Extending propositional separation logic
for robustness properties

FSTTCS18

Alessio Mansutti

LSV, CNRS, ENS Paris-Saclay

Ahmedabad - December 2018

Separation logic and program verification

m Separation Logic (Reynolds'02) is used in Hoare proof
systems for program verification of languages with pointers.

m Hoare calculus: axioms and rules reason about triples:

{o} P {¥'}

Any (memory) model that satisfies ¢ will satisfy ¢’ after
being modified by the program P.

Separation logic and program verification

m Separation Logic (Reynolds'02) is used in Hoare proof
systems for program verification of languages with pointers.

m Hoare calculus: axioms and rules reason about triples:

{o} P {¥'}

Any (memory) model that satisfies ¢ will satisfy ¢’ after
being modified by the program P.

m Tools: Infer (Facebook), SLAyer (Microsoft)..

Also, see “Why Separation Logic Works™ (Pym et al. 18)

Memory states

Separation Logic is interpreted over memory states (s, h) where:

m store, s : VAR — LOC m heap, h: LOC —¢, LOC

where VAR = {x,y,z,... } set of (program) variables,
LOC set of locations. VAR and LOC are countably infinite sets.

—>—>0—> S

S(X %4/ here, h(s(x)) = s(y)
RN
m Disjoint heaps: dom(hy) N dom(h;) =0

m Sum of disjoint heaps (hy + hy)
is defined as the sum of partial functions.

Propositional Separation Logic SL(x, —x)

=0 | ;A | emp | x=y | x=7 | ¢rxpr | @1 %

Semantics
m standard for A and —;
m(s,h)Eemp <= dom(h)=0
m(shlEx=y <= s(x)=sy)

m(sh)Ex—oy < h(skx)=s(y)

Separating conjunction (x)

(s,h) = @1 xpp ifand only if

TN

P
/]
N\

TN

([

/]
A

(s,) =

and

(s,h2) = ¢2

There is a way to split the heap into two so that, together with
the store, one part satisfies ¢ and the other satisfies .

Separating implication ()

(s,h) E @1 = o if and only if

J dom(h) Ndom(hy) =0
v (s.) E o1

/) | ﬂ
//\\.\\» C>e_«_ﬁ
/q (s.h+h) F e

7N

Whenever a (disjoint) heap that, together with the store, satisfies
1 is added, the resulting memory state satisfies ¢».

Decision Problems

m Hoare proof-system requires to solve classical problems:
satisfiability/validity/entailment

p=¢ {Y}P{Y} ¢ =4
{e} P {¢'}

conseguence rule

m satisfiability is PSPACE-complete for SL(x, —)

Note: entailment and validity reduce to satisfiability for SL(x, —).

Robustness properties

m Acyclicity holds for ¢ iff every model of ¢ is acyclic

m Garbage freedom holds for ¢ iff in every model of ¢, each
¢ € dom(h) is reachable from a program variable of ¢

C.Jansen et al, ESOP17

Checking for robustness properties is EXPTIME-complete for
Symbolic Heaps with Inductive Predicates.

B Symbolic Heaps = no —, no A and - inside x
m Inductive Predicates ~ Horn clauses where x replaces A

* *
P(R) < 32 QXK. XQ; Q) c .2

Our Goal

Provide similar results for propositional separation logic.

Desiderata

We aim to an extension of propositional separation logic where
m satisfiability is decidable in PSPACE (as SL(x, —))
@ robustness properties reduce to one of these problems

Known extensions

2SL(*, =) ® <— SL(%, -, reach) @
\ \ UNDECIDABLE

SL(V, %) @ (NON-ELEM.)

A
I

1SL(x, —) SL(*, —) SL(x, reach) PopAcE

SL(x, =) + reachability and 1 quantified variable

m (s,h) |= reacht(x,y) <= h'(s(x)) = s(y) for some L >1
B (s,h)EJuy < thereisfcLOCst (sfu+4,h) =

It is only possible to quantify over the variable name u.

Robustness properties reduce to entailment
m Acyclicity: ¢ = —3u reach™ (u,u)

m Garbage freedom: ¢ = Vu (alloc(u) =\ yreach(x, u))

xefv(e
where u ¢ fv(p) and
® alloc(x) = (x < x) = L

® reach(x,y) = x = y V reach'(x,y)

Restrictions

The logic 1SL(x*, =, reach™) is undecidable. We syntactically
restrict the logic so that for each occurrence of reach™(x,y):

R1 itis not on the right side of its first - ancestor
(seeing the formula as a tree)

B ¢ — (¢ * reacht(u,u)) violates R1

R2 if x = u then y = u (syntactically)
B reach'(u, x) violates R2

Note: robustness properties formulae are still expressible.

Results

1SLg (*, —, reach™): satisfiability is NON-ELEMENTARY
(more precisely, TOWER-hard)

ISLE2(x, —+, reach™): satisfiability is PSPACE-complete

Proof Techniques

(1) reduce Propositional interval temporal logic under locality
principle (PITL) to a logic captured by 1SLg; (x, -, reach™)

(2) extend the test formulae technique used for SL(x, —)

PITL (Moszkowski'83)

e=pt | al@le| »|@Ae

B interpreted on finite non-empty words
over a finite alphabet

B v = pt = || =T
BEwkEa < firstletterofwisae X (locality principle)

mwEele < wljlEeandwlj:|w]Ee
for some j € [1, |w]]

t07...105 10 l‘0j+1...m|m|
g N ~ _
#1 0>

m Satisfiability is decidable, but NON-ELEMENTARY

Auxiliary Logic on Trees (ALT)

=i Ae | o | erxpr | Jup | T(w) | G(u)

B interpreted on acyclic memory states (set of rooted trees)
m one special tree, rooted in p € LOC

B Ju p and ¢ x o as before

B (s, h) =, T(u) iff s(u) € dom(h) and it does reach p

m (s,h) =, G(u) iff s(u) € dom(h) and it does not reach p

Note: ALT is captured by 1SLg; (*, =, reach™).

Reducing PITL to ALT

m Easy to encode words as acyclic memory states

m Set of models encoding words can be characterised in ALT

m However, difficult to translate o] e>:
cannot express properties about the trees not rooted in p,
apart from their size

VARV

©2
After the cut, left side does not reach p anymore.

1

PITL to ALT: alternative semantics for PITL

m [a] marked representation of a € &

y...1w5_7 105 mj+1...

m ¢|v¢ on standard semantics:

7., . 1057 10y 105 0 41, .. W)y

— — _
®1 P2

m |y on marked semantics (can be simulated in ALT)

[N
@1 P2

ALT and 1SLgs(*, —*,reach™) are NON-ELEMENTARY

ALT is decidable in TOWER, as it is captured by SL(V,)

1SLE2(*, =, reach™) is in PSPACE

R2 + . .
}SLRl() lnfe&eh) S S ACE

Test Formulae “technique’

Test Formulae example on SL(x*, —)

=0 | ;A | emp | x=y | x=y | ¢rxp2 | o1 %2

Design an equivalence relation on models, based on the
satisfaction of atomic predicates (test formulae), e.g.
xX=y Xy alloc(x) size > f8
Show that any formula of our logic is equivalent to a

Boolean combination of test formulae, eg.

(x = y)*x—emp <= x> yAsize>2

Prove small-model property for the logic of test formulae.

1. Designing Test Formulae

B Fix o € NT, X Cgp, VAR
B Let us define Test(X,) as the finite set of predicates:

{x=y, x>y, alloc(x), size > 8 | B €[l,q], x,y € X}

Indistinguishability relation (s, h) ~% (', h')

for every p € Test(X, a), (s,h) | ¢ iff (s,h") = ¢

Note: «a is related to the numlber of occurrences of x and — in a
formula of separation logic.

2: % elimination Lemma

We want to design Test(X, &) so that the following results hold

B For every ¢ € Bool(Test(X, o)), ¥ € Bool(Test(X, az))
there is v € Bool(Test(X, a1 + a2)) such that

pxp = v

B Similar elimination result for —.

Lermmata holds for

X=y, Xy
alloc(x), size > 8

Test(X,a) = {

ﬁERM}

x,yeX

3. Test formulae, after x and — elimination

Hypothesis: A family of test formulae, such that
m captures the atomic predicates of SL(x, —)
m satisfies the * and — elimination Lemmata
Thesis: for every formulae ¢ of SL(x*, —),
B p is equivalent to a Boolean combination of test formulae.
B Ifa> o, X2 V(p) and (s,h) =% (s',h') then

(s,h) E @iff (s,h) = .

Small-model property derived from %

B Small-model property for Boolean combination of test
formulae carries over to SL(x, —).

B test formulae in PSPACE = SL(x%, —) is in PSPACE.

1SLE2(*, =, reach™) is in PSPACE

x=y | x—=y | emp | AxC (R
7| CAC | =C | JulC | CxC
7 | reacht(vi,v5) | ANA | A | Fud | AxA

n oA

where (R2) if vy =uthen v, =u
Not so easy..

B Asymmetric A —C.
m two sets of test formulae: two /3 elimination Lemmata
B — elimination Lemma that glues the two set of test formulae

m instead of "size > st B €[l,a]’ the Bs of new test
formulae are bounded by functions on a, e.g.

#loopy(8) >y v e[l sa(a+3) 1]
bounds are found by solving a set of recurrence equations!

Recap

SL(*, -, reach)
undec.

t

1SLgy (*, =, reach™)
unk. non-elem.

N

1SLE2 (%, —+, reach™)

ALT

PSpACE-complete dec. non-elem.

1SL(x, =) SL(*, reach)
PSPACE-complete PSPACE-complete

m 1SLY2(%, =+, reach™) strictly generalise other PSPACE-compl.

dec. non-elem.

N

PITL

extensions of propositional separation logic
m Can be used to check for robustness properties.

Recap

SL(*, =, reach)
undec.

1

1SLgs (%, =, reach™)
unk. non-elem.

N

1SLE(x, -, reacht)

ALT

PSpACE-complete dec. non-elem.

1SL(%,) SL(*, reach)
PSPACE-complete PSPACE-complete

B ALT seems to be an interesting tool for reductions, as it is a
fragment or it is easily captured by many logics in TOWER

e.9. QCTL(U), MSL(<, (U), %), 2SL(*)

dec. non-elem.

N

PITL

	Introduction

