
The Effects of Adding Reachability Predicates in
Propositional Separation Logic

A. Mansutti1 S. Demri1 E. Lozes 2

1LSV, CNRS, ENS Paris-Saclay, Université Paris-Saclay, Cachan, France

2I3S, Université Côte d’Azur, Nice, France

Motivations

Many tools support Separation Logic as an assertion language;

Growing demand to consider more powerful extensions:

inductive predicates;

magic wand operator −∗;

closure under boolean connectives.

Our work

We study the satisfiability problem of SL(∗,−∗, ls): Propositional
Separation Logic enriched with the list segment predicate ls.

Memory states with one record field

Separation Logic is interpreted over memory states (s, h) where:

s : VAR→ LOC is called store;

h : LOC→fin LOC is called heap.

where VAR = {x, y, z, . . . } set of (program) variables;
LOC set of locations (typically LOC ∼= N ∼= VAR).

s(z)s(y)

s(x)

h

Propositional Separation Logic SL(∗,−∗)

ϕ := ¬ϕ | ϕ1∧ϕ2 | x = y | emp | x ↪→ y | ϕ1∗ϕ2 | ϕ1−∗ϕ2

Semantics

standard for ∧ and ¬;

(s, h) |= x = y ⇐⇒ s(x) = s(y)

(s, h) |= emp ⇐⇒ dom(h) = ∅

(s, h) |= x ↪→ y ⇐⇒ h(s(x)) = s(y)

Separating conjunction (∗)

(s, h) |= ϕ1 ∗ ϕ2 if and only if

(s, h2) |= ϕ2

(s, h1) |= ϕ1

and

∃h2

∃h1

There is a way to split the heap into two so that, together with the
store, one part satisfies ϕ1 and the other satisfies ϕ2.

Separating implication (−∗)

(s, h) |= ϕ1 −∗ ϕ2 if and only if

(s, h + h1) |= ϕ2

dom(h) ∩ dom(h1) = ∅
(s, h1) |= ϕ1

∀h1

ww�

Whenever a (disjoint) heap that, together with the store, satisfies
ϕ1 is added, the resulting memory state satisfies ϕ2.

SL(∗,−∗) + list segment predicate (ls)

(s, h) |= ls(x, y) if and only if

s(x) s(y)

s(x) reaches s(y) and all elements in dom(h) are necessary for this
to hold.

Expressible properties in SL(∗,−∗, ls)

s(x)

Number of predecessors

s(x)

s(y)

Next-points

s(x)

s(z)

s(y)

Common paths Loops

Decidable status of related logics

First-order SL(−∗)

First-order SL(· ↪→ (·, ·))

Prop. SL(∗,−∗)
PSpace-C.

Symbolic Heaps
PTime

First-order SL(∗)
tower-C.

undecidable

decidable

Main results

The satisfiability problem for SL(∗,−∗, ls) is undecidable.

Several variants of SL(∗,−∗, ls) are also concluded
undecidable.

The satisfiability problem for SL(∗, ls) (i.e. SL(∗,−∗, ls)
without −∗) is PSpace-complete.

The satisfiability problem for Boolean combinations of
formulae in SL(∗, ls) ∪ SL(∗,−∗) is PSpace-complete.

Decidability status of SL(∗,−∗, ls)

First-order SL(−∗)

First-order SL(· ↪→ (·, ·))

Prop. SL(∗,−∗)
PSpace-C.

Symbolic Heaps
PTime

First-order SL(∗)
tower-C.

undecidable

decidable

Prop. SL(∗,−∗, ls)

Reduction of First-order SL(−∗) to SL(∗,−∗, ls)

We consider the first-order extension of SL(−∗)

(s, h) |= ∀x.ϕ ⇐⇒ for all ` ∈ LOC, (s[x← `], h) |= ϕ

The satisfiability problem for First-order SL(−∗) is
undecidable. [IC, 2012].

Idea for the translation: use the heap to mimic the store.

Heaps simulate stores

s(y)

s(x) s(x)

s(y)

Given V ⊆fin VAR, take s|V + h : VAR + LOC→fin LOC and
translate it inside the heap domain [LOC→fin LOC];

A finite set of locations is used to simulate a finite portion of
the store, effectively splitting the domain LOC.

Expressive power of SL(∗,−∗,ls)

size ≥ β ⇐⇒ dom(h) has at least β locations

alloc(x) ⇐⇒ s(x)

alloc−1(x) ⇐⇒ s(x)

n(x) = n(y) ⇐⇒ s(x) s(y)

n(x) ↪→ n(y) ⇐⇒ s(x) s(y)

Some bits of the translation

translationV(x = y)
def
= n(x) = n(y);

translationV(x ↪→ y)
def
= n(x) ↪→ n(y).

Universal quantifier – ∀x.ϕ

(alloc(x) ∧ size = 1)−∗ (safe(V) =⇒ translationV(ϕ))

s(x)
s(x)

Where safe(V) states the sanity conditions to encode the store.

Some bits of the translation

translationV(x = y)
def
= n(x) = n(y);

translationV(x ↪→ y)
def
= n(x) ↪→ n(y).

Universal quantifier – ∀x.ϕ

(alloc(x) ∧ size = 1)−∗ (safe(V) =⇒ translationV(ϕ))

s(x)

s(x)

Where safe(V) states the sanity conditions to encode the store.

Equisatisfiability

The translation of ϕ−∗ ψ requires the introduction of a copy x for
every variable x occurring in the formula.

Theorem

Let ϕ be a closed formula with variables in {x1, . . . , xq} and let
V = {x1, . . . , xq, x1, . . . , xq}.

ϕ is satisfiable~w�
¬alloc(V) ∧ safe(V) ∧ translationV(ϕ) is satisfiable.

Undecidability results

The following fragments have undecidable satisfiability problem:

SL(∗, −∗) + n(x) = n(y), n(x) ↪→ n(y) and alloc−1(x);

SL(∗, −∗) + reach(x, y) = 2 and reach(x, y) = 3;

SL(∗, −∗, ls).

Complexity of SL(∗, ls)

First-order SL(−∗)

First-order SL(· ↪→ (·, ·))

SL(∗,−∗)
PSpace-C.

Symbolic Heaps
PTime

First-order SL(∗)
tower-C.

undecidable

decidable
Prop. SL(∗, ls)

PSpace-C.

Deciding SL(∗, ls) thanks to the test formulae approach

Study basic properties that can be expressed in SL(∗, ls);

Define (test) formulae for these properties;

∗ elimination: show that each formula of SL(∗, ls) is captured
by a boolean combination of test formulae;

Show a small-model property for the logic of test formulae.

Deciding SL(∗, ls) thanks to the test formulae approach

Study basic properties that can be expressed in SL(∗, ls);

Define (test) formulae for these properties;

∗ elimination: show that each formula of SL(∗, ls) is captured
by a boolean combination of test formulae;

Show a small-model property for the logic of test formulae.

For SL(∗,−∗): each formula is equivalent to a
boolean combinations of formulae of the form

x = y , alloc(x), x ↪→ y , size ≥ β.

SL(∗, ls): Searching for Test Formulae

For example, we can show that

s(x) s(y)

s(z)

and

s(x) s(y)

s(z)

can be distinguished in the logic.

Meet–points

To capture this and other properties, we introduce meet–points.

s(x)

m(x, y) = m(y, x)

s(z)

s(y)

m(y, x)m(x, y)

s(x) s(y)

s(z)

Interpretation

[[m(x, y)]]s,h is the first location reachable from s(x) that is also
reachable from s(y).

Test formulae

Given {x1, . . . , xq} ⊆ VAR and α ∈ N+, we define Test(q, α) as the
set of following test formulae:

v = v ′ v ↪→ v ′ alloc(v) seesq(v , v ′) ≥ β + 1 sizeRq ≥ β,

where β ∈ [1, α] and v , v ′ are variables xi or meet–points m(xi , xj),
with i , j ∈ [1, q].

Indistinguishability Relation

(s, h) ≈q
α (s ′, h′) whenever (s, h) and (s ′, h′) satisfy the same test

formulae of Test(q, α).

Test formulae: seesq

(s, h) |= seesq(v , v ′) ≥ β + 1

if and only if there is a path path from [[v]]s,h to [[v ′]]s,h

of length at least β + 1

that does not traverse labelled locations

[[v]]s,h [[v ′]]s,h

not labelled

where [[x]]s,h = s(x).

Test formulae: sizeRq

(s, h) |= sizeRq ≥ β

if and only if the number of locations in dom(h) that

are not corresponding to variables

are not in the path between two variables

is greater or equal than β

s(x4) s(x5)

s(x3)s(x2)

s(x1)

Expressive power characterisation

Let ϕ with variables x1, . . . , xq and let α ≥ |ϕ|.
If (s, h) ≈q

α (s ′, h′) then we have (s, h) |= ϕ iff (s ′, h′) |= ϕ.

ϕ is logically equivalent to a Boolean combination of test
formulae from Test(q, α).

Small model property

Let ϕ be a satisfiable SL(∗, ls) formula built over x1, . . . , xq.
There is (s, h) such that (s, h) |= ϕ and

card(dom(h)) ≤ card(Test(q, |ϕ|))

Complexity upper bound

The satisfiability problem for SL(∗, ls) is PSpace-complete.

Recap

SL(∗, −∗, ls) admits an undecidable satisfiability problem, but

if ls is not in the scope of −∗ then the problem is decidable

and it is PSpace-complete if −∗ is removed.

Ongoing work

SL(∗, −∗, ls) where ls does not occur on the right side of −∗
(PSpace-complete)

SL(−∗) + n(x) = n(y), n(x) ↪→ n(y) and alloc−1(x)
(undecidable)

Future Work

Decidable fragments with ls in the scope of −∗;
Generalisation of the test formulae approach.

	SL(,–6mu*,ls) is undecidable
	SL(,ls) is PSpace-complete

