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What we will see

An extension of propositional separation logic that

can express some interesting properties for program verification,

is PSpace-complete,

has very weak extensions that are Tower-hard.

A modal logic on trees that

is Tower-complete,

it is very easily captured by logics that were independently found to
be Tower-complete.



Memory states

Separation Logic is interpreted over memory states (s,h) where:

store, s : VAR→ LOC heap, h : LOC→fin LOC

where VAR = {x, y, z, . . . } set of (program) variables,
LOC set of locations. VAR and LOC are countably infinite sets.

s(z)s(y)

s(x)

h

here, h(s(x)) = s(y)

Disjoint heaps: dom(h1) ∩ dom(h2) = ∅

Union of disjoint heaps (h1 + h2): union of partial functions.



Propositional Separation Logic SL(∗,−∗)

ϕ := ¬ϕ | ϕ1 ∧ ϕ2 | emp | x = y | x ↪→ y | ϕ1 ∗ ϕ2 | ϕ1 −∗ ϕ2

(s,h) |= ϕ ∗ ψ

ϕ ∗ ψ ⇔
ϕ

ψ

(s,h) |= ϕ−∗ ψ

ψ⇔
ϕ−∗ ψ

ϕ

Note: the satisfiability problem SAT(SL(∗,−∗)) is PSpace-complete.



From where it started

Theorem (Demri, Lozes, M. – 2018, Fossacs)

SL(∗,−∗) enriched with reach(x, y) = 2 and reach(x, y) = 3 is undecidable.

reduction from SL(∀,−∗) (Brochenin et al.’12)

SL(∗,−∗) + reach(x, y) = 2 is PSpace-complete (Demri et al.’14)



Robustness Properties (Jansen, et al. – ESOP’17)

ϕ comply with the acyclicity property iff every model of ϕ is acyclic.

ϕ comply with the garbage freedom property iff in every model
(s,h) |= ϕ, for each ` ∈ dom(h) there is x ∈ v(ϕ) s.t. s(x) reaches `.

Checking for robustness properties is ExpTime-complete for Symbolic
Heaps with Inductive Predicates (IP).

Our Goal
Provide a similar result for propositional separation logic.
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Desiderata

We aim to an extension of propositional separation logic where

satisfiability/entailment are decidable in PSpace (as SL(∗,−∗))

robustness properties reduce to one of these classical problems

Known extensions

2SL(∗,−∗)

1SL(∗,−∗)

SL(∗,−∗, reach)

SL(∗,−∗) SL(∗, reach)BSR(SL(∗,−∗))new

SL(∀, ∗)

undecidable

PSpace

Tower



Let’s start with reachability + 1 quantified variable

(s,h) |= reach+(x, y) ⇐⇒ hL(s(x)) = s(y) for some L ≥ 1

(s,h) |= ∃u ϕ ⇐⇒ there is ` ∈ LOC s.t. (s[u← `],h) |= ϕ

It is only possible to quantify over the variable name u.

Robustness properties reduce to entailment

Acyclicity: ϕ |= ¬∃u reach+(u, u)

Garbage freedom: ϕ |= ∀u (alloc(u)⇒
∨

x∈fv(ϕ)reach(x, u))

where u 6∈ fv(ϕ) and

alloc(x)
def
= (x ↪→ x) −∗ ⊥

reach(x, y)
def
= x = y ∨ reach+(x, y)



Undecidability and Restrictions

Theorem (Demri, Lozes, M. – 2018, Fossacs)

SL(∗,−∗) enriched with reach(x, y) = 2 and reach(x, y) = 3 is undecidable.

=⇒ SAT(1SL(∗,−∗, reach+)) is undecidable.

We syntactically restrict the logic so that reach+(x, y) is s.t.

R1: it does not appear on the right side of its first −∗ ancestor
(seeing the formula as a tree)

ϕ−∗ (ψ ∗ reach+(u, u)) violates R1

R2: if x = u then y = u (syntactically)

reach+(u, x) violates R2

Note: robustness properties are still expressible (formulae as before)!



Results

1 SAT(1SLR2R1(∗,−∗, reach+)) is PSpace-complete

strictly subsumes 1SL(∗,−∗) and SL(∗, reach+).

2 SAT(1SLR1(∗,−∗, reach+)) is Tower-hard.

Proof Techniques

(1) extend the core formulae technique used for SL(∗,−∗).

(2) reduction from “an auxiliary logic on trees”.



Core formulae technique

(and a bit of 1SLR2R1(∗,−∗, reach+))



First order theories: Gaifman Locality Theorem

Theorem (Gaifman – 1982, Herbrand Symposium)

Every FO sentence is logically equivalent to a Boolean combination
of local formulae.

application of Ehrenfeucht-Fraïssé games

Relation between
models

(partial iso. up to n)

M↔n M′ �

EF-games

Duplicator has a

winning strategy

(n round game)

�

Semantics of logic

M ≈n M′

(n nested quantifiers)



First order theories: Gaifman Locality Theorem

Theorem (Gaifman – 1982, Herbrand Symposium)

Every FO sentence is logically equivalent to a Boolean combination
of local formulae.

application of Ehrenfeucht-Fraïssé games

Relation between
models

(partial iso. up to n)

M↔n M′ �

EF-games

Duplicator has a

winning strategy

(n round game)

�

Semantics of logic

M ≈n M′

(n nested quantifiers)

M ≈n M′

eq.sat. local formulae



“Locality theorem” for SL(∗,−∗)

Theorem (Lozes, 2004 – Space)

Every formula of SL(∗,−∗) is logically equivalent to a Boolean combination
of core formulae.

From this theorem we can get:

expressive power results

complexity result (small model property)

axiomatisation

When considering extensions of the logic, we need to derive new core
formulae and reprove the theorem.
=⇒ It does not work (at all) for 1SLR2R1(∗,−∗, reach+).



Core formulae for SL(∗,−∗)

Fix X ⊆ VAR and α ∈ N+

Core(X, α)
def
=

{
x = y, x ↪→ y,

alloc(x), size ≥ β

∣∣∣∣∣ β ∈ [0, α],

x, y∈ X

}

where (s,h) |= size ≥ β iff card(dom(h)) ≥ β.

indistinguishability Relation :

(s,h)↔X
α (s′,h′) iff ∀ϕ∈Core(X, α), (s,h) |= ϕ iff (s′,h′) |= ϕ

Both EF-game and winning strategy for Duplicator are hidden inside
two (technical) elimination lemmas.



Core formulae: ∗ elimination lemma

Lemma

Suppose (s, h)↔X
α (s′, h′). Then,

for every α1 + α2 = α (α1, α2 ∈ N+), and every h1 + h2 = h, (Spoiler)

there are h′
1 + h′

2 = h′ such that (Duplicator)

(s, h1)↔X
α1 (s′, h′

1) and (s, h2)↔X
α2 (s′, h′

2).

necessary to obtain a winning strategy for Duplicator

By Relation � EF-games � Semantics it leads to:

For every ϕ ∈ Bool(Core(X, α1)) and ψ ∈ Bool(Core(X, α2))

there is χ ∈ Bool(Core(X, α1 + α2)) such that

ϕ ∗ ψ ⇐⇒ χ

Note: similar elimination lemma for −∗.
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Core formulae: after ∗ and −∗ elimination

Theorem

For every ϕ in SL(∗,−∗):

1 there is en equivalent Boolean combination of core formulae.

2 for every α ≥ |ϕ|, X ⊇ v(ϕ) and (s, h)↔X
α (s′, h′),

(s, h) |= ϕ iff (s′, h′) |= ϕ.

[2] allows to derive a small-model property which leads to a proof that
SAT(SL(∗,−∗)) is in PSpace.



1SLR2R1(∗,−∗, reach+) is in PSpace: Not so easy...

π := x = y | x ↪→ y | emp | A −∗ C (R1)

C := π | C ∧ C | ¬C | ∃u C | C ∗ C
A := π | reach+(v1, v2) | A ∧ A | ¬A | ∃u A | A ∗ A

where if v1 = u then v2 = u (R2).

Asymmetric A−∗ C: design two sets of core formulae against
two ∗ and two ∃ elimination lemmas;
one −∗ elimination lemma that glues the two set of core formulae.

instead of “size ≥ β s.t. β ∈ [1, α]”, the βs of new core formulae
are bounded by functions on α, e.g.

#loop(β) ≥ γ γ ∈ [1, 12α(α + 3)− 1]

bounds are found by solving a set of recurrence equations.



Core formulae: Example on a toy logic

ϕ := ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∗ ϕ2 | ∃u ϕ | alloc(u) | reach+(u, u)

Some formulae expressible in this logic:

size ≥ 0 def
= > size ≥ β + 1 def

= ∃u (alloc(u) ∗ size ≥ β)

reach+(u, u)=β iff there is a loop of size exactly β involving s(u).

#loops(β) ≥ γ def
=

γ−1 times ∗︷ ︸︸ ︷
∃u reach+(u, u)=β ∗ . . . ∗ ∃u reach+(u, u)=β

rem ≥ β iff there are at least β memory cells not in a loop.



Designing Core Formulae

Fix α ∈ N+

Let Core(α) be the finite set of predicates:
rem ≥ β,
#loops(β) ≥ γ,
#loops>R(α) ≥ γ,

∣∣∣∣∣∣∣∣
β ∈ [1,R(α)],

γ ∈ [1,L(α)]


for some functions L and R in [N→ N].

These formulae induce a partition on the heap:

rem ≥ β speaks about memory cells not in a loop

#loops(β) ≥ γ speaks about locations in loops of size β∈[1,R(α)]

#loops>R(α) ≥ γ speaks about locations in loops of size > R(α).

#loops>β ≥ γ = ∃u reach+(u, u)≥β + 1 ∗ . . . ∗ ∃u reach+(u, u)≥β + 1
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Find R and L

Lemma

Suppose (s, h)↔X
α (s′, h′). Then,

for every α1 + α2 = α (α1, α2 ∈ N+), and every h1 + h2 = h, (Spoiler)

...

Test the core formulae against the ∗ elimination lemma.

standard-ish way of doing things in EF-games.

What happens to the locations corresponding to rem ≥ β,
when we split a heap?

They correspond to rem ≥ β, also in the subheaps.
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Find R and L

For L, roughly speaking...

#loops...  
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+
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Find R and L

We have the inequalities

R(1) ≥ 1 R(α) ≥ max
α1,α2∈N+

α1+α2=α

(R(α1) +R(α2))

L(1) ≥ 1 L(α) ≥ max
α1,α2∈N+

α1+α2=α

(L(α1) + L(α2) +R(α1) +R(α2))

Which admit R(α) = α and L(α) = 1
2α(α + 1) as a solution.

To satisfy the ∗ elimination lemma, build ↔X
α w.r.t.

rem ≥ β,
#loops(β) ≥ γ,
#loops>α ≥ γ,

∣∣∣∣∣∣∣∣
β ∈ [1, α],

γ ∈ [1,
1
2
α(α + 1)]


(it is not a solution for the toy logic, we forgot the variable u!)



First recap

SL(∗,−∗, reach)

undecidable

1SLR1(∗,−∗, reach+)

unknown

1SLR2R1(∗,−∗, reach+)

PSpace-complete

1SL(∗,−∗)
PSpace-complete

SL(∗, reach)

PSpace-complete

1SLR2R1(∗,−∗, reach+) strictly generalise other PSpace-complete
extensions of propositional separation logic.

It can be used to check for robustness properties.



ALT: An auxiliary logic on trees

(or, what happens if we allow reach+(u, x))



Auxiliary logic on trees (ALT)

ϕ := ϕ1 ∧ ϕ2 | ¬ϕ | 〈U〉ϕ | �ϕ | �*ϕ | 4 | �

interpreted on acyclic heaps (finite forests, encoding parent relation)

one current node n ∈ LOC, one fixed target node r ∈ LOC

h, n |=r 〈U〉ϕ iff there is n′ ∈ LOC s.t. h, n′ |=r ϕ

h, n |=r 4 iff n ∈ dom(h) and n reaches r in at least one step

h, n |=r � iff n ∈ dom(h) and n does not reach r in at least one step

�ϕ ≡ (size = 1) ∗ ϕ, �*ϕ ≡ > ∗ ϕ

We prove that SAT(ALT) is a Tower-complete problem.
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What can ALT do?

Given a pointed model (h, n) and a target node r:

If we consider a portion of h with domain in {n′ ∈ LOC | h, n′ |= � },
ALT can only express size bounds.

Proof done with EF-games for ALT.

size( �) ≥ 0 def
= >

size( �) ≥ β+1 def
= 〈U〉

(
� ∧ �(¬alloc ∧ size( �) ≥ β)

)

where alloc def
= � ∨ 4.



What can ALT do?

If h, n |=r 4, ALT can check bounds on the number of descendants
and children of n:

#desc ≥ β def
= �*

(
[U]¬ � ∧ 4 ∧ �(¬alloc ∧ size( �) ≥ β)

)
#child ≥ 0 def

= >

#child ≥ β+1 def
= #desc ≥ β+1 ∧ ¬�β(4 ∧ ¬#desc ≥ 1)

Easy to encode words as acyclic memory states

abaa
r

a b a a



PITL (Moszkowski’83)

ϕ := pt | a | ϕ1 ϕ2 | ¬ϕ | ϕ1 ∧ ϕ2

interpreted on finite non-empty words over a finite alphabet Σ

w |= pt ⇐⇒ |w| = 1

w |= a ⇐⇒ first letter of w is a ∈ Σ (locality principle)

w |= ϕ1 ϕ2 ⇐⇒ w[1 : j] |= ϕ1 and w[j : |w|] |= ϕ2

for some j ∈ [1, |w|]

w1 . . .wj−1 wj+1 . . .w|w|wj

ϕ2
ϕ1

Note: SAT(PITL) is Tower-complete.



Reducing PITL to ALT

Set of models encoding words can be characterised in ALT

However, difficult to translate ϕ1 ϕ2!

r

a b a a

×

ϕ2
ϕ1

After the cut, left side does not reach r anymore.

=⇒ nodes on the left side satisfy �

=⇒ We cannot express the satisfaction of ϕ1.



PITL to ALT: alternative semantics for PITL

a marked representation of a ∈ Σ

w1 . . .wj−1 wj wj+1 . . . w|w|

ϕ ψ on standard semantics:

w1 . . .wj−1 wj

ϕ1

wj wj+1 . . .w|w|

ϕ2

ϕ ψ on marked semantics

w1 . . .wj−1 wj+1 . . .wj w|w|

ϕ1

wjwj+1 . . . w|w|

ϕ2

alternative semantics is equivalent to the original one.



ALT, marking an element

Given an alphabet Σ = {a1, . . . , an}, ai and ai are encoded as

r

. . .

ai

2i + 1

r

. . .

ai

2i

=⇒ marking a character ∼ removing a single child.

SAT(PITL) can be reduced to SAT(ALT),
(translated formula is in 2ExpSpace if Σ is coded in binary)

=⇒ ALT is Tower-complete (upper-bound from MSO).



Some logics that are Tower-hard

It is easy to see that ALT is a fragment of 1SLR1(∗,−∗, reach+):

fix x ∈ VAR to play the role of the target node r,

〈U〉ϕ ≡ ∃u ϕ 4 ≡ reach+(u, x) � ≡ alloc(u) ∧ ¬4

+ impose acyclic heaps: ¬∃u reach+(u, u).

ALT is a fragment of MSL(∗,3, 〈U〉)

ALT �SAT MLH(∗,3, 〈U〉) with modal depth 2.
(then ∗, ∃u, alloc(u), alloc2(u) is Tower-c.)

ALT �SAT QCTL(U) without imbricated until operators U
(or QCTL(EF) with 2 imbrication of EF)

Note: in these results ∗ can always be replaced with � and �*.



Second Recap

SL(∗,−∗, reach)

undecidable

1SLR1(∗,−∗, reach+)

unk. non-elem.

1SLR2R1(∗,−∗, reach+)

PSpace-complete

1SL(∗,−∗)
PSpace-complete

SL(∗, reach)

PSpace-complete

ALT
Tower-complete

PITL
Tower-complete

ALT improves the understanding of some Tower-complete logics.

It seems to be an interesting tool to prove Tower-hardness.


