Extending propositional separation logic for robustness properties

F.R.I.E.N.D.S of separation logic

Alessio Mansutti

LSV, CNRS, ENS Paris-Saclay

Paris - April 2019

An extension of propositional separation logic that

- can express some interesting properties for program verification,
- is PSpace-complete,
- has very weak extensions that are Tower-hard.

A modal logic on trees that

- is Tower-complete,
- it is very easily captured by logics that were independently found to be Tower-complete.

Separation Logic is interpreted over **memory states** (s, h) where:

store, s : VAR \rightarrow LOC heap, h : LOC \rightarrow_{fin} LOC

where $VAR = \{x, y, z, ...\}$ set of (program) variables, LOC set of locations. VAR and LOC are countably infinite sets.

Disjoint heaps: $\operatorname{dom}(\mathbf{h}_1) \cap \operatorname{dom}(\mathbf{h}_2) = \emptyset$

• Union of disjoint heaps $(\mathbf{h}_1 + \mathbf{h}_2)$: union of partial functions.

Propositional Separation Logic SL(*, -*)

$$\varphi \coloneqq \neg \varphi \ \mid \ \varphi_1 \land \varphi_2 \ \mid \ \mathsf{emp} \ \mid \ \mathsf{x} = \mathsf{y} \ \mid \ \mathsf{x} \hookrightarrow \mathsf{y} \ \mid \ \varphi_1 \ast \varphi_2 \ \mid \ \varphi_1 \twoheadrightarrow \varphi_2$$

Note: the satisfiability problem SAT(SL(*, -*)) is PSpace-complete.

Theorem (Demri, Lozes, M. - 2018, Fossacs)

SL(*, -*) enriched with reach(x, y) = 2 and reach(x, y) = 3 is undecidable.

- reduction from SL(∀, -*) (Brochenin et al.'12)
- SL(*, -*) + reach(x, y) = 2 is PSpace-complete (Demri et al.'14)

Robustness Properties (Jansen, et al. – ESOP'17)

- φ comply with the **acyclicity** property iff every model of φ is acyclic.
- φ comply with the **garbage freedom** property iff in every model (**s**, **h**) $\models \varphi$, for each $\ell \in \text{dom}(\mathbf{h})$ there is $\mathbf{x} \in \mathsf{v}(\varphi)$ s.t. $\mathbf{s}(\mathbf{x})$ reaches ℓ .

Checking for robustness properties is ExpTime-complete for Symbolic Heaps with Inductive Predicates (IP).

Our Goal Provide a similar result for **propositional** separation logic.

Robustness Properties (Jansen, et al. - ESOP'17)

Checking for robustness properties is ExpTime-complete for Symbolic Heaps with Inductive Predicates (IP).

Our Goal Provide a similar result for **propositional** separation logic. We aim to an extension of propositional separation logic where

- satisfiability/entailment are decidable in PSpace (as SL(*, -*))
- robustness properties reduce to one of these classical problems

Known extensions

Let's start with reachability + 1 quantified variable

$$\blacksquare \ ({\bf s},{\bf h})\models {\tt reach}^+({\tt x},{\tt y}) \iff {\bm h}^{\sf L}({\bf s}({\tt x}))={\bf s}({\tt y}) \ {\sf for \ some \ } {\bm L}\geq 1$$

$$\blacksquare \ (\mathbf{s},\mathbf{h}) \models \exists \mathtt{u} \ \varphi \iff \mathsf{there} \ \mathsf{is} \ \ell \in \mathtt{LOC} \ \mathsf{s.t.} \ (\mathbf{s}[\mathtt{u} \leftarrow \ell],\mathbf{h}) \models \varphi$$

It is only possible to quantify over the variable name u.

Robustness properties reduce to entailment

- Acyclicity: $\varphi \models \neg \exists u reach^+(u, u)$
- Garbage freedom: $\varphi \models \forall u \ (alloc(u) \Rightarrow \bigvee_{x \in fv(\varphi)} reach(x, u))$

where $\mathbf{u} \not\in \mathbf{fv}(\varphi)$ and

■ alloc(x)
$$\stackrel{\text{def}}{=}$$
 (x \hookrightarrow x) \twoheadrightarrow ⊥
■ reach(x,y) $\stackrel{\text{def}}{=}$ x = y \lor reach⁺(x,y)

Undecidability and Restrictions

Theorem (Demri, Lozes, M. - 2018, Fossacs)

SL(*, -*) enriched with reach(x, y) = 2 and reach(x, y) = 3 is undecidable.

 \implies SAT(1SL(*, -*, reach⁺)) is undecidable.

We syntactically restrict the logic so that $reach^+(x, y)$ is s.t.

R1: it does not appear on the right side of its first -* ancestor (seeing the formula as a tree)

•
$$\varphi \twoheadrightarrow (\psi * \texttt{reach}^+(u, u))$$
 violates R1

R2: if
$$x = u$$
 then $y = u$ (syntactically)
reach⁺(u, x) violates R2

Note: robustness properties are still expressible (formulae as before)!

1
$$SAT(1SL_{R1}^{R2}(*, -*, reach^+))$$
 is PSpace-complete

■ strictly subsumes 1SL(*, -*) and SL(*, reach⁺).

2 SAT(1SL_{R1}(*, -*, reach⁺)) is Tower-hard.

Proof Techniques

(1) extend the core formulae technique used for SL(*, -*).

(2) reduction from "an auxiliary logic on trees".

Core formulae technique (and a bit of $1SL_{R1}^{R2}(*, -*, reach^+)$)

First order theories: Gaifman Locality Theorem

Theorem (Gaifman – 1982, Herbrand Symposium)

Every FO sentence is logically equivalent to a Boolean combination of **local formulae**.

application of Ehrenfeucht-Fraïssé games

First order theories: Gaifman Locality Theorem

Theorem (Gaifman – 1982, Herbrand Symposium)

Every FO sentence is logically equivalent to a Boolean combination of **local formulae**.

application of Ehrenfeucht-Fraïssé games

Theorem (Lozes, 2004 – Space)

Every formula of SL(*, -*) is logically equivalent to a Boolean combination of **core formulae**.

From this theorem we can get:

- expressive power results
- complexity result (small model property)
- axiomatisation

When considering extensions of the logic, we need to derive new core formulae and reprove the theorem.

 \implies It does not work (at all) for $1SL_{R1}^{R2}(*, -*, reach^+)$.

Fix $\mathtt{X} \subseteq \mathtt{VAR} \text{ and } \alpha \in \mathbb{N}^+$

$$\mathbf{Core}(\mathbf{X},\alpha) \stackrel{\mathsf{def}}{=} \left\{ \begin{array}{cc} \mathbf{x} = \mathbf{y}, & \mathbf{x} \hookrightarrow \mathbf{y}, \\ \mathtt{alloc}(\mathbf{x}), & \mathtt{size} \ge \beta \end{array} \middle| \begin{array}{c} \beta \in [\mathbf{0},\alpha], \\ \mathbf{x}, \mathbf{y} \in \mathbf{X} \end{array} \right\}$$

where $(\mathbf{s}, \mathbf{h}) \models \mathtt{size} \ge \beta$ iff $\operatorname{card}(\operatorname{dom}(\mathbf{h})) \ge \beta$.

- indistinguishability Relation : $(\mathbf{s}, \mathbf{h}) \leftrightarrow_{\alpha}^{\mathbf{X}} (\mathbf{s}', \mathbf{h}')$ iff $\forall \varphi \in \mathbf{Core}(\mathbf{X}, \alpha), (\mathbf{s}, \mathbf{h}) \models \varphi$ iff $(\mathbf{s}', \mathbf{h}') \models \varphi$
- Both EF-game and winning strategy for Duplicator are hidden inside two (technical) elimination lemmas.

Core formulae: * elimination lemma

Lemma

Suppose $(s, h) \leftrightarrow_{\alpha}^{\chi} (s', h')$. Then, for every $\alpha_1 + \alpha_2 = \alpha$ ($\alpha_1, \alpha_2 \in \mathbb{N}^+$), and every $h_1 + h_2 = h$, (Spoiler) there are $h'_1 + h'_2 = h'$ such that (Duplicator) $(s, h_1) \leftrightarrow_{\alpha_1}^{\chi} (s', h'_1)$ and $(s, h_2) \leftrightarrow_{\alpha_2}^{\chi} (s', h'_2)$.

necessary to obtain a winning strategy for Duplicator

Core formulae: * elimination lemma

Lemma

Suppose $(s, h) \leftrightarrow_{\alpha}^{\chi} (s', h')$. Then, for every $\alpha_1 + \alpha_2 = \alpha$ ($\alpha_1, \alpha_2 \in \mathbb{N}^+$), and every $h_1 + h_2 = h$, (Spoiler) there are $h'_1 + h'_2 = h'$ such that (Duplicator) $(s, h_1) \leftrightarrow_{\alpha_1}^{\chi} (s', h'_1)$ and $(s, h_2) \leftrightarrow_{\alpha_2}^{\chi} (s', h'_2)$.

necessary to obtain a winning strategy for Duplicator

By Relation
$$\leftrightarrows$$
 EF-games \leftrightarrows Semantics it leads to:

For every $\varphi \in \operatorname{Bool}(\operatorname{Core}(X, \alpha_1))$ and $\psi \in \operatorname{Bool}(\operatorname{Core}(X, \alpha_2))$ there is $\chi \in \operatorname{Bool}(\operatorname{Core}(X, \alpha_1 + \alpha_2))$ such that

$$\varphi * \psi \iff \chi$$

Note: similar elimination lemma for -*.

Theorem

For every φ in SL(*, -*):

1 there is en equivalent Boolean combination of core formulae.

2 for every
$$\alpha \geq |\varphi|$$
, $X \supseteq v(\varphi)$ and $(s, h) \leftrightarrow_{\alpha}^{X} (s', h')$,

$$(\boldsymbol{s}, \boldsymbol{h}) \models \varphi \text{ iff } (\boldsymbol{s}', \boldsymbol{h}') \models \varphi.$$

[2] allows to derive a small-model property which leads to a proof that SAT(SL(*, -*)) is in PSpace.

 $1SL_{R1}^{R2}(*, -*, reach^+)$ is in PSpace: Not so easy...

$$\begin{split} \pi &:= \mathbf{x} = \mathbf{y} \mid \mathbf{x} \hookrightarrow \mathbf{y} \mid \mathsf{emp} \mid \underline{\mathcal{A}} \twoheadrightarrow \mathcal{C} (\mathbf{R1}) \\ \mathcal{C} &:= \pi \mid \mathcal{C} \land \mathcal{C} \mid \neg \mathcal{C} \mid \exists \mathbf{u} \ \mathcal{C} \mid \mathcal{C} \ast \mathcal{C} \\ \mathcal{A} &:= \pi \mid \underline{\mathsf{reach}}^+(v_1, v_2) \mid \mathcal{A} \land \mathcal{A} \mid \neg \mathcal{A} \mid \exists \mathbf{u} \ \mathcal{A} \mid \mathcal{A} \ast \mathcal{A} \end{split}$$

where if $v_1 = u$ then $v_2 = u$ (R2).

- Asymmetric $\mathcal{A} \twoheadrightarrow \mathcal{C}$: design two sets of core formulae against
 - two * and two ∃ elimination lemmas;
 - one → elimination lemma that glues the two set of core formulae.
- instead of "size $\geq \beta$ s.t. $\beta \in [1, \alpha]$ ", the β s of new core formulae are bounded by functions on α , e.g.

$$\# \texttt{loop}(\beta) \geq \gamma \qquad \gamma \in [1, \frac{1}{2}\alpha(\alpha+3) - 1]$$

bounds are found by solving a set of recurrence equations.

$$\varphi\coloneqq \neg\varphi \ | \ \varphi_1 \land \varphi_2 \ | \ \varphi_1 \ast \varphi_2 \ | \ \exists \mathtt{u} \ \varphi \ | \ \mathtt{alloc}(\mathtt{u}) \ | \ \mathtt{reach}^+(\mathtt{u},\mathtt{u})$$

Some formulae expressible in this logic:

$$\blacksquare \text{ size } \geq 0 \stackrel{\mathsf{def}}{=} \top \qquad \texttt{size } \geq \beta + 1 \stackrel{\mathsf{def}}{=} \exists \texttt{u} (\texttt{alloc}(\texttt{u}) * \texttt{size} \geq \beta)$$

• reach⁺(u, u)= β iff there is a loop of size exactly β involving **s**(u).

$$\# \texttt{loops}(\beta) \geq \gamma \stackrel{\texttt{def}}{=} \overbrace{\exists \texttt{u} \texttt{reach}^+(\texttt{u},\texttt{u}) = \beta * \ldots * \exists \texttt{u} \texttt{reach}^+(\texttt{u},\texttt{u}) = \beta}^{\gamma-1 \texttt{ times } \ast} }$$

• $rem \ge \beta$ iff there are at least β memory cells not in a loop.

Designing Core Formulae

Fix $\alpha \in \mathbb{N}^+$

• Let **Core**(α) be the **finite** set of predicates:

$$\begin{cases} \texttt{rem} \geq \beta, \\ \#\texttt{loops}(\beta) \geq \gamma, \\ \#\texttt{loops}_{>\mathcal{R}(\alpha)} \geq \gamma, \end{cases} & \beta \in [1, \mathcal{R}(\alpha)], \\ \gamma \in [1, \mathcal{L}(\alpha)] & \end{pmatrix}$$

for some functions \mathcal{L} and \mathcal{R} in $[\mathbb{N} \to \mathbb{N}]$.

 $\#\texttt{loops}_{>\beta} \geq \gamma \ = \ \exists \texttt{ureach}^+(\texttt{u},\texttt{u}) \geq \beta + 1 * \ldots * \exists \texttt{ureach}^+(\texttt{u},\texttt{u}) \geq \beta + 1 * \ldots * \exists \texttt{ureach}^+(\texttt{u},\texttt{u}) \geq \beta + 1 * \ldots * \exists \texttt{ureach}^+(\texttt{u},\texttt{u}) \geq \beta + 1 * \ldots * \exists \texttt{ureach}^+(\texttt{u},\texttt{u}) \geq \beta + 1 * \ldots * \exists \texttt{ureach}^+(\texttt{u},\texttt{u}) \geq \beta + 1 * \ldots * \exists \texttt{ureach}^+(\texttt{u},\texttt{u}) \geq \beta + 1 * \ldots * \exists \texttt{ureach}^+(\texttt{u},\texttt{u}) \geq \beta + 1 * \ldots * \exists \texttt{ureach}^+(\texttt{u},\texttt{u}) \geq \beta + 1 * \ldots * \exists \texttt{ureach}^+(\texttt{u},\texttt{u}) \geq \beta + 1 * \ldots * \exists \texttt{ureach}^+(\texttt{u},\texttt{u}) \geq \beta + 1 * \ldots * \exists \texttt{ureach}^+(\texttt{u},\texttt{u}) \geq \beta + 1 * \ldots * \exists \texttt{ureach}^+(\texttt{u},\texttt{u}) \geq \beta + 1 * \ldots * \exists \texttt{ureach}^+(\texttt{u},\texttt{u}) \geq \beta + 1 * \ldots * \exists \texttt{ureach}^+(\texttt{u},\texttt{u}) \geq \beta + 1 * \ldots * \exists \texttt{ureach}^+(\texttt{u},\texttt{u}) \geq \beta + 1 * \ldots * \exists \texttt{ureach}^+(\texttt{u},\texttt{u}) \geq \beta + 1 * \ldots * \exists \texttt{ureach}^+(\texttt{u},\texttt{u}) \geq \beta + 1 * \ldots * \exists \texttt{ureach}^+(\texttt{u},\texttt{u}) \geq \beta + 1 * \ldots * \exists \texttt{ureach}^+(\texttt{u},\texttt{u}) \geq \beta + 1 * \ldots * \exists \texttt{ureach}^+(\texttt{u},\texttt{u}) \geq \beta + 1 * \ldots * \exists \texttt{ureach}^+(\texttt{u},\texttt{u}) \geq \beta + 1 * \ldots * \exists \texttt{ureach}^+(\texttt{u},\texttt{u}) \geq \beta + 1 * \ldots * \exists \texttt{ureach}^+(\texttt{u},\texttt{u}) \geq \beta + 1 * \ldots * \exists \texttt{ureach}^+(\texttt{u},\texttt{u}) \geq \beta + 1 * \ldots * \exists \texttt{ureach}^+(\texttt{u},\texttt{u}) \geq \beta + 1 * \ldots * \exists \texttt{ureach}^+(\texttt{u},\texttt{u}) \geq \beta + 1 * \ldots * \exists \texttt{ureach}^+(\texttt{u},\texttt{u}) \geq \beta + 1 * \ldots * \exists \texttt{ureach}^+(\texttt{u},\texttt{u}) \geq \beta + 1 * \ldots * \exists \texttt{ureach}^+(\texttt{u},\texttt{u}) \geq \beta + 1 * \ldots * \exists \texttt{ureach}^+(\texttt{u},\texttt{u}) \geq \beta + 1 * \ldots * \exists \texttt{ureach}^+(\texttt{u},\texttt{u}) \geq \beta + 1 * \ldots * \exists \texttt{ureach}^+(\texttt{u},\texttt{u}) \geq \beta + 1 * \ldots * \exists \texttt{ureach}^+(\texttt{u},\texttt{u}) \geq \beta + 1 * \ldots * \exists \texttt{ureach}^+(\texttt{u},\texttt{u}) \geq \beta + 1 * \ldots * \exists \texttt{ureach}^+(\texttt{u},\texttt{u}) \geq \beta + 1 * \ldots * \exists \texttt{ureach}^+(\texttt{u},\texttt{u}) \geq \beta + 1 * \ldots * \exists \texttt{ureach}^+(\texttt{u},\texttt{u}) \geq \beta + 1 * \ldots * \exists \texttt{ureach}^+(\texttt{u},\texttt{u}) \geq \beta + 1 * \ldots * \exists \texttt{ureach}^+(\texttt{u},\texttt{u}) \geq \beta + 1 * \ldots * \exists \texttt{ureach}^+(\texttt{u},\texttt{u}) \geq \beta + 1 * \ldots * \exists \texttt{ureach}^+(\texttt{u},\texttt{u}) \geq \beta + 1 * \ldots * \exists \texttt{ureach}^+(\texttt{u},\texttt{u}) \geq \beta + 1 * \ldots * \exists \texttt{ureach}^+(\texttt{u},\texttt{u}) = \beta + 1 * \ldots * \exists \texttt{ureach}^+(\texttt{u},\texttt{u}) = \beta + 1 * \ldots * \exists \texttt{ureach}^+(\texttt{u},\texttt{u}) = \beta + 1 * \ldots * \exists \texttt{ureach}^+(\texttt{u},\texttt{u}) = \beta + 1 * \ldots * \exists \texttt{ureach}^+(\texttt{u},\texttt{u}) = \beta + 1 * \ldots * \exists \texttt{ureach}^+(\texttt{u},\texttt{u}) = \beta + 1 * \ldots * \exists \texttt{ureach}^+(\texttt{u},\texttt{u}) = \beta + 1 * \ldots * \exists \texttt{ureach}^+(\texttt{u},\texttt{u}) = \beta + 1 * \ldots * \exists \texttt{ureach}^+(\texttt{ureach}^+(\texttt{ur$

Designing Core Formulae

Fix $\alpha \in \mathbb{N}^+$

• Let $Core(\alpha)$ be the finite set of predicates:

$$\begin{cases} \texttt{rem} \geq \beta, \\ \#\texttt{loops}(\beta) \geq \gamma, \\ \#\texttt{loops}_{>\mathcal{R}(\alpha)} \geq \gamma, \end{cases} & \beta \in [1, \mathcal{R}(\alpha)], \\ \gamma \in [1, \mathcal{L}(\alpha)] & \end{pmatrix} \end{cases}$$

for some functions \mathcal{L} and \mathcal{R} in $[\mathbb{N} \to \mathbb{N}]$.

These formulae induce a partition on the heap:

- $\blacksquare \ \texttt{rem} \geq \beta$ speaks about memory cells not in a loop
- $\# \text{loops}(\beta) \ge \gamma$ speaks about locations in loops of size $\beta \in [1, \mathcal{R}(\alpha)]$
- $\# \text{loops}_{>\mathcal{R}(\alpha)} \ge \gamma$ speaks about locations in loops of size $> \mathcal{R}(\alpha)$.

 $\#\texttt{loops}_{>\beta} \geq \gamma ~=~ \exists \texttt{u}\texttt{reach}^+(\texttt{u},\texttt{u}) {\geq} \beta + 1 * \ldots * \exists \texttt{u}\texttt{reach}^+(\texttt{u},\texttt{u}) {\geq} \beta + 1$

Lemma

Suppose $(s, h) \leftrightarrow_{\alpha}^{x} (s', h')$. Then, for every $\alpha_{1} + \alpha_{2} = \alpha$ $(\alpha_{1}, \alpha_{2} \in \mathbb{N}^{+})$, and every $h_{1} + h_{2} = h$, (Spoiler) ...

- Test the core formulae against the * elimination lemma.
- standard-ish way of doing things in EF-games.

Lemma

Suppose $(s, h) \leftrightarrow_{\alpha}^{X} (s', h')$. Then, for every $\alpha_{1} + \alpha_{2} = \alpha$ $(\alpha_{1}, \alpha_{2} \in \mathbb{N}^{+})$, and every $h_{1} + h_{2} = h$, (Spoiler) ...

- Test the core formulae against the * elimination lemma.
- standard-ish way of doing things in EF-games.

What happens to the locations corresponding to $rem \ge \beta$, when we split a heap?

Lemma

Suppose $(s, h) \leftrightarrow_{\alpha}^{X} (s', h')$. Then, for every $\alpha_{1} + \alpha_{2} = \alpha$ $(\alpha_{1}, \alpha_{2} \in \mathbb{N}^{+})$, and every $h_{1} + h_{2} = h$, (Spoiler) ...

- Test the core formulae against the * elimination lemma.
- standard-ish way of doing things in EF-games.

What happens to the locations corresponding to $rem \ge \beta$, when we split a heap?

They correspond to $rem \ge \beta$, also in the subheaps.

Lemma

Suppose $(\mathbf{s}, \mathbf{h}) \leftrightarrow_{\alpha}^{\mathbf{X}} (\mathbf{s}', \mathbf{h}')$. Then, for every $\alpha_1 + \alpha_2 = \alpha$ ($\alpha_1, \alpha_2 \in \mathbb{N}^+$), and every $\mathbf{h}_1 + \mathbf{h}_2 = \mathbf{h}$, (Spoiler) st ${\mathcal R}$ + $\mathcal{R}(\alpha) \geq \max_{lpha_{1}, lpha_{2} \in \mathbb{N}^{+}} \left(\mathcal{R}(lpha_{1}) + \mathcal{R}(lpha_{2})
ight)$ $\alpha_1 + \alpha_2 = \alpha$

They correspond to $rem \ge \beta$, also in the subheaps.

For \mathcal{L} , roughly speaking...

For \mathcal{L} , roughly speaking...

We have the inequalities

$$\begin{split} \mathcal{R}(1) &\geq 1 \qquad \mathcal{R}(\alpha) \geq \max_{\substack{\alpha_1, \alpha_2 \in \mathbb{N}^+ \\ \alpha_1 + \alpha_2 = \alpha}} (\mathcal{R}(\alpha_1) + \mathcal{R}(\alpha_2)) \\ \mathcal{L}(1) \geq 1 \qquad \mathcal{L}(\alpha) \geq \max_{\substack{\alpha_1, \alpha_2 \in \mathbb{N}^+ \\ \alpha_1 + \alpha_2 = \alpha}} (\mathcal{L}(\alpha_1) + \mathcal{L}(\alpha_2) + \mathcal{R}(\alpha_1) + \mathcal{R}(\alpha_2)) \end{split}$$

Which admit $\mathcal{R}(\alpha) = \alpha$ and $\mathcal{L}(\alpha) = \frac{1}{2}\alpha(\alpha+1)$ as a solution.

To satisfy the * elimination lemma, build $\leftrightarrow_{\alpha}^{X}$ w.r.t.

$$\begin{cases} \texttt{rem} \geq \beta, \\ \#\texttt{loops}(\beta) \geq \gamma, \\ \#\texttt{loops}_{>\alpha} \geq \gamma, \end{cases} & \beta \in [1, \alpha], \\ \gamma \in [1, \frac{1}{2}\alpha(\alpha + 1)] \end{cases} \end{cases}$$

(it is not a solution for the toy logic, we forgot the variable u!)

First recap

- 1SL^{R2}_{R1}(*, -*, reach⁺) strictly generalise other PSpace-complete extensions of propositional separation logic.
- It can be used to check for robustness properties.

ALT: An auxiliary logic on trees (or, what happens if we allow $reach^+(u, x)$)

$$\varphi \coloneqq \varphi_1 \land \varphi_2 \ | \ \neg \varphi \ | \ \langle \mathbf{U} \rangle \varphi \ | \ \blacklozenge \varphi \ | \ \blacklozenge^* \varphi \ | \ \bigtriangleup \ | \ \bigtriangleup$$

- interpreted on acyclic heaps (finite forests, encoding parent relation)
- one current node $n \in LOC$, one fixed target node $r \in LOC$
- $\blacksquare \ \mathbf{h}, n \models_{\mathsf{r}} \langle U \rangle \varphi \text{ iff there is } n' \in \texttt{LOC s.t. } \mathbf{h}, n' \models_{\mathsf{r}} \varphi$
- **•** $\mathbf{h}, n \models_r \triangle$ iff $n \in \operatorname{dom}(\mathbf{h})$ and n reaches r in at least one step
- **•** $h, n \models_r \otimes iff n \in dom(h)$ and n **does not** reach r in at least one step

•
$$\mathbf{\Phi} \varphi \equiv (\mathtt{size} = 1) * \varphi,$$
 $\mathbf{\Phi}^* \varphi \equiv \top * \varphi$

We prove that SAT(ALT) is a Tower-complete problem.

Auxiliary logic on trees (ALT)

• $h, n \models_r \triangle$ iff $n \in \operatorname{dom}(h)$ and n reaches r in at least one step

• $h, n \models_r \circ iff n \in dom(h)$ and n **does not** reach r in at least one step

•
$$\mathbf{\Phi} \varphi \equiv (\texttt{size} = 1) * \varphi,$$
 $\mathbf{\Phi}^* \varphi \equiv \top * \varphi$

We prove that SAT(ALT) is a Tower-complete problem.

Given a pointed model $(\boldsymbol{h},\boldsymbol{n})$ and a target node r:

If we consider a portion of **h** with domain in $\{n' \in LOC \mid h, n' \models \odot\}$, ALT **can only express** size bounds.

Proof done with EF-games for ALT.

$$\begin{split} \text{size}(\otimes) &\geq 0 & \stackrel{\text{def}}{=} \top \\ \text{size}(\otimes) &\geq \beta + 1 & \stackrel{\text{def}}{=} \langle U \rangle \big(\otimes \land \blacklozenge (\neg \texttt{alloc} \land \texttt{size}(\otimes) \geq \beta) \big) \end{split}$$

where alloc $\stackrel{\mathsf{def}}{=} \otimes \vee \triangle$.

If $\bm{h},n\models_{r}\triangle$, ALT can check bounds on the number of descendants and children of n:

$$\begin{array}{l} \#\texttt{desc} \geq \beta \ \stackrel{\texttt{def}}{=} \ \blacklozenge^* \big([\texttt{U}] \neg \otimes \land \bigtriangleup \land \diamondsuit (\neg\texttt{alloc} \land \texttt{size}(\otimes) \geq \beta) \big) \\ \#\texttt{child} \geq 0 \ \stackrel{\texttt{def}}{=} \ \top \\ \#\texttt{child} \geq \beta + 1 \ \stackrel{\texttt{def}}{=} \ \#\texttt{desc} \geq \beta + 1 \land \neg \diamondsuit^\beta (\bigtriangleup \land \neg \#\texttt{desc} \geq 1) \end{array}$$

Easy to encode words as acyclic memory states

$$\varphi \coloneqq \texttt{pt} \ | \ \texttt{a} \ | \ \varphi_1 | \varphi_2 \ | \ \neg \varphi \ | \ \varphi_1 \wedge \varphi_2$$

- \blacksquare interpreted on finite non-empty words over a finite alphabet Σ
- $\mathfrak{w}\models \mathtt{pt} \quad \iff \ |\mathfrak{w}|=1$
 - $\blacksquare \mathfrak{w} \models a \qquad \iff \text{first letter of } \mathfrak{w} \text{ is } a \in \Sigma \quad (\text{locality principle})$
 - $\mathfrak{w} \models \varphi_1 | \varphi_2 \iff \mathfrak{w}[1:j] \models \varphi_1 \text{ and } \mathfrak{w}[j:|\mathfrak{w}|] \models \varphi_2$ for some $j \in [1,|\mathfrak{w}|]$

Note: SAT(PITL) is Tower-complete.

Reducing PITL to ALT

Set of models encoding words can be characterised in ALT

• However, difficult to translate $\varphi_1 | \varphi_2!$

After the cut, left side does not reach r anymore.

- \implies nodes on the left side satisfy \odot
- \implies We cannot express the satisfaction of φ_1 .

PITL to ALT: alternative semantics for PITL

$$\mathfrak{w}_1\ldots\mathfrak{w}_{j-1}\ \mathfrak{w}_j\ \mathfrak{w}_{j+1}\ldots \boxed{\mathfrak{w}_{|\mathfrak{w}|}}$$

• $\varphi | \psi$ on standard semantics:

 $\hfill \varphi \hfill \psi$ on marked semantics

$$\underbrace{\begin{bmatrix} \mathfrak{w}_1 \dots \mathfrak{w}_{j-1} \\ \mathfrak{w}_j \end{bmatrix}}_{\varphi_1} \underbrace{\mathfrak{w}_{j+1} \dots \\ \mathfrak{w}_{|\mathfrak{w}|}}_{\varphi_2}$$

alternative semantics is equivalent to the original one.

ALT, marking an element

Given an alphabet $\Sigma = \{a_1, \ldots, a_n\}$, a_i and $\boxed{a_i}$ are encoded as

 \implies marking a character \sim removing a single child.

 SAT(PITL) can be reduced to SAT(ALT), (translated formula is in 2ExpSpace if Σ is coded in binary)

 \implies ALT is Tower-complete (upper-bound from MSO).

Some logics that are Tower-hard

• It is easy to see that ALT is a fragment of $1SL_{R1}(*, -*, reach^+)$: fix $x \in VAR$ to play the role of the target node r,

 $\langle \mathrm{U}
angle arphi \equiv \exists \mathrm{u} \ arphi \qquad riangle \equiv \mathtt{reach}^+(\mathrm{u},\mathrm{x}) \qquad riangle \equiv \mathtt{alloc}(\mathrm{u}) \land \neg riangle$

+ impose acyclic heaps: $\neg \exists u reach^+(u, u)$.

- ALT is a fragment of MSL($*, \diamond, \langle U \rangle$)
- ALT ≤_{SAT} MLH(*, ◇, ⟨U⟩) with modal depth 2. (then *, ∃u, alloc(u), alloc²(u) is Tower-c.)
- ALT \leq_{SAT} QCTL(U) without imbricated until operators U (or QCTL(EF) with 2 imbrication of EF)

Note: in these results * can always be replaced with \blacklozenge and \blacklozenge^* .

Second Recap

■ ALT improves the understanding of some Tower-complete logics.

It seems to be an interesting tool to prove Tower-hardness.