The Effects of Adding Reachability Predicates in Propositional Separation Logic

A. Mansutti¹ S. Demri¹ E. Lozes ²

¹LSV, CNRS, ENS Paris-Saclay, Université Paris-Saclay, Cachan, France ²I3S, Université Côte d'Azur, Nice, France

Motivations

- Many tools support Separation Logic as an assertion language;
- Growing demand to consider more powerful extensions:
 - inductive predicates;
 - magic wand operator -*;
 - closure under boolean connectives.

Our work

We study the satisfiability problem of SL(*, -*, ls): Propositional Separation Logic enriched with the list segment predicate ls.

Memory states with one record field

Separation Logic is interpreted over **memory states** (s, h) where:

- $s : VAR \rightarrow LOC$ is called store;
- $h: LOC \rightarrow_{fin} LOC$ is called heap.

where $VAR = \{x, y, z, ...\}$ set of (program) variables; LOC set of locations (typically LOC $\cong \mathbb{N} \cong VAR$).

Propositional Separation Logic SL(*, -*)

$$\varphi := \neg \varphi \ | \ \varphi_1 \land \varphi_2 \ | \ \mathbf{x} = \mathbf{y} \ | \ \mathbf{emp} \ | \ \mathbf{x} \hookrightarrow \mathbf{y} \ | \ \varphi_1 \ast \varphi_2 \ | \ \varphi_1 \twoheadrightarrow \varphi_2$$

Semantics

standard for
$$\land$$
 and \neg ;

$$(s,h) \models x = y \iff s(x) = s(y)$$

$$\bullet (s,h) \models \texttt{emp} \quad \iff \quad \text{dom}(h) = \emptyset$$

• $(s,h) \models x \hookrightarrow y \iff h(s(x)) = s(y)$

Separating conjunction (*)

 $(s,h)\models arphi_1*arphi_2$ if and only if

There is a way to split the heap into two so that, together with the store, one part satisfies φ_1 and the other satisfies φ_2 .

Separating implication (-*)

 $(s,h)\models \varphi_1 \twoheadrightarrow \varphi_2$ if and only if

Whenever a (disjoint) heap that, together with the store, satisfies φ_1 is added, the resulting memory state satisfies φ_2 .

SL(*, -*) + list segment predicate (1s)

$$(s,h) \models ls(x,y)$$
 if and only if

s(x) reaches s(y) and all elements in dom(h) are necessary for this to hold.

Expressible properties in SL(*, -*, ls)

Number of predecessors

Next-points

Loops

Decidable status of related logics

$$\mathsf{First-order}\,\, \mathtt{SL}(\cdot \hookrightarrow (\cdot, \cdot))$$

First-order SL(-*)

undecidable decidable

First-order SL(*) TOWER-C. Prop. SL(*, -*)PSPACE-C.

 $\begin{array}{c} \text{Symbolic Heaps} \\ \text{PTIME} \end{array}$

Main results

- The satisfiability problem for SL(*, -*, 1s) is undecidable.
- Several variants of SL(*, -*, 1s) are also concluded undecidable.
- The satisfiability problem for SL(*, ls) (i.e. SL(*, -*, ls) without -*) is PSPACE-complete.
- The satisfiability problem for Boolean combinations of formulae in SL(*, 1s) ∪ SL(*, -*) is PSPACE-complete.

Decidability status of SL(*, -*, 1s)

Symbolic Heaps PTIME Reduction of First-order SL(-*) to SL(*, -*, ls)

We consider the first-order extension of SL(-*)

$$(s,h)\models orall \mathrm{x}.arphi \iff ext{ for all } \ell\in ext{LOC}, (s[\mathrm{x}\leftarrow\ell],h)\models arphi$$

 The satisfiability problem for First-order SL(-*) is undecidable.
 [IC, 2012].

Idea for the translation: use the heap to mimic the store.

Heaps simulate stores

- Given $V \subseteq_{fin} VAR$, take $s|_V + h : VAR + LOC \rightarrow_{fin} LOC$ and translate it inside the heap domain [LOC $\rightarrow_{fin} LOC$];
- A finite set of locations is used to simulate a finite portion of the store, effectively splitting the domain LOC.

Expressive power of SL(*,-*,1s)

size $\geq \beta \iff \operatorname{dom}(h)$ has at least β locations
alloc(x) \iff s(x) \longrightarrow \bullet
alloc⁻¹(x) \iff \bullet \longrightarrow s(x) $n(x) = n(y) \iff s(x) \longrightarrow \bullet \blacktriangleleft s(y)$ $n(x) \hookrightarrow n(y) \iff s(x) \longrightarrow \bullet \bigstar \bullet \bigstar s(y)$

Some bits of the translation

• translation_V(x = y)
$$\stackrel{\text{def}}{=} n(x) = n(y);$$

• translation_V(x \hookrightarrow y) $\stackrel{\text{def}}{=} n(x) \hookrightarrow n(y).$

Universal quantifier – $\forall x. \varphi$

 $(\texttt{alloc}(\texttt{x}) \land \texttt{size} = 1) \twoheadrightarrow (\texttt{safe}(\texttt{V}) \implies \texttt{translation}_{\texttt{V}}(\varphi))$

Where safe(V) states the sanity conditions to encode the store.

Some bits of the translation

• translation_V(x = y)
$$\stackrel{\text{def}}{=} n(x) = n(y);$$

• translation_V(x \hookrightarrow y) $\stackrel{\text{def}}{=} n(x) \hookrightarrow n(y).$

Universal quantifier – $\forall x. \varphi$

 $(\texttt{alloc}(\texttt{x}) \land \texttt{size} = 1) \twoheadrightarrow (\texttt{safe}(\texttt{V}) \implies \texttt{translation}_{\texttt{V}}(\varphi))$

Where safe(V) states the sanity conditions to encode the store.

Equisatisfiability

The translation of $\varphi \twoheadrightarrow \psi$ requires the introduction of a copy $\overline{\mathbf{x}}$ for every variable \mathbf{x} occurring in the formula.

Theorem

Let φ be a closed formula with variables in $\{x_1, \ldots, x_q\}$ and let $V = \{x_1, \ldots, x_q, \overline{x_1}, \ldots, \overline{x_q}\}.$

 φ is satisfiable $\widehat{}$ \neg alloc(V) \land safe(V) \land translation_V(φ) is satisfiable.

Undecidability results

The following fragments have undecidable satisfiability problem:

SL(*,
$$\rightarrow$$
) + $n(x) = n(y)$, $n(x) \hookrightarrow n(y)$ and $alloc^{-1}(x)$;

SL(*,
$$\neg$$
*) + reach(x, y) = 2 and reach(x, y) = 3;

■ SL(*, -*, ls).

Complexity of SL(*, 1s)

$$\mathsf{First}\text{-}\mathsf{order}\,\,\mathtt{SL}(\cdot\hookrightarrow(\cdot,\cdot))$$

First-order
$$SL(-*)$$

Deciding SL(*, 1s) thanks to the test formulae approach

- Study basic properties that can be expressed in SL(*, ls);
- Define (test) formulae for these properties;
- * elimination: show that each formula of SL(*,1s) is captured by a boolean combination of test formulae;
- Show a small-model property for the logic of test formulae.

Deciding SL(*, 1s) thanks to the test formulae approach

Study basic properties that can be expressed in SL(*, ls);

D For SL(*, →): each formula is equivalent to a boolean combinations of formulae of the form
* x = y, alloc(x), x → y, size ≥ β.

Show a small-model property for the logic of test formulae.

SL(*, 1s): Searching for Test Formulae

For example, we can show that

can be distinguished in the logic.

Meet-points

To capture this and other properties, we introduce meet-points.

Interpretation

 $\llbracket m(x, y) \rrbracket_{s,h}$ is the first location reachable from s(x) that is also reachable from s(y).

Test formulae

Given $\{x_1, \ldots, x_q\} \subseteq VAR$ and $\alpha \in \mathbb{N}^+$, we define $Test(q, \alpha)$ as the set of following test formulae:

 $v = v' \quad v \hookrightarrow v' \quad \texttt{alloc}(v) \quad \texttt{sees}_q(v,v') \geq \beta + 1 \quad \texttt{sizeR}_q \geq \beta,$

where $\beta \in [1, \alpha]$ and v, v' are variables x_i or meet-points $m(x_i, x_j)$, with $i, j \in [1, q]$.

Indistinguishability Relation

 $(s, h) \approx_{\alpha}^{q} (s', h')$ whenever (s, h) and (s', h') satisfy the same test formulae of Test (q, α) .

Test formulae: $sees_q$

$$(s,h) \models \operatorname{sees}_q(v,v') \ge \beta + 1$$

if and only if there is a path path from $\llbracket v \rrbracket_{s,h}$ to $\llbracket v' \rrbracket_{s,h}$

• of length at least $\beta + 1$

that does not traverse labelled locations

where $\llbracket x \rrbracket_{s,h} = s(x)$.

Test formulae: sizeR_q

$$(s,h) \models \texttt{sizeR}_q \geq \beta$$

if and only if the number of locations in dom(h) that

- are not corresponding to variables
- are not in the path between two variables

is greater or equal than β

Expressive power characterisation

Let φ with variables $\mathbf{x}_1, \ldots, \mathbf{x}_q$ and let $\alpha \ge |\varphi|$.

• If $(s,h) \approx^{q}_{\alpha} (s',h')$ then we have $(s,h) \models \varphi$ iff $(s',h') \models \varphi$.

 φ is logically equivalent to a Boolean combination of test formulae from Test(q, α).

Small model property

Let φ be a satisfiable SL(*, 1s) formula built over x_1, \ldots, x_q . There is (s, h) such that $(s, h) \models \varphi$ and

 $\operatorname{card}(\operatorname{dom}(h)) \leq \operatorname{card}(\operatorname{\mathsf{Test}}(q,|\varphi|))$

Complexity upper bound

The satisfiability problem for SL(*, 1s) is PSPACE-complete.

Recap

SL(*, \neg , 1s) admits an undecidable satisfiability problem, but

- if ls is not in the scope of → then the problem is decidable
- and it is PSPACE-complete if → is removed.

Ongoing work

- SL(*, -*, ls) where ls does not occur on the right side of -* (PSPACE-complete)
- SL($\neg *$) + n(x) = n(y), $n(x) \hookrightarrow n(y)$ and $alloc^{-1}(x)$ (undecidable)

Future Work

- Decidable fragments with 1s in the scope of -*;
- Generalisation of the test formulae approach.