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Separation logic and program verification

Separation Logic (Reynolds’02) is used in Hoare proof
systems for program verification of languages with pointers.

Hoare calculus: axioms and rules reason about triples:

{ϕ} P {ϕ′}

Any (memory) model that satisfies ϕ will satisfy ϕ′ after
being modified by the program P.

Tools: Infer (Facebook), SLAyer (Microsoft)...

Also, see “Why Separation Logic Works” (Pym et al. ‘18)
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Memory states

Separation Logic is interpreted overmemory states (s,h) where:

store, s : VAR→ LOC heap, h : LOC→fin LOC

where VAR = {x, y, z, . . . } set of (program) variables,
LOC set of locations. VAR and LOC are countably infinite sets.

s(z)s(y)

s(x)

h

here, h(s(x)) = s(y)

Disjoint heaps: dom(h1) ∩ dom(h2) = ∅
Sum of disjoint heaps (h1 + h2)
is defined as the sum of partial functions.



Propositional Separation Logic SL(∗,−∗)

ϕ := ¬ϕ | ϕ1 ∧ ϕ2 | emp | x = y | x ↪→ y | ϕ1 ∗ ϕ2 | ϕ1 −∗ ϕ2

Semantics
standard for ∧ and ¬ ;

(s,h) |= emp ⇐⇒ dom(h) = ∅

(s,h) |= x = y ⇐⇒ s(x) = s(y)

(s,h) |= x ↪→ y ⇐⇒ h(s(x)) = s(y)



Separating conjunction (∗)

(s,h) |= ϕ1 ∗ ϕ2 if and only if

(s,h2) |= ϕ2

(s,h1) |= ϕ1

and

∃h2

∃h1

There is a way to split the heap into two so that, together with
the store, one part satisfies ϕ1 and the other satisfies ϕ2.



Separating implication (−∗)

(s,h) |= ϕ1 −∗ ϕ2 if and only if

(s,h + h1) |= ϕ2

dom(h) ∩ dom(h1) = ∅
(s,h1) |= ϕ1

∀h1

ww�

Whenever a (disjoint) heap that, together with the store, satisfies
ϕ1 is added, the resulting memory state satisfies ϕ2.



Decision Problems

Hoare proof-system requires to solve classical problems:
satisfiability/validity/entailment

ϕ⇒ ψ {ψ} P {ψ′} ψ′ ⇒ ϕ′

{ϕ} P {ϕ′}
consequence rule

satisfiability is PSpace-complete for SL(∗,−∗)

Note: entailment and validity reduce to satisfiability for SL(∗,−∗).



Robustness properties

Acyclicity holds for ϕ i� every model of ϕ is acyclic
Garbage freedom holds for ϕ i� in every model of ϕ, each
` ∈ dom(h) is reachable from a program variable of ϕ

C. Jansen et al., ESOP’17
Checking for robustness properties is ExpTime-complete for
Symbolic Heaps with Inductive Predicates.

Symbolic Heaps =⇒ no −∗, no ∧ and ¬ inside ∗
Inductive Predicates ∼ Horn clauses where ∗ replaces ∧

P(~x)⇐ ∃~z Q1
∗
�Z∧ . . .

∗
�Z∧Qn fv(Qi) ⊆ ~x,~z

Our Goal
Provide similar results for propositional separation logic.



Desiderata

We aim to an extension of propositional separation logic where
satisfiability is decidable in PSpace (as SL(∗,−∗))
robustness properties reduce to one of these problems

Known extensions

2SL(∗,−∗)

1SL(∗,−∗)

SL(∗,−∗, reach)

SL(∗,−∗) SL(∗, reach)

SL(∀, ∗) (non-elem.)

undecidable

PSpace



SL(∗,−∗) + reachability and 1 quantified variable

(s,h) |= reach+(x, y) ⇐⇒ hL(s(x)) = s(y) for some L ≥ 1

(s,h) |= ∃u ϕ ⇐⇒ there is ` ∈ LOC s.t. (s[u← `],h) |= ϕ

It is only possible to quantify over the variable name u.

Robustness properties reduce to entailment
Acyclicity: ϕ |= ¬∃u reach+(u, u)

Garbage freedom: ϕ |= ∀u (alloc(u)⇒
∨

x∈fv(ϕ)reach(x, u))

where u 6∈ fv(ϕ) and
alloc(x)

def
= (x ↪→ x) −∗ ⊥

reach(x, y)
def
= x = y ∨ reach+(x, y)



Restrictions

The logic 1SL(∗,−∗, reach+) is undecidable. We syntactically
restrict the logic so that for each occurrence of reach+(x, y):

R1 it is not on the right side of its first −∗ ancestor
(seeing the formula as a tree)

ϕ−∗ (ψ ∗ reach+(u, u)) violates R1

R2 if x = u then y = u (syntactically)
reach+(u, x) violates R2

Note: robustness properties formulae are still expressible.



Results

1 1SLR1(∗,−∗, reach+): satisfiability is non-elementary
(more precisely, tower-hard)

2 1SLR2
R1(∗,−∗, reach+): satisfiability is PSpace-complete

Proof Techniques
(1) reduce Propositional interval temporal logic under locality

principle (PITL) to a logic captured by 1SLR1(∗,−∗, reach+)

(2) extend the test formulae technique used for SL(∗,−∗)



PITL (Moszkowski’83)

ϕ := pt | a | ϕ1 ϕ2 | ¬ϕ | ϕ1 ∧ ϕ2

interpreted on finite non-empty words
over a finite alphabet Σ

w |= pt ⇐⇒ |w| = 1

w |= a ⇐⇒ first letter of w is a ∈ Σ (locality principle)

w |= ϕ1 ϕ2 ⇐⇒ w[1 : j] |= ϕ1 and w[j : |w|] |= ϕ2

for some j ∈ [1, |w|]

w1 . . .wj−1 wj+1 . . .w|w|wj

ϕ2
ϕ1

Satisfiability is decidable, but non-elementary



Auxiliary Logic on Trees (ALT)

ϕ := ϕ1 ∧ ϕ2 | ¬ϕ | ϕ1 ∗ ϕ2 | ∃u ϕ | T(u) | G(u)

interpreted on acyclic memory states (set of rooted trees)

one special tree, rooted in ρ ∈ LOC

∃u ϕ and ϕ1 ∗ ϕ2 as before

(s,h) |=ρ T(u) i� s(u) ∈ dom(h) and it does reach ρ

(s,h) |=ρ G(u) i� s(u) ∈ dom(h) and it does not reach ρ

Note: ALT is captured by 1SLR1(∗,−∗, reach+).



Reducing PITL to ALT

Easy to encode words as acyclic memory states

abaa
ρ

a b a a

Set of models encoding words can be characterised in ALT
However, di�cult to translate ϕ1 ϕ2:
cannot express properties about the trees not rooted in ρ,
apart from their size

ρ

a b a a

×
ϕ2

ϕ1

After the cut, left side does not reach ρ anymore.



PITL to ALT: alternative semantics for PITL

a marked representation of a ∈ Σ

w1 . . .wj−1 wj wj+1 . . . w|w|

ϕ ψ on standard semantics:

w1 . . .wj−1 wj

ϕ1

wj wj+1 . . .w|w|

ϕ2

ϕ ψ on marked semantics (can be simulated in ALT)

w1 . . .wj−1 wj+1 . . .wj w|w|

ϕ1

wjwj+1 . . . w|w|

ϕ2

1 ALT and 1SLR1(∗,−∗, reach+) are non-elementary

2 ALT is decidable in tower, as it is captured by SL(∀, ∗)
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R1(∗,−∗, reach+) is in PSpace

Test Formulae “technique”
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Test Formulae example on SL(∗,−∗)

ϕ := ¬ϕ | ϕ1 ∧ ϕ2 | emp | x = y | x ↪→ y | ϕ1 ∗ ϕ2 | ϕ1 −∗ ϕ2

1 Design an equivalence relation on models, based on the
satisfaction of atomic predicates (test formulae), e.g.

x = y x ↪→ y alloc(x) size ≥ β

2 Show that any formula of our logic is equivalent to a
Boolean combination of test formulae, e.g.

(x ↪→ y) ∗ ¬emp ⇐⇒ x ↪→ y ∧ size ≥ 2

3 Prove small-model property for the logic of test formulae.



1: Designing Test Formulae

Fix α ∈ N+, X ⊆fin VAR

Let us define Test(X, α) as the finite set of predicates:

{x = y, x ↪→ y, alloc(x), size ≥ β | β ∈ [1, α], x, y ∈ X}

Indistinguishability relation (s,h) ≈X
α (s′,h′)

for every ϕ ∈ Test(X, α), (s,h) |= ϕ i� (s′,h′) |= ϕ

Note: α is related to the number of occurrences of ∗ and −∗ in a
formula of separation logic.



2: ∗ elimination Lemma

We want to design Test(X, α) so that the following results hold

For every ϕ ∈ Bool(Test(X, α1)), ψ ∈ Bool(Test(X, α2))

there is γ ∈ Bool(Test(X, α1 + α2)) such that

ϕ ∗ ψ ⇐⇒ γ

Similar elimination result for −∗.

Lemmata holds for

Test(X, α) =

{
x = y, x ↪→ y

alloc(x), size ≥ β

∣∣∣∣∣ β ∈ [1, α]

x, y ∈ X

}



3: Test formulae, after ∗ and −∗ elimination

Hypothesis: A family of test formulae, such that
captures the atomic predicates of SL(∗,−∗)
satisfies the ∗ and −∗ elimination Lemmata

Thesis: for every formulae ϕ of SL(∗,−∗),
ϕ is equivalent to a Boolean combination of test formulae.
If α ≥ |ϕ|, X ⊇ v(ϕ) and (s,h) ≈X

α (s′,h′) then

(s,h) |= ϕ i� (s′,h′) |= ϕ.

Small-model property derived from ≈X
α

Small-model property for Boolean combination of test
formulae carries over to SL(∗,−∗).
test formulae in PSpace =⇒ SL(∗,−∗) is in PSpace.



1SLR2
R1(∗,−∗, reach+) is in PSpace

π := x = y | x ↪→ y | emp | A −∗ C (R1)
C := π | C ∧ C | ¬C | ∃u C | C ∗ C
A := π | reach+(v1, v2) | A ∧ A | ¬A | ∃u A | A ∗ A

where (R2) if v1 = u then v2 = u

Not so easy...
Asymmetric A−∗ C .

two sets of test formulae: two ∗/∃ elimination Lemmata
−∗ elimination Lemma that glues the two set of test formulae

instead of “size ≥ β s.t. β ∈ [1, α]”, the βs of new test
formulae are bounded by functions on α, e.g.

#loopX(β) ≥ γ γ ∈ [1, 12α(α + 3)− 1]

bounds are found by solving a set of recurrence equations!



Recap

SL(∗,−∗, reach)
undec.

1SLR1(∗,−∗, reach+)
unk. non-elem.

1SLR2
R1(∗,−∗, reach+)

PSpace-complete

1SL(∗,−∗)
PSpace-complete

SL(∗, reach)
PSpace-complete

ALT
dec. non-elem.

PITL
dec. non-elem.

1SLR2
R1(∗,−∗, reach+) strictly generalise other PSpace-compl.

extensions of propositional separation logic
Can be used to check for robustness properties.

.
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ALT seems to be an interesting tool for reductions, as it is a
fragment or it is easily captured by many logics in tower
e.g. QCTL(U), MSL(3, 〈U〉, ∗), 2SL(∗)

.
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