Extending propositional separation logic
for robustness properties

F-R-1-E-N-P-s of separation logic

Alessio Mansutti

LSV, CNRS, ENS Paris-Saclay

Paris - April 2019

What we will see

An extension of propositional separation logic that

m can express some interesting properties for program verification,
m is PSpace-complete,

m has very weak extensions that are Tower-hard.

A modal logic on trees that

m is Tower-complete,

m it is very easily captured by logics that were independently found to
be Tower-complete.

Memory states

Separation Logic is interpreted over memory states (s, h) where:

m store, s: VAR — LOC m heap, h : LOC —, LOC

where VAR = {x,y,z,...} set of (program) variables,
LOC set of locations. VAR and LOC are countably infinite sets.

yad e,) =)

m Disjoint heaps: dom(h;) N dom(hy) =0

m Union of disjoint heaps (h;y + hy): union of partial functions.

Propositional Separation Logic SL(x, —x)

o= | p1Aps | emp | x=y | x>y | pr*xp2 | v1—*p2

(s,h) Eexv (s,h) E v

2 ©

p*x = — — & P
L, L,
I I

Note: the satisfiability problem SAT(SL(x*, —+)) is PSpace-complete.

From where it started

Theorem (Demri, Lozes, M. — 2018, Fossacs)

SL(*, =) enriched with reach(x,y) = 2 and reach(x,y) = 3 is undecidable.

m reduction from SL(V, —) (Brochenin et al."12)

m SL(x, =) + reach(x,y) = 2 is PSpace-complete (Demri et al.'14)

Robustness Properties (Jansen, et al. — ESOP’17)

m o comply with the acyclicity property iff every model of ¢ is acyclic.

m p comply with the garbage freedom property iff in every model
(s,h) = ¢, for each ¢ € dom(h) there is x € v(¢) s.t. s(x) reaches /.

Checking for robustness properties is ExpTime-complete for Symbolic
Heaps with Inductive Predicates (IP).

Our Goal

Provide a similar result for propositional separation logic.

Robustness Properties (Jansen, et al. — ESOP’17)

o

m}

u}

j_' garbage

lic.

Checking for robustness properties is ExpTime-complete for Symbolic

Heaps with Inductive Predicates (IP).

Our Goal

Provide a similar result for propositional separation logic.

Desiderata

We aim to an extension of propositional separation logic where

m satisfiability/entailment are decidable in PSpace (as SL(x, —))

@ robustness properties reduce to one of these classical problems

Known extensions

2SL(x, =) ® «— SL(*, =, reach) ®

A BN undecidable

SL(V,) @

*

Tower

PS
1SL(x, —) SL(*,) [—> BSR(SL(x, —=))"" SL(*,reach) pace

Let’'s start with reachability + 1 quantified variable

m (s,h) = reacht(x,y) <= h"(s(x)) = s(y) for some L > 1
m (s,h) =Jup <= thereis £ € LOCs.t. (sflu+ {,h) E ¢

It is only possible to quantify over the variable name u.

Robustness properties reduce to entailment

m Acyclicity: ¢ = —3u reach™(u,u)
= Garbage freedom: ¢ |= Vu (alloc(u) =V g, reach(x, u))

where u ¢ fv(y) and

m alloc(x) (x) > L

m reach(x,) fx=yV reach®(x,y)

Undecidability and Restrictions

Theorem (Demri, Lozes, M. — 2018, Fossacs)
SL(x, —) enriched with reach(x,y) = 2 and reach(x,y) = 3 is undecidable.

—> SAT(1SL(*, =, reach™)) is undecidable.

We syntactically restrict the logic so that reach™(x,y) is s.t.

R1: it does not appear on the right side of its first = ancestor
(seeing the formula as a tree)

B ¢ — (¥ x reach’ (u,u)) violates R1

R2: if x = u then y = u (syntactically)

m reach’(u,x) violates R2

Note: robustness properties are still expressible (formulae as before)!

Results

SAT (1SLE2(*, =, reach™)) is PSpace-complete

m strictly subsumes 1SL(x, =) and SL(*,reach™).

SAT (1SLg; (*, =, reach™)) is Tower-hard.

Proof Techniques

(1) extend the core formulae technique used for SL(x, —).

(2) reduction from “an auxiliary logic on trees".

Core formulae technique
(and a bit of 1SLE2(x, -, reacht))

First order theories: Gaifman Locality Theorem

Theorem (Gaifman — 1982, Herbrand Symposium)

Every FO sentence is logically equivalent to a Boolean combination
of local formulae.

m application of Ehrenfeucht-Fraissé games

Relation between EF-games Semantics of logic
models

—>| Duplicator has a
M >, M’ =

1!

. M ~, M’
winning strategy

(partial iso. up to n) (n round game) (n nested quantifiers)

First order theories: Gaifman Locality Theorem

Theorem (Gaifman — 1982, Herbrand Symposium)

Every FO sentence is logically equivalent to a Boolean combination
of local formulae.

m application of Ehrenfeucht-Fraissé games

Relation between EF-games Semantics of logic

models

—>| Duplicator has a

1!

~ L. M ~, M’
M~y M winning strategy mn

eq.sat. local formulae (n round game) (n nested quantifiers)

“Locality theorem” for SL(x, —)

Theorem (Lozes, 2004 — Space)

Every formula of SL(x, —) is logically equivalent to a Boolean combination
of core formulae.

From this theorem we can get:

m expressive power results
m complexity result (small model property)

m axiomatisation

When considering extensions of the logic, we need to derive new core
formulae and reprove the theorem.
= It does not work (at all) for 1SLE2(x, =, reach™).

Core formulae for SL(x, —)

Fix X C VAR and o € Nt

xX=y, X <=y,
Core(X,a) & y y
alloc(x), size > 3

ﬁe[o,a],}

x,yeX

where (s, h) = size > 3 iff card(dom(h)) > 5.
m indistinguishability :
(s,h) <X (s',h') iff Ve Core(X,a), (s,h) = ¢ iff (s',h") = ¢

m Both EF-game and winning strategy for Duplicator are hidden inside
two (technical) elimination lemmas.

Core formulae: x elimination lemma

Lemma

Suppose (s, h) <%, (s, h'). Then,
for every an + a2 = a (o1, 02 € NY), and every hy + h, = h, (Spoiler)
there are hy + hb = h such that (Duplicator)

(s,) <%, (s, hy) and (s, h2) <%, (5, hD).

m necessary to obtain a winning strategy for Duplicator

Core formulae: x elimination lemma

Lemma

Suppose (s, h) <%, (s, h'). Then,
for every an + a2 = a (o1, 02 € NY), and every hy + h, = h, (Spoiler)
there are hy + hb = h such that (Duplicator)

(s,) <%, (s, hy) and (s, h2) <%, (5, hD).

m necessary to obtain a winning strategy for Duplicator

By ‘ Relation ‘ = | EF—games| = | Semantics| it leads to:

For every ¢ € Bool(Core(X, 1)) and) € Bool(Core(X, az))
there is x € Bool(Core(X, a1 + «2)) such that

pxrY = X

Note: similar elimination lemma for —.

Core formulae: after x and — elimination

For every ¢ in SL(x, —):
there is en equivalent Boolean combination of core formulae.

, XD v(yp) and (s, h) <% (s, 1),

(s,h) = @ iff (s,) = ¢.

for every a > |

[2] allows to derive a small-model property which leads to a proof that
SAT(SL(x, —)) is in PSpace.

1SLE2(x, =, reach™) is in PSpace: Not so easy...

m=x=y | x>y | emp | A=C (R1)
C=m|CAC| —=C | FuC | CxC
A =7 | reach™(vi,v2) | ANA | ~A | JuAd | AxA

where if v = u then v, =u (R2).

m Asymmetric A — C: design two sets of core formulae against

m two * and two 3 elimination lemmas;
m one — elimination lemma that glues the two set of core formulae.

m instead of “size > B s.t. § € [1,a]", the Bs of new core formulae
are bounded by functions on «, e.g.
#loop(8) >~ v e[l za(a+3)~1]

bounds are found by solving a set of recurrence equations.

Core formulae: Example on a toy logic

o= =0 | p1Ap2 | p1*p2 | Fuep | alloc(u) | reacht(u,u)

Some formulae expressible in this logic:
msize>0%T size > 3 +1 oy (alloc(u) * size > f3)

m reach®(u,u)=p iff there is a loop of size exactly 3 involving s(u).

v—1 times *

m #loops(f) >~ ' Su reach™(u,u)=p ... x Jureach’ (u,u)=4

m rem > (3 iff there are at least 8 memory cells not in a loop.

Designing Core Formulae

m Fix o € Nt

m Let Core(«) be the finite set of predicates:
rem > f3,
#1oops(f8) > 7,
#100pS_»(a) =7
for some functions £ and R in [N — NJ.

B e [LR(a)],
v €1, L(a)]

#loops. 5 > = Jureacht(u,u)>B+1x...xJureach™(u,u)>F+1

Designing Core Formulae

m Fix o € Nt

m Let Core(«) be the finite set of predicates:
rem > f3,
#1oops(f8) > 7,
#100pS_»(a) =7
for some functions £ and R in [N — NJ.

B e [LR(a)],
v €1, L(a)]

These formulae induce a partition on the heap:

m rem > (3 speaks about memory cells not in a loop
m #loops(f) > v speaks about locations in loops of size S€[1, R(a)]

m #loops. r(,) = 7 speaks about locations in loops of size > R(«).

#loops. 5 > = Jureacht(u,u)>B+1x...xJureach™(u,u)>F+1

Find R and C

Suppose (s, h) <+% (s/, h"). Then,

for every a1 + az = a (o, a2 € NT), and every hy + ho = h, (Spoiler)

m Test the core formulae against the * elimination lemma.

m standard-ish way of doing things in EF-games.

Find R and C

Suppose (s, h) <+% (s/, h"). Then,

for every a1 + az = a (o, a2 € NT), and every hy + ho = h, (Spoiler)
m Test the core formulae against the * elimination lemma.
m standard-ish way of doing things in EF-games.

What happens to the locations corresponding to rem > 3,
when we split a heap?

Find R and C

Suppose (s, h) <+% (s/, h"). Then,

for every a1 + az = a (o, a2 € NT), and every hy + ho = h, (Spoiler)
m Test the core formulae against the * elimination lemma.
m standard-ish way of doing things in EF-games.

What happens to the locations corresponding to rem > 3,
when we split a heap?

They correspond to rem > /3, also in the subheaps.

Find R and C

Lemma

Suppose (s, h) <%, (s, h'). Then,

for every a1 + a2 = o (1,02 € Nt), and every hy + h, = h, (Spoiler)

] Tel
st

R)+

R(a) > max (R(n) + R(a2))
Qy,02€
a1tazx=a

They correspond to rem > /3, also in the subheaps.

Find R and C

For L, roughly speaking...

hy hy
#1loops... #1loops...
#loops...
rem > [rem > f3

Find R and C

For L, roughly speaking...

hy hy
#1loops... #1loops...
#loops... e
rem > [rem > f3
|
r max R

L(a) > max (L(aq)+ L(az2) + R(max(az, az)))

ay,a2€N
a1tazx=a

Find R and C

We have the inequalities

R(1)>1 R(a) > max (R(a1) + R(a2))
(¥1fz€NJr
a1tasz=a

LU =1 L)z max (L(or) + Llea) + Rlor) + R(az)

Which admit R(a) = o and £(a) = 3o« + 1) as a solution.
To satisfy the * elimination lemma, build <—>§ w.r.t.

rem > [3, Bell,a,
#1oops(B) > 7,

1
ell, = +1
#loops. ., > 7, 7€l 2a(a)

(it is not a solution for the toy logic, we forgot the variable ul!)

First recap

SL(*, —, reach)
undecidable
1SLgs (*, —, reach™)
unknown
1SLE2(x, —, reach™)
PSpace-complete

1SL(x,) SL(*,reach)
PSpace-complete PSpace-complete

m 1SL}2(x, =, reach™) strictly generalise other PSpace-complete
extensions of propositional separation logic.

m It can be used to check for robustness properties.

ALT: An auxiliary logic on trees

(or, what happens if we allow reach™(u, x))

Auxiliary logic on trees (ALT)

*
p=p1Apa | mp | (Up | 40 | 0 | A | O

m interpreted on acyclic heaps (finite forests, encoding parent relation)

m one current node n € LOC, one fixed target node r € LOC

h,n =, (U)y iff there is n” € LOC s.t. h,n’ =, ¢

h,n =, A iff n € dom(h) and n reaches r in at least one step

h,n =, ©iff n € dom(h) and n does not reach r in at least one step

¢p=(size=1)x*¢p, 0*9057—*99
We prove that SAT(ALT) is a Tower-complete problem.

Auxiliary logic on trees (ALT)

m inte S K C
m one T D\'

m hn

relation)

h,n =, A iff n € dom(h) and n reaches r in at least one step

h,n =, ©iff n € dom(h) and n does not reach r in at least one step

¢p=(size=1)x¢p, Q*QQET*@

We prove that SAT(ALT) is a Tower-complete problem.

What can ALT do?

Given a pointed model (h,n) and a target node r:

If we consider a portion of h with domain in {n” € LOC | h,n" |= ©},
ALT can only express size bounds.

m Proof done with EF-games for ALT.

size(Q) >0 =T

size(©) > B+1 «f (U) (®/\ #(—alloc A size(®) > B))

where alloc & SOV A.

What can ALT do?

m If h,n = A, ALT can check bounds on the number of descendants
and children of n:

#desc >3 & 0*([U]ﬂ®/\ A A #(—alloc A size(S) > 3))

#child>0 & T

#child > f+1 e #desc > B+1 A 05(A A —Ftdesc > 1)

m Easy to encode words as acyclic memory states

- YVVVY.

PITL (Moszkowski’'83)

e=pt | a| oile2 | "¢ | w1 A2

m interpreted on finite non-empty words over a finite alphabet -
m v |=pt — |w|=1
mwlE=a <= first letter of v isa € ¥ (locality principle)

=gl <= w[l:j]E ¢ and w[j: |w[] = e
for some j € [1, |o]]

ml...mj_l rUJ' mj+1...m|m‘

v

¥1

P2
Note: SAT(PITL) is Tower-complete.

Reducing PITL to ALT

m Set of models encoding words can be characterised in ALT
m However, difficult to translate ¢1] 2!
a b a a
VV VY
A
—
¥1 ©2
After the cut, left side does not reach r anymore.

= nodes on the left side satisfy ©

—> We cannot express the satisfaction of ¢;.

PITL to ALT: alternative semantics for PITL

m [a] marked representation of a € ¥

01 ... 10y 1 10 ij...

m |1 on standard semantics:

071...105_1 105) Wyp1... 10y
N

-
P1 P2

m |1 on marked semantics

|m1.“mj,1 w51 [y | |mjmj+1... |

N
¥1 $2

m alternative semantics is equivalent to the original one.

ALT, marking an element

m Given an alphabet ¥ = {a;,...,a,}, a; and are encoded as

a

2/—|—1

N \A

= marking a character ~ removing a single child.

m SAT(PITL) can be reduced to SAT(ALT),
(translated formula is in 2ExpSpace if ¥ is coded in binary)

— ALT is Tower-complete (upper-bound from MSQ).

Some logics that are Tower-hard

m It is easy to see that ALT is a fragment of 1SLg;(*, =, reach™):

fix x € VAR to play the role of the target node r,
(Uyp = Fu @ A = reach™(u,x) © = alloc(u) A =A

+ impose acyclic heaps: —3u reach™ (u,u).
m ALT is a fragment of MSL(x, <, (U))

m ALT <sat MLH(x*, <, (U)) with modal depth 2.
(then %, Fu, alloc(u), alloc?(u) is Tower-c.)

m ALT <sat QCTL(U) without imbricated until operators U
(or QCTL(EF) with 2 imbrication of EF)

. . *
Note: in these results * can always be replaced with ¢ and ¢

Second Recap

SL(*, =, reach)
undecidable
1SLgy (%, =, reach™)
unk. non-elem.

il “

1SLE2(x, —, reach™) ALT
PSpace-complete Tower-complete
1SL (%, —) SL(%,reach) PITL
PSpace-complete PSpace-complete Tower-complete

m ALT improves the understanding of some Tower-complete logics.

m It seems to be an interesting tool to prove Tower-hardness.

