emp} \iff x \hookrightarrow y \land \text{size} \geq 2 \]

3. Prove small-model property for the logic of test formulae.
Fix $\alpha \in \mathbb{N}^+, \mathbf{X} \subseteq_{\text{fin}} \text{VAR}$

Let us define $\text{Test}(\mathbf{X}, \alpha)$ as the finite set of predicates:

$$\{x = y, x \hookrightarrow y, \text{alloc}(x), \text{size} \geq \beta \mid \beta \in [1, \alpha], x, y \in \mathbf{X}\}$$

Indistinguishability relation $(s, h) \approx_{\alpha}^{\mathbf{X}} (s', h')$

for every $\varphi \in \text{Test}(\mathbf{X}, \alpha)$, $(s, h) \models \varphi$ iff $(s', h') \models \varphi$

Note: α is related to the number of occurrences of $*$ and $\neg*$ in a formula of separation logic.
2: * elimination Lemma

We want to design $\text{Test}(x, \alpha)$ so that the following results hold

- For every $\varphi \in \text{Bool}(\text{Test}(x, \alpha_1))$, $\psi \in \text{Bool}(\text{Test}(x, \alpha_2))$ there is $\gamma \in \text{Bool}(\text{Test}(x, \alpha_1 + \alpha_2))$ such that

$$\varphi * \psi \iff \gamma$$

- Similar elimination result for $\neg *$.

Lemmata holds for

$$\text{Test}(x, \alpha) = \{ x = y, x \leftrightarrow y \mid \beta \in [\overline{1}, \alpha] \}
\{ \text{alloc}(x), \text{size} \geq \beta \mid x, y \in X \}$$
3: Test formulae, after \ast and $\rightarrow\ast$ elimination

Hypothesis: A family of test formulae, such that
- captures the atomic predicates of $\text{SL}(\ast, \rightarrow\ast)$
- satisfies the \ast and $\rightarrow\ast$ elimination Lemmata

Thesis: for every formulae φ of $\text{SL}(\ast, \rightarrow\ast)$,
- φ is equivalent to a Boolean combination of test formulae.
- If $\alpha \geq |\varphi|$, $\mathbf{x} \supseteq v(\varphi)$ and $(s, h) \approx_\mathbf{x}^\alpha (s', h')$ then
 $$(s, h) \models \varphi \text{ iff } (s', h') \models \varphi.$$

Small-model property derived from $\approx_\mathbf{x}^\alpha$
- Small-model property for Boolean combination of test formulae carries over to $\text{SL}(\ast, \rightarrow\ast)$.
- test formulae in PSPACE \implies $\text{SL}(\ast, \rightarrow\ast)$ is in PSPACE.
$1SL_{R_1}^{R_2}(\ast, \neg\ast, \text{reach}^+) \text{ is in PSPACE}$

\[
\begin{align*}
\pi &:= x = y \mid x \hookrightarrow y \mid \text{emp} \mid A \to C \quad (R1) \\
C &:= \pi \mid C \land C \mid \neg C \mid \exists u C \mid C \ast C \\
A &:= \pi \mid \text{reach}^+ (v_1, v_2) \mid A \land A \mid \neg A \mid \exists u A \mid A \ast A
\end{align*}
\]

where (R2) if $v_1 = u$ then $v_2 = u$

Not so easy...

- Asymmetric $A \to C$.
 - two sets of test formulae: two \ast/\exists elimination Lemmata
 - $\neg\ast$ elimination Lemma that glues the two set of test formulae

- instead of “size \geq β s.t. $\beta \in [1, \alpha]$”, the βs of new test formulae are bounded by functions on α, e.g.

\[
\#\text{loop}_x(\beta) \geq \gamma \quad \gamma \in [1, \frac{1}{2} \alpha (\alpha + 3) - 1]
\]

bounds are found by solving a set of recurrence equations!
Recap

- $SL(\ast, -\ast, \text{reach})$ undec.
- $1SL_{R1}(\ast, -\ast, \text{reach}^+) \text{ unk. non-elem.}$
- $1SL_{R2}(\ast, -\ast, \text{reach}^+) \text{ PSPACE-complete}$
- $ALT \text{ dec. non-elem.}$
- $PS/p.sc/a.sc/c.sc/e.sc$-complete
- $1SL(\ast, -\ast) \text{ PSPACE-complete}$
- $SL(\ast, \text{reach}) \text{ PSPACE-complete}$
- $PITL \text{ dec. non-elem.}$

- $1SL_{R2}(\ast, -\ast, \text{reach}^+)$ strictly generalise other PSPACE-compl. extensions of propositional separation logic
- Can be used to check for robustness properties.
Alt seems to be an interesting tool for reductions, as it is a fragment or it is easily captured by many logics in TOWER e.g. \(\text{QCTL}(U) \), \(\text{MSL}(\Diamond, \langle U \rangle, *) \), \(2\text{SL}(*) \).