
Decision Procedures for Separation Logic

Alessio Mansutti

Barbizon 2018

Program verification with Hoare calculus

Hoare calculus is based on proof rules manipulating Hoare triples.

{P} C {Q}

where

C is a program

P and Q are assertions in some logical language.

Any (memory) state that satisfies P will satisfy Q after being
modified by C .

Programming languages with pointers

The so-called frame rule

{P} C {Q}
{F ∧ P} C {F ∧ Q}

is generally not valid: it fails if C manipulates pointers.

Example:

{∃u.x 7→ u} [x]← 4 {x 7→ 4}
{y 7→ 3 ∧ ∃u.x 7→ u} [x]← 4 {y 7→ 3 ∧ x 7→ 4}

not true if x and y are in aliasing.

Programming languages with pointers

The so-called frame rule

{P} C {Q}
{F ∧ P} C {F ∧ Q}

is generally not valid: it fails if C manipulates pointers.

Example:

{∃u.x 7→ u} [x]← 4 {x 7→ 4}
{y 7→ 3 ∧ ∃u.x 7→ u} [x]← 4 {y 7→ 3 ∧ x 7→ 4}

not true if x and y are in aliasing.

Reynolds’02: Separation logic

Separation logic add the notion of separation (∗) of a state, so
that the frame rule

{P} C {Q} modv(C) ∩ fv(F) = ∅
{F ∗ P} C {F ∗ Q}

is valid.

Automatic Verifiers: Infer, SLAyer, Predator (all 2011).

Semi-automatic Verifiers: Smallfoot (2004), Verifast (2008).

Reynolds’02: Separation logic

Separation logic add the notion of separation (∗) of a state, so
that the frame rule

{P} C {Q} modv(C) ∩ fv(F) = ∅
{F ∗ P} C {F ∗ Q}

is valid.

Automatic Verifiers: Infer, SLAyer, Predator (all 2011).

Semi-automatic Verifiers: Smallfoot (2004), Verifast (2008).

Why we need decision procedures for SL?

Many tools support fragments of Separation Logic as an
assertion language.

Growing demand to consider more powerful extensions:

inductive predicates;

magic wand operator −∗;

closure under boolean connectives.

Deciding satisfiability/validity/entailment is needed.

P =⇒ P ′ {P ′} C {Q ′} Q ′ =⇒ Q

{P} C {Q}
consequence rule

Memory states with one record field

Separation Logic is interpreted over memory states (s, h) where:

s : VAR→ LOC is called store;

h : LOC→fin LOC is called heap.

where VAR = {x, y, z, . . . } set of (program) variables;
LOC set of locations (typically LOC ∼= N ∼= VAR).

s(z)s(y)

s(x)

h

Propositional Separation Logic SL(∗,−∗)

ϕ := ¬ϕ | ϕ1∧ϕ2 | x = y | emp | x ↪→ y | ϕ1∗ϕ2 | ϕ1−∗ϕ2

Semantics

standard for ∧ and ¬;

(s, h) |= x = y ⇐⇒ s(x) = s(y)

(s, h) |= emp ⇐⇒ dom(h) = ∅

(s, h) |= x ↪→ y ⇐⇒ h(s(x)) = s(y)

Separating conjunction (∗)

(s, h) |= ϕ1 ∗ ϕ2 if and only if

(s, h2) |= ϕ2

(s, h1) |= ϕ1

and

∃h2

∃h1

There is a way to split the heap into two so that, together with the
store, one part satisfies ϕ1 and the other satisfies ϕ2.

Separating implication (−∗)

(s, h) |= ϕ1 −∗ ϕ2 if and only if

(s, h + h1) |= ϕ2

dom(h) ∩ dom(h1) = ∅
(s, h1) |= ϕ1

∀h1

ww�

Whenever a (disjoint) heap that, together with the store, satisfies
ϕ1 is added, the resulting memory state satisfies ϕ2.

Symbolic Heap Fragment (SHF)

Σ := emp | x 7→ y | ls(x , y) | Σ ∗ Σ

Π := x = y | x 6= y | Π ∧ Π

ϕ := Σ ∧ Π

standard fragment in automated tools;

satisfiability/entailment in PTime;

boolean combination of SHF is NP-complete;

Extension: SL(∗,−∗) + list segment predicate (ls)

(s, h) |= ls(x, y) if and only if

s(x) s(y)

s(x) reaches s(y) and all elements in dom(h) are necessary for this
to hold.

Note: SL(∗,−∗) is already PSpace-complete.

Results (FOSSACS’18)

The satisfiability problem for SL(∗,−∗, ls) is undecidable.

Several variants of SL(∗,−∗, ls) are also concluded
undecidable.

The satisfiability problem for SL(∗, ls) (i.e. SL(∗,−∗, ls)
without −∗) is PSpace-complete.

The satisfiability problem for Boolean combinations of
formulae in SL(∗, ls) ∪ SL(∗,−∗) is PSpace-complete.

Undecidability of SL(∗,−∗,ls)

As soon as we add to SL(∗,−∗) predicates so that it can express

alloc−1(x) ⇐⇒ s(x)

n(x) = n(y) ⇐⇒ s(x) s(y)

n(x) ↪→ n(y) ⇐⇒ s(x) s(y)

we obtain a logic with undecidable satisfiabilty problem.

For example:

SL(∗, −∗) + reach(x, y) = 2 and reach(x, y) = 3;

SL(∗, −∗, ls).

Reduction of First-order SL(−∗) to SL(∗,−∗, ls)

We consider the first-order extension of SL(−∗)

(s, h) |= ∀x.ϕ ⇐⇒ for all ` ∈ LOC, (s[x← `], h) |= ϕ

The satisfiability problem for First-order SL(−∗) is
undecidable. [IC, 2012].

Idea for the translation: use the heap to mimic the store.

Heaps simulate stores

s(y)

s(x) s(x)

s(y)

Given V ⊆fin VAR, take s|V + h : VAR + LOC→fin LOC and
translate it inside the heap domain [LOC→fin LOC];

A finite set of locations is used to simulate a finite portion of
the store, effectively splitting the domain LOC.

Undecidability – Some bits of the translation

translationV(x = y)
def
= n(x) = n(y);

translationV(x ↪→ y)
def
= n(x) ↪→ n(y);

translationV(ϕ1 −∗ ϕ2)
def
= too long for a slide;

Universal quantifier – ∀x.ϕ

(alloc(x) ∧ size = 1)−∗ (safe(V) =⇒ translationV(ϕ))

s(x)
s(x)

Where safe(V) states the sanity conditions to encode the store.

Undecidability – Some bits of the translation

translationV(x = y)
def
= n(x) = n(y);

translationV(x ↪→ y)
def
= n(x) ↪→ n(y);

translationV(ϕ1 −∗ ϕ2)
def
= too long for a slide;

Universal quantifier – ∀x.ϕ

(alloc(x) ∧ size = 1)−∗ (safe(V) =⇒ translationV(ϕ))

s(x)

s(x)

Where safe(V) states the sanity conditions to encode the store.

Deciding SL(∗, ls) thanks to the test formulae approach

Define sets TestX (n) that internalise the role of ∗;

∗ elimination: show that each formula of SL(∗, ls) is captured
by a boolean combination of test formulae;

Show a small-model property for the logic of test formulae.

Open problem: to generalise this approach
identify sufficient conditions on test formulae to
have ∗ elimination;

handle multiple families of test formulae;

∗ elimination (winning strategy for Duplicator)

For every

(s, h) ≈n (s ′, h′);

n1, n2 ∈ N+ such that n = n1 + n2;

h1, h2 disjoint heaps such that h1 + h2 = h

there are two disjoint heaps h′1 and h′2 such that

h′1 + h′2 = h′;

(s, h1) ≈n1 (s ′, h′1) and (s, h2) ≈n2 (s ′, h′2).

Toy Test Formulae TestX (n)

(s, h) |= #loops(β) ≥ β′ ⇐⇒ the number of loops of size
β ≤ G(n) is at least β′;

(s, h) |= #loops↑ ≥ β′ ⇐⇒ there are at least β′ loops of
size at least G(n) + 1;

(s, h) |= garbage ≥ β ⇐⇒ the number of locations not in a
loop is at least β

where β ∈ [1,G(n)] and β′ ∈ [1,L(n)].

Note: these formulae induce a partition on h.

∗ elimination

Let (s, h) ≈n (s ′, h′) and let n1, n2 ∈ N+ such that n = n1 + n2.
For every h1, h2 disjoint heaps such that h1 + h2 = h...

Bound on garbage ≥ β formulae

Given h = h1 + h2, every location not in a loop of h cannot be in a
loop in h1 or h2. Then the bound G(n) must satisfy

G(n) ≥ max
n1,n2∈N+

n1+n2=n

(G(n1) + G(n2))

Bound on #loops formulae

We consider #loops(2) ≥ β′ (other cases are similar).
Take h = h1 + h2. Given a loop of size 2 in h, we identify three
cases

both locations of the loop are assigned to h1;

both locations of the loop are assigned to h2;

one location of the loop is assigned to h1 and the other is
assigned to h2.

Then, we search for a bound L(n) on β′ such that

L(n) ≥ max
n1,n2∈N+

n1+n2=n

(L(n1) + L(n2) + G(n1) + G(n2))

Toy Test Formulae

We have the inequalities

G(1) ≥ 1 G(n) ≥ max
n1,n2∈N+

n1+n2=n

(G(n1) + G(n2))

L(1) ≥ 1 L(n) ≥ max
n1,n2∈N+

n1+n2=n

(L(n1) + L(n2) + G(n1) + G(n2))

Which admit G(n) = n and L(n) = 1
2n(n + 3)− 1 as a solution.

For the family TestX (n)#loops(β) ≥ β′, #loops↑ ≥ β′,
garbage ≥ β

∣∣∣∣∣∣∣
β ∈ [1, n]

β′ ∈
[

1,
1

2
n(n + 3)− 1

]
we have ∗ elimination.

Test formulae approach (after ∗ elimination)

Suppose we have a family of test formulae TestX (n), for all n ∈ N,
such that

captures the atomic predicates of SL(∗, ls);

satisfies the ∗ elimination lemma.

Then, let n ≥ |ϕ| and var(ϕ) ⊆ X .

If (s, h) ≈n (s ′, h′) then we have (s, h) |= ϕ iff (s ′, h′) |= ϕ.

ϕ is logically equivalent to a Boolean combination of test
formulae from TestX (n).

Small model property for boolean combination of TestX (n)
formulae implies small model property for SL(∗, ls).

Extending FOSSACS paper: 1SL(∗,−∗, ls)

SL(∗,−∗, ls) with one quantified variable u, i.e.

(s, h) |= ∀u.ϕ ⇐⇒ for all ` ∈ LOC, (s[u ← `], h) |= ϕ

Has PSpace-complete satisfiability problem when ls(x , y) is
constrained so that

it does not occur on the right side of −∗;
if x = u then also y = u.

Without the first condition: undecidable.
Without the second condition: tower-hard.

Proof using two families of test formulae.

Two families of test formulae

Ω := ... | ∃u.Ω | Ω1 ∗ Ω2 | Π−∗ Ω

Π := ... | reach+(x , e) | reach+(u, u) | ∃u.Π | Π1 ∗ Π2 | Π−∗ Ω

Separately define test formulae for Ω and Π;

∗ elimination and quantifier elimination for both Ω and Π;

Show that test formulae of Π can express test formulae of Ω.
Then, prove −∗ elimination.

Show small-model property for the logic of test formulae for Π.

Fragment of 1SL(∗,−∗, ls)

It subsumes other PSpace-complete fragments of Separation
Logic known in the litterature;

Weakening one of the two conditions most likely makes the
problem escape PSpace.

Also, first PSpace fragment of Separation Logic that can check

garbage freedom: every model satisfying ϕ has every
memory cell reachable from a program variable occurring in ϕ.

acyclicity: every model satisfying ϕ is without loops.

Ongoing work

Generalising the Test Formulae approach.

Logics

SPIN’14: Existential fragment of Separation Logic;

Separation Logic with Inductive Predicates or data values.

Verification

(Bi-)abduction / Concurrency for SL with reachability;

IJCAR’18 : Fragment of SL with data values in SMT solver;

