Decision Procedures for Separation Logic

Alessio Mansutti

Barbizon 2018

Program verification with Hoare calculus

Hoare calculus is based on proof rules manipulating Hoare triples.

{P} C{Q}

where

m C is a program

m P and Q are assertions in some logical language.

Any (memory) state that satisfies P will satisfy Q after being
modified by C.

Programming languages with pointers

The so-called frame rule

{P} C{Q}
{FAP} C{FAQ}

is generally not valid: it fails if C manipulates pointers.

Programming languages with pointers

The so-called frame rule

{P} C{Q}
{FAP} C{FAQ}

is generally not valid: it fails if C manipulates pointers.

Example:

{Ju.x = u} [x] « 4 {x — 4}
{y—=3 AN Jux—u}[x]+<4{y—3 A x— 4}

not true if x and y are in aliasing.

Reynolds’'02: Separation logic

Separation logic add the notion of separation (x) of a state, so
that the frame rule
{P} C{Q} modv(C)Nfv(F)=10
{F«P} C{F=x*Q}

is valid.

Reynolds’'02: Separation logic

Separation logic add the notion of separation (x) of a state, so
that the frame rule
{P} C{Q} modv(C)Nfv(F)=10
{F«P} C{F=x*Q}

is valid.

Automatic Verifiers: Infer, SLAyer, Predator (all 2011).

Semi-automatic Verifiers: Smallfoot (2004), Verifast (2008).

Why we need decision procedures for SL?

m Many tools support fragments of Separation Logic as an
assertion language.

m Growing demand to consider more powerful extensions:

® inductive predicates;
m magic wand operator —x;

m closure under boolean connectives.

m Deciding satisfiability/validity /entailment is needed.

P—= P (P}C{Q} @ = Q
Py C{®

consequence rule

Memory states with one record field

Separation Logic is interpreted over memory states (s, h) where:
m s: VAR — LOC is called store;
m h:LOC —, LOC is called heap.

where VAR = {x,y,z,...} set of (program) variables;
LOC set of locations (typically LOC = N 22 VAR).

o—h>o—>o—> s(y) Q s(z) <«—eo<«—e

| /I\

Propositional Separation Logic SL(*, —)

pi= "¢ | prAp2 | x=y | emp | x>y | p1xp2 | p1x¢2
Semantics

m standard for A and —;
= (s,h) EFx=y < s(x)=s(y)
m(s,h)Eemp <= dom(h)=10

w(sh)Ex—=y < h(s(x))=s(y)

Separating conjunction ()

(s, h) = 1 * @3 if and only if

3 ([) Ee

and

Shy ?K (5.ha) b= 2

There is a way to split the heap into two so that, together with the
store, one part satisfies o1 and the other satisfies 5.

4

%7«_«_.
7N

Separating implication (—)

(s, h) = @1 = @2 if and only if

e e dom(h) N'dom(hy) =0
v (\ (57 hl)): ¥1

/] |
A e
/I (s,h+h1) = 2

7N

Whenever a (disjoint) heap that, together with the store, satisfies
1 is added, the resulting memory state satisfies (5.

Symbolic Heap Fragment (SHF)

Y=emp | x—y | Is(x,y) | ExX
MNi=x=y | x#y | AN
=X Al

m standard fragment in automated tools;
m satisfiability /entailment in PTIME;
m boolean combination of SHF is NP-complete;

Extension: SL(x, —) + list segment predicate (1s)

(s, h) E 1s(x,y) if and only if

s(x) —>0—>0—>0—>0—> 5(y)

s(x) reaches s(y) and all elements in dom(h) are necessary for this
to hold.

Note: SL(x*,—) is already PSPACE-complete.

Results (FOSSACS'18)

m The satisfiability problem for SL(x, —, 1s) is undecidable.

m Several variants of SL(x*, —,1s) are also concluded
undecidable.

m The satisfiability problem for SL(*,1s) (i.e. SL(x, —,1s)
without —) is PSPACE-complete.

m The satisfiability problem for Boolean combinations of
formulae in SL(x,1s) U SL(x,) is PSPACE-complete.

Undecidability of SL(x,—,1s)

As soon as we add to SL(x,—) predicates so that it can express

m alloc }(x) < e— s(x)
mn(x)=n(y) <= s(x) —>0<— s(y)
mn(x) = n(y) <= s(zx) >0—>0< s(y)

we obtain a logic with undecidable satisfiabilty problem.

For example:

m SL(%, =) + reach(x,y) = 2 and reach(x,y) = 3;
m SL(x, —, 1s).

Reduction of First-order SL(—) to SL(x, —, 1s)

m We consider the first-order extension of SL(—)

(s,h) EVx.p <= forall £ € LOC,(s[x < {],h) = ¢

m The satisfiability problem for First-order SL(—) is
undecidable. [IC, 2012].

m ldea for the translation: use the heap to mimic the store.

Heaps simulate stores

*—>
—>0—ro—>
.5,

*—>0—>0—>0

m Given V Cg, VAR, take s|y + h : VAR + LOC —, LOC and
translate it inside the heap domain [LOC —, LOC];

m A finite set of locations is used to simulate a finite portion of
the store, effectively splitting the domain LOC.

Undecidability — Some bits of the translation

» translationy(x =y) & n(x) = n(y);
= translationy(x < y) = () <= n(y);
= translationy(p; = @2) = too long for a slide;

Universal quantifier — Vx.¢

(alloc(x) A size = 1) = (safe(V) = translationy(y))

s(x>/I “—./’I
|

.—).—).—)‘

Where safe(V) states the sanity conditions to encode the store.

Undecidability — Some bits of the translation

» translationy(x =y) & n(x) = n(y);
= translationy(x < y) = () <= n(y);
= translationy(p; = @2) = too long for a slide;

Universal quantifier — Vx.¢
(alloc(x) A size = 1) = (safe(V) = translationy(y))
)
e o
/]]

S(

el

*—>0—>0—>
*—>0—>0—>0

Where safe(V) states the sanity conditions to encode the store.

Deciding SL(x*, 1s) thanks to the test formulae approach

m Define sets Testy(n) that internalise the role of x;

m * elimination: show that each formula of SL(x,1s) is captured
by a boolean combination of test formulae;

m Show a small-model property for the logic of test formulae.

Open problem: to generalise this approach
m identify sufficient conditions on test formulae to
have * elimination;

m handle multiple families of test formulae;

* elimination (winning strategy for Duplicator)

For every
m (s,h)=~, (s, H),
® n1,n € NT such that n = ny + ny;
m hy, hy disjoint heaps such that hy + ho = h
there are two disjoint heaps hj and hj such that
m b+ hy =N,
m (s, h) ~p (s',h)) and (s, hp) ~p, (s, H5).

Toy Test Formulae Testy(n)

m (s, h) = #loops(B) > ' <= the number of loops of size
B < G(n)is at least 3';

m (s, h) = #loops’ > ' <= there are at least 3’ loops of
size at least G(n) + 1;

m (s, h) = garbage > <= the number of locations not in a
loop is at least 8

where 3 € [1,G(n)] and B’ € [1, L(n)].

Note: these formulae induce a partition on h.

* elimination

Let (s, h) ~, (s', ') and let n1, np € NT such that n = ny + ny.
For every hy, hy disjoint heaps such that hy + hy = h...

Bound on garbage > 3 formulae

Given h = hy + hy, every location not in a loop of h cannot be in a
loop in hy or hy. Then the bound G(n) must satisfy

G(n) = max (G(m)+G(n2))
nllrlzznzzn

Bound on #1loops formulae

We consider #1oops(2) > [’ (other cases are similar).
Take h = hy + hy. Given a loop of size 2 in h, we identify three
cases

m both locations of the loop are assigned to hy;
m both locations of the loop are assigned to hy;

m one location of the loop is assigned to h; and the other is
assigned to ho.

Then, we search for a bound £(n) on /3’ such that

L(n) =z max (L{m)+L(n2) +G(m) +G(n2))
nl’—sr?nf:n

Toy Test Formulae

We have the inequalities

61)=1 ()= max (G(m)+G(n))
nl,—ﬂzng:n

L) =1 Ln) = max (L{m)+L{n2) +G(m) +G(n))
n17-£2n§:n

Which admit G(n) = n and £(n) = 3n(n+ 3) — 1 as a solution.
For the family Testx(n)

#1oops(f) > B, #loops' > f, feltn
garbage > [B e [1, %n(n—{— 3) — 1]

we have * elimination.

Test formulae approach (after * elimination)

Suppose we have a family of test formulae Testy(n), for all n € N,
such that

m captures the atomic predicates of SL(x, 1s);
m satisfies the * elimination lemma.
Then, let n > || and var(p) C X.
m If (s, h) =, (s', ') then we have (s, h) = ¢ iff (s',h) E ¢.
m ¢ is logically equivalent to a Boolean combination of test
formulae from Testy(n).

Small model property for boolean combination of Testy(n)
formulae implies small model property for SL(x, 1s).

Extending FOSSACS paper: 1SL(x, =, 1s)

SL(*, —, 1s) with one quantified variable u, i.e.
(s,h) EVup <= forall £ €L0OC,(s[u<{],h) =

Has PSPACE-complete satisfiability problem when 1s(x,y) is
constrained so that

m it does not occur on the right side of —;
m if x = u then also y = u.

Without the first condition: undecidable.
Without the second condition: TOWER-hard.

Proof using two families of test formulae.

Two families of test formulae

Qi=...| JuQ | Q1% | N%Q
... | reach™(x,e) | reach™(u,u) | Ju.M | Ny %My | M =%Q

-
I

m Separately define test formulae for €2 and IT;
m * elimination and quantifier elimination for both Q and IT;

m Show that test formulae of I1 can express test formulae of €.
Then, prove — elimination.

m Show small-model property for the logic of test formulae for IT.

Fragment of 1SL(x*, —,1s)

m It subsumes other PSPACE-complete fragments of Separation
Logic known in the litterature;

m Weakening one of the two conditions most likely makes the
problem escape PSPACE.

Also, first PSPACE fragment of Separation Logic that can check

m garbage freedom: every model satisfying (o has every
memory cell reachable from a program variable occurring in .

m acyclicity: every model satisfying ¢ is without loops.

Ongoing work

m Generalising the Test Formulae approach.
Logics

m SPIN'14: Existential fragment of Separation Logic;
m Separation Logic with Inductive Predicates or data values.

Verification

m (Bi-)abduction / Concurrency for SL with reachability;
m |JCAR'18 : Fragment of SL with data values in SMT solver;

