
Extending propositional separation logic
for robustness properties

FSTTCS’18

Alessio Mansutti
LSV, CNRS, ENS Paris-Saclay

Ahmedabad - December 2018

Separation logic and program verification

Separation Logic (Reynolds’02) is used in Hoare proof
systems for program verification of languages with pointers.

Hoare calculus: axioms and rules reason about triples:

{ϕ} P {ϕ′}

Any (memory) model that satisfies ϕ will satisfy ϕ′ after
being modified by the program P.

Tools: Infer (Facebook), SLAyer (Microsoft)...

Also, see “Why Separation Logic Works” (Pym et al. ‘18)

Separation logic and program verification

Separation Logic (Reynolds’02) is used in Hoare proof
systems for program verification of languages with pointers.

Hoare calculus: axioms and rules reason about triples:

{ϕ} P {ϕ′}

Any (memory) model that satisfies ϕ will satisfy ϕ′ after
being modified by the program P.

Tools: Infer (Facebook), SLAyer (Microsoft)...

Also, see “Why Separation Logic Works” (Pym et al. ‘18)

Memory states

Separation Logic is interpreted overmemory states (s,h) where:

store, s : VAR→ LOC heap, h : LOC→fin LOC

where VAR = {x, y, z, . . . } set of (program) variables,
LOC set of locations. VAR and LOC are countably infinite sets.

s(z)s(y)

s(x)

h

here, h(s(x)) = s(y)

Disjoint heaps: dom(h1) ∩ dom(h2) = ∅
Sum of disjoint heaps (h1 + h2)
is defined as the sum of partial functions.

Propositional Separation Logic SL(∗,−∗)

ϕ := ¬ϕ | ϕ1 ∧ ϕ2 | emp | x = y | x ↪→ y | ϕ1 ∗ ϕ2 | ϕ1 −∗ ϕ2

Semantics
standard for ∧ and ¬ ;

(s,h) |= emp ⇐⇒ dom(h) = ∅

(s,h) |= x = y ⇐⇒ s(x) = s(y)

(s,h) |= x ↪→ y ⇐⇒ h(s(x)) = s(y)

Separating conjunction (∗)

(s,h) |= ϕ1 ∗ ϕ2 if and only if

(s,h2) |= ϕ2

(s,h1) |= ϕ1

and

∃h2

∃h1

There is a way to split the heap into two so that, together with
the store, one part satisfies ϕ1 and the other satisfies ϕ2.

Separating implication (−∗)

(s,h) |= ϕ1 −∗ ϕ2 if and only if

(s,h + h1) |= ϕ2

dom(h) ∩ dom(h1) = ∅
(s,h1) |= ϕ1

∀h1

ww�

Whenever a (disjoint) heap that, together with the store, satisfies
ϕ1 is added, the resulting memory state satisfies ϕ2.

Decision Problems

Hoare proof-system requires to solve classical problems:
satisfiability/validity/entailment

ϕ⇒ ψ {ψ} P {ψ′} ψ′ ⇒ ϕ′

{ϕ} P {ϕ′}
consequence rule

satisfiability is PSpace-complete for SL(∗,−∗)

Note: entailment and validity reduce to satisfiability for SL(∗,−∗).

Robustness properties

Acyclicity holds for ϕ i� every model of ϕ is acyclic
Garbage freedom holds for ϕ i� in every model of ϕ, each
` ∈ dom(h) is reachable from a program variable of ϕ

C. Jansen et al., ESOP’17
Checking for robustness properties is ExpTime-complete for
Symbolic Heaps with Inductive Predicates.

Symbolic Heaps =⇒ no −∗, no ∧ and ¬ inside ∗
Inductive Predicates ∼ Horn clauses where ∗ replaces ∧

P(~x)⇐ ∃~z Q1
∗
�Z∧ . . .

∗
�Z∧Qn fv(Qi) ⊆ ~x,~z

Our Goal
Provide similar results for propositional separation logic.

Desiderata

We aim to an extension of propositional separation logic where
satisfiability is decidable in PSpace (as SL(∗,−∗))
robustness properties reduce to one of these problems

Known extensions

2SL(∗,−∗)

1SL(∗,−∗)

SL(∗,−∗, reach)

SL(∗,−∗) SL(∗, reach)

SL(∀, ∗) (non-elem.)

undecidable

PSpace

SL(∗,−∗) + reachability and 1 quantified variable

(s,h) |= reach+(x, y) ⇐⇒ hL(s(x)) = s(y) for some L ≥ 1

(s,h) |= ∃u ϕ ⇐⇒ there is ` ∈ LOC s.t. (s[u← `],h) |= ϕ

It is only possible to quantify over the variable name u.

Robustness properties reduce to entailment
Acyclicity: ϕ |= ¬∃u reach+(u, u)

Garbage freedom: ϕ |= ∀u (alloc(u)⇒
∨

x∈fv(ϕ)reach(x, u))

where u 6∈ fv(ϕ) and
alloc(x)

def
= (x ↪→ x) −∗ ⊥

reach(x, y)
def
= x = y ∨ reach+(x, y)

Restrictions

The logic 1SL(∗,−∗, reach+) is undecidable. We syntactically
restrict the logic so that for each occurrence of reach+(x, y):

R1 it is not on the right side of its first −∗ ancestor
(seeing the formula as a tree)

ϕ−∗ (ψ ∗ reach+(u, u)) violates R1

R2 if x = u then y = u (syntactically)
reach+(u, x) violates R2

Note: robustness properties formulae are still expressible.

Results

1 1SLR1(∗,−∗, reach+): satisfiability is non-elementary
(more precisely, tower-hard)

2 1SLR2
R1(∗,−∗, reach+): satisfiability is PSpace-complete

Proof Techniques
(1) reduce Propositional interval temporal logic under locality

principle (PITL) to a logic captured by 1SLR1(∗,−∗, reach+)

(2) extend the test formulae technique used for SL(∗,−∗)

PITL (Moszkowski’83)

ϕ := pt | a | ϕ1 ϕ2 | ¬ϕ | ϕ1 ∧ ϕ2

interpreted on finite non-empty words
over a finite alphabet Σ

w |= pt ⇐⇒ |w| = 1

w |= a ⇐⇒ first letter of w is a ∈ Σ (locality principle)

w |= ϕ1 ϕ2 ⇐⇒ w[1 : j] |= ϕ1 and w[j : |w|] |= ϕ2

for some j ∈ [1, |w|]

w1 . . .wj−1 wj+1 . . .w|w|wj

ϕ2
ϕ1

Satisfiability is decidable, but non-elementary

Auxiliary Logic on Trees (ALT)

ϕ := ϕ1 ∧ ϕ2 | ¬ϕ | ϕ1 ∗ ϕ2 | ∃u ϕ | T(u) | G(u)

interpreted on acyclic memory states (set of rooted trees)

one special tree, rooted in ρ ∈ LOC

∃u ϕ and ϕ1 ∗ ϕ2 as before

(s,h) |=ρ T(u) i� s(u) ∈ dom(h) and it does reach ρ

(s,h) |=ρ G(u) i� s(u) ∈ dom(h) and it does not reach ρ

Note: ALT is captured by 1SLR1(∗,−∗, reach+).

Reducing PITL to ALT

Easy to encode words as acyclic memory states

abaa
ρ

a b a a

Set of models encoding words can be characterised in ALT
However, di�cult to translate ϕ1 ϕ2:
cannot express properties about the trees not rooted in ρ,
apart from their size

ρ

a b a a

×
ϕ2

ϕ1

After the cut, left side does not reach ρ anymore.

PITL to ALT: alternative semantics for PITL

a marked representation of a ∈ Σ

w1 . . .wj−1 wj wj+1 . . . w|w|

ϕ ψ on standard semantics:

w1 . . .wj−1 wj

ϕ1

wj wj+1 . . .w|w|

ϕ2

ϕ ψ on marked semantics (can be simulated in ALT)

w1 . . .wj−1 wj+1 . . .wj w|w|

ϕ1

wjwj+1 . . . w|w|

ϕ2

1 ALT and 1SLR1(∗,−∗, reach+) are non-elementary

2 ALT is decidable in tower, as it is captured by SL(∀, ∗)

1SLR2
R1(∗,−∗, reach+) is in PSpace

Test Formulae “technique”

1SLR2
R1(∗,−∗, reach+) is in PSpace

Test Formulae “technique”

Test Formulae example on SL(∗,−∗)

ϕ := ¬ϕ | ϕ1 ∧ ϕ2 | emp | x = y | x ↪→ y | ϕ1 ∗ ϕ2 | ϕ1 −∗ ϕ2

1 Design an equivalence relation on models, based on the
satisfaction of atomic predicates (test formulae), e.g.

x = y x ↪→ y alloc(x) size ≥ β

2 Show that any formula of our logic is equivalent to a
Boolean combination of test formulae, e.g.

(x ↪→ y) ∗ ¬emp ⇐⇒ x ↪→ y ∧ size ≥ 2

3 Prove small-model property for the logic of test formulae.

1: Designing Test Formulae

Fix α ∈ N+, X ⊆fin VAR

Let us define Test(X, α) as the finite set of predicates:

{x = y, x ↪→ y, alloc(x), size ≥ β | β ∈ [1, α], x, y ∈ X}

Indistinguishability relation (s,h) ≈X
α (s′,h′)

for every ϕ ∈ Test(X, α), (s,h) |= ϕ i� (s′,h′) |= ϕ

Note: α is related to the number of occurrences of ∗ and −∗ in a
formula of separation logic.

2: ∗ elimination Lemma

We want to design Test(X, α) so that the following results hold

For every ϕ ∈ Bool(Test(X, α1)), ψ ∈ Bool(Test(X, α2))

there is γ ∈ Bool(Test(X, α1 + α2)) such that

ϕ ∗ ψ ⇐⇒ γ

Similar elimination result for −∗.

Lemmata holds for

Test(X, α) =

{
x = y, x ↪→ y

alloc(x), size ≥ β

∣∣∣∣∣ β ∈ [1, α]

x, y ∈ X

}

3: Test formulae, after ∗ and −∗ elimination

Hypothesis: A family of test formulae, such that
captures the atomic predicates of SL(∗,−∗)
satisfies the ∗ and −∗ elimination Lemmata

Thesis: for every formulae ϕ of SL(∗,−∗),
ϕ is equivalent to a Boolean combination of test formulae.
If α ≥ |ϕ|, X ⊇ v(ϕ) and (s,h) ≈X

α (s′,h′) then

(s,h) |= ϕ i� (s′,h′) |= ϕ.

Small-model property derived from ≈X
α

Small-model property for Boolean combination of test
formulae carries over to SL(∗,−∗).
test formulae in PSpace =⇒ SL(∗,−∗) is in PSpace.

1SLR2
R1(∗,−∗, reach+) is in PSpace

π := x = y | x ↪→ y | emp | A −∗ C (R1)
C := π | C ∧ C | ¬C | ∃u C | C ∗ C
A := π | reach+(v1, v2) | A ∧ A | ¬A | ∃u A | A ∗ A

where (R2) if v1 = u then v2 = u

Not so easy...
Asymmetric A−∗ C .

two sets of test formulae: two ∗/∃ elimination Lemmata
−∗ elimination Lemma that glues the two set of test formulae

instead of “size ≥ β s.t. β ∈ [1, α]”, the βs of new test
formulae are bounded by functions on α, e.g.

#loopX(β) ≥ γ γ ∈ [1, 12α(α + 3)− 1]

bounds are found by solving a set of recurrence equations!

Recap

SL(∗,−∗, reach)
undec.

1SLR1(∗,−∗, reach+)
unk. non-elem.

1SLR2
R1(∗,−∗, reach+)

PSpace-complete

1SL(∗,−∗)
PSpace-complete

SL(∗, reach)
PSpace-complete

ALT
dec. non-elem.

PITL
dec. non-elem.

1SLR2
R1(∗,−∗, reach+) strictly generalise other PSpace-compl.

extensions of propositional separation logic
Can be used to check for robustness properties.

.

Recap

SL(∗,−∗, reach)
undec.

1SLR1(∗,−∗, reach+)
unk. non-elem.

1SLR2
R1(∗,−∗, reach+)

PSpace-complete

1SL(∗,−∗)
PSpace-complete

SL(∗, reach)
PSpace-complete

ALT
dec. non-elem.

PITL
dec. non-elem.

ALT seems to be an interesting tool for reductions, as it is a
fragment or it is easily captured by many logics in tower
e.g. QCTL(U), MSL(3, 〈U〉, ∗), 2SL(∗)

.

	Introduction

