Internal calculi for Separation Logic

Stéphane Demri¹ Étienne Lozes² Alessio Mansutti¹

January 14, 2020

¹LSV, CNRS, ENS Paris-Saclay

²I3S, Université Côte d'Azur

Separation Logic

- '99 Logic of Bunched Implication (BI) [P. O'Hearn, D. Pym]'02 Separation Logic [P. O'Hearn, D. Pym, J. Reynolds]
- Logic for modular verification of pointer programs.
- Used in state-of-the-art, industrial tools:
 - Infer (Facebook)
 - Slayer (Microsoft)
- "Why Separation Logic Works" ['18 D. Pym et al.]

Separation Logic, with apples

'99 Logic of Bunched Implication (BI) [P. O'Hearn, D. Pym]'02 Separation Logic [P. O'Hearn, D. Pym, J. Reynolds]

Multiplicative connectives (from BI):

Problem: How to deal with * and -*, on concrete models and in the context of Hilbert-style axiomatisations.

Separation Logic is interpreted over **memory states** (s, h) where:

• store, $s : VAR \to \mathbb{N}$ • heap, $h : \mathbb{N} \to_{fin} \mathbb{N}$

where VAR = {x, y, z, . . . } set of variables, $\mathbb{N} \text{ represents the set of addresses.}$

- Disjoint heaps $(h_1 \perp h_2)$: dom $(h_1) \cap dom(h_2) = \emptyset$
- Union of disjoint heaps $(h_1 + h_2)$: union of partial functions.

Separation Logic is interpreted over **memory states** (s, h) where:

• store, $s : VAR \to \mathbb{N}$ • heap, $h : \mathbb{N} \to_{fin} \mathbb{N}$

where VAR = {x, y, z, . . . } set of variables, $\mathbb{N} \text{ represents the set of addresses.}$

- Disjoint heaps $(h_1 \perp h_2)$: dom $(h_1) \cap dom(h_2) = \emptyset$
- Union of disjoint heaps $(h_1 + h_2)$: union of partial functions.

$$(\boldsymbol{s},\boldsymbol{h})\models\varphi\ast\psi$$

Semantics:

There are two heaps h_1 and h_2 s.t.

• $h_1 \perp h_2$ and $h = h_1 + h_2$,

•
$$(s, h_1) \models \varphi$$

• $(s, h_2) \models \psi$.

The separating implication (-*)

$$(s,h) \models \varphi \twoheadrightarrow \psi$$

Semantics: For every heap h', if $h' \perp h$ and $(s, h') \models \varphi$, then $(s, h + h') \models \psi$.

Note: * and -* are adjoint operators:

 $\varphi * \psi \models \gamma$ if and only if $\varphi \models \psi \twoheadrightarrow \gamma$.

First-order Separation Logic

 $(s,h) \models \exists x \varphi$ iff there is $n \in \mathbb{N}$ s.t. $(s[x \leftarrow n], h) \models \varphi$.

Fsttcs'01 Quantifier-free SL (0SL) is PSPACE-complete. [C. Calcagno, P.W. O'Hearn, H. Yang]

Tocl'15 SL with two quantified variables (2SL) is undecidable. [S. Demri, M. Deters]

Fossacs'18 OSL + reachability predicates is undecidable. Without → it is PSPACE-complete. [S. Demri, E. Lozes, A. Mansutti]

 $\label{eq:stcs'18} \begin{array}{l} \mbox{ISL} + \mbox{restricted reachability predicate is PSPACE-c.} \\ Weakening restrictions makes it Tower-hard. \end{array}$

Let
$$\varphi \twoheadrightarrow \psi \stackrel{\text{def}}{=} \neg (\varphi \twoheadrightarrow \neg \psi)$$
.
 $(s,h) \models \varphi \twoheadrightarrow \psi \quad iff \quad \exists h' \text{ s.t. } h' \bot h, \ (s,h') \models \varphi \text{ and } (s,h+h') \models \psi$

Satisfiability to validity

$$\models \operatorname{emp} \Rightarrow \exists \mathtt{x}_1 \ldots \exists \mathtt{x}_n (\varphi \circledast \top) \quad iff \quad \exists s \exists h \text{ s.t. } (s,h) \models \varphi$$

where $\{x_1, \ldots, x_n\} = fv(\varphi)$.

- Reduction can be done also without quantification, but requires exponentially many queries of validity (w.r.t. fv(φ)).
- Satisfiability to validity works also for OSL.

Undecidability implies non-axiomatisability

 $\label{eq:Validity} \begin{array}{l} {\sf R.E.} \rightarrow {\sf Satisfiability} \ {\sf R.E.} \rightarrow {\sf Unvalidity} \ {\sf R.E.} \\ \rightarrow {\sf Validity} \ {\sf decidable}. \end{array}$

Tocl'15: SL with two quantified variables (2SL) is undecidable. Fossacs'18: 0SL + reachability predicates is undecidable.

This Talk: Hilbert-style axiomatisation for SLs (on memory states)

- Quantifier-free Separation Logic (OSL);
- SL without -* and with a (novel) guarded form of quantification that can express reachability predicates.

Fsttcs'06 Hilbert-style axiomatisation of Boolean BI [D. Galmiche, D. Larchey-Wending]

Popl'14 Axiomatisation of an hybrid version of Boolean BI and axiomatisation of abstract separation logics [J. Brotherston, J. Villard]

Tocl'18 Sequent calculi for abstract separation logics [Z. Hou, R. Clouston, R. Goré, A. Tiu.]

Fossacs'18 Modular tableaux calculi for Boolean BI [S. Docherty, D. Pym.]

$$\varphi := \neg \varphi ~|~ \varphi_1 \land \varphi_2 ~|~ \mathsf{emp} ~|~ \mathsf{x} {=} \mathsf{y} ~|~ \mathsf{x} {\hookrightarrow} \mathsf{y} ~|~ \varphi_1 \ast \varphi_2 ~|~ \varphi_1 \twoheadrightarrow \varphi_2$$

Methodology:

1A. Model theoretical analysis of 0SL (Lozes'04);
(EF-games / simulation arguments)
1B. Definition of a "normal form" for formulae of 0SL; (Gaifman-like locality theorem for 0SL)

- 2. Axiomatisation specific to the formulae in this normal form;
- 3. Add axioms & rules to put every formula in normal form. (similar to *reduction axioms* in dynamic epistemic logic)

What can OSL express?

• The heap has size at least β :

$$\texttt{size} \geq \beta \stackrel{\texttt{def}}{=} \underbrace{\neg \texttt{emp} * \ldots * \neg \texttt{emp}}_{\beta \text{ times}}$$

• x corresponds to a location in the domain of the heap:

$$\operatorname{alloc}(\mathbf{x}) \stackrel{\text{\tiny def}}{=} \neg (\mathbf{x} \hookrightarrow \mathbf{x} \twoheadrightarrow \top)$$

Let $X \subseteq_{fin} VAR$ and $\alpha \in \mathbb{N}$. We define the set of **core formulae**: Core $(X, \alpha) \stackrel{\text{def}}{=} \{x = y, x \hookrightarrow y, \text{alloc}(x), \text{size} \ge \beta \mid x, y \in X, \beta \in [0, \alpha]\}.$

 $(s,h) \approx^{\mathbf{X}}_{\alpha} (s',h') \text{ iff } \forall \varphi \in \operatorname{Core}(\mathbf{X},\alpha), (s,h) \models \varphi \Leftrightarrow (s',h') \models \varphi.$

$$(s,h)pprox_{lpha}^{\mathtt{X}}(s',h') \ \ {\it iff} \ \ orall arphi \in \mathtt{Core}(\mathtt{X},lpha), \ (s,h)\models arphi \Leftrightarrow (s',h')\models arphi.$$

A simulation Lemma for the operator *

Let $(s, h) \approx_{\alpha}^{X} (s', h')$. $\forall \alpha_1, \alpha_2$ satisfying $\alpha_1 + \alpha_2 = \alpha$, $\forall h_1, h_2$ satisfying $h_1 + h_2 = h$, $\exists h'_1, h'_2$ s.t. $h'_1 + h'_2 = h', (s, h_1) \approx_{\alpha_1}^{X} (s', h'_1)$ and $(s, h_2) \approx_{\alpha_2}^{X} (s', h'_2)$.

Similar lemma for -*.

$$(s,h)pprox_{lpha}^{\mathtt{X}}(s',h') \ \ {\it iff} \ \ orall arphi \in \mathtt{Core}(\mathtt{X},lpha), \ (s,h)\models arphi \Leftrightarrow (s',h')\models arphi.$$

A simulation Lemma for the operator *

Let
$$(s, h) \approx^{\mathtt{X}}_{\alpha} (s', h')$$
.

 $\forall \alpha_1, \alpha_2 \text{ satisfying } \alpha_1 + \alpha_2 = \alpha, \forall h_1, h_2 \text{ satisfying } h_1 + h_2 = h, \\ \exists h'_1, h'_2 \text{ s.t. } h'_1 + h'_2 = h', (s, h_1) \approx^{\mathbb{X}}_{\alpha_1}(s', h'_1) \text{ and } (s, h_2) \approx^{\mathbb{X}}_{\alpha_2}(s', h'_2).$

This lemma hides a Spoiler/Duplicator EF-games for 0SL, and shows the existence of a winning strategy for Duplicator.

For every move of Spoiler, the Duplicator has a winning answer.

$$(s,h)pprox_lpha^{\mathtt{X}}(s',h')$$
 iff $orallarphi\in ext{Core}(\mathtt{X},lpha)$, $(s,h)\models arphi \Leftrightarrow (s',h')\models arphi$.

A simulation Lemma for the operator *

Let $(s, h) \approx_{\alpha}^{\mathfrak{X}} (s', h')$. $\forall \alpha_1, \alpha_2$ satisfying $\alpha_1 + \alpha_2 = \alpha$, $\forall h_1, h_2$ satisfying $h_1 + h_2 = h$, $\exists h'_1, h'_2$ s.t. $h'_1 + h'_2 = h'$, $(s, h_1) \approx_{\alpha_1}^{\mathfrak{X}} (s', h'_1)$ and $(s, h_2) \approx_{\alpha_2}^{\mathfrak{X}} (s', h'_2)$.

Similar lemma for -*.

A "Gaifman locality theorem" for OSL

Every formula φ in OSL is logically equivalent to a Boolean combination of core formulae from $Core(vars(\varphi), size(\varphi))$.

 $\texttt{Core}(\mathtt{X},\alpha) \stackrel{\texttt{def}}{=} \{\mathtt{x} = \mathtt{y}, \, \mathtt{x} \hookrightarrow \mathtt{y}, \, \texttt{alloc}(\mathtt{x}), \, \texttt{size} \geq \beta \mid \mathtt{x}, \mathtt{y} \in \mathtt{X}, \beta \in [\mathtt{0},\alpha] \}.$

Normalising connectives & reasoning on core formulae

Normalisation of
$$*$$
 and $-*$
 $\vdash \psi_1 * \psi_2 \Leftrightarrow \psi_3$
 $\vdash \psi_4 -* \psi_5 \Leftrightarrow \psi_6$
 $\vdash \varphi \Leftrightarrow \psi$
 $\vdash \varphi$
 $\vdash \varphi$

where φ in SL, and ψ_i, ψ are in $\bigcup_{X,\alpha} \operatorname{Bool}(\operatorname{Core}(X, \alpha))$.

From a simple calculus for Core formulae...

CoreTypes(X, α) : set of complete¹ conjunctions of formulae in Core(X, card(X) + α).

Lemma Let $\varphi \in CoreTypes(X, \alpha)$. We have, $\models \neg \varphi$ *iff* $\vdash \neg \varphi$.

¹Every $\varphi \in \text{Core}(X, \text{card}(X) + \alpha)$ appears in a literal of the conjunction.

From a simple calculus for Core formulae...

CoreTypes(X, α): set of complete¹ conjunctions of formulae in Core(X, card(X) + α).

A Boolean combination of core formulae, $\models \varphi$ *iff* $\vdash \varphi$.

Lemma

¹Every $\varphi \in Core(X, card(X) + \alpha)$ appears in a literal of the conjunction.

...to a sound and complete proof system for OSL

Lemma $\forall \varphi, \psi \in \mathsf{Bool}(\mathsf{Core}(X, \alpha)) \exists \gamma \in \mathsf{Bool}(\mathsf{Core}(X, 2\alpha)) \text{ s.t. } \vdash \varphi * \psi \Leftrightarrow \gamma.$

$$(\mathsf{P}) \ \neg \texttt{alloc}(\texttt{x}) \Rightarrow ((\texttt{x} \hookrightarrow \texttt{y} \land \texttt{size} = 1) \twoheadrightarrow \top) \qquad \qquad \frac{\varphi \ast \psi \Rightarrow \gamma}{\varphi \Rightarrow (\psi \twoheadrightarrow \gamma)}$$

Lemma

 $\forall \varphi, \psi \in \mathsf{Bool}(\mathsf{Core}(\mathtt{X}, \alpha)) \; \exists \gamma \in \mathsf{Bool}(\mathsf{Core}(\mathtt{X}, \alpha)) \; \mathsf{s.t.} \vdash (\varphi \twoheadrightarrow \psi) \Leftrightarrow \gamma.$

A separation logic with path quantifiers

- We want to test our methodology on other SLs,
- First-order quantification? Reachability predicates?
- Both extensions are undecidable, hence validity is not R.E.

We consider OSL + path quantifiers, w/o \rightarrow (for decidability).

 $\varphi := \neg \varphi \ | \ \varphi_1 \land \varphi_2 \ | \ \operatorname{emp} \ | \ \mathtt{x} = \mathtt{y} \ | \ \mathtt{x} \hookrightarrow \mathtt{y} \ | \ \varphi_1 \ast \varphi_2 \ | \ \exists \mathtt{z} : \langle \mathtt{x} \leadsto \mathtt{y} \rangle \varphi$

A separation logic with path quantifiers

$$\begin{array}{c} (s,h) \models \exists z : \langle x \rightsquigarrow y \rangle \varphi \\ iff \\ \exists \ell \in \begin{subarray}{c} & s.t. \ (s[z \leftarrow \ell], h) \models \varphi. \end{array} \\ (the path must be of length at least 1 and minimal) \end{array}$$

- $\exists z: \langle x \rightsquigarrow y \rangle \top$ is the predicate reach⁺(x, y),
- it can express the (standard) list-segment predicate (ls),
- also cyclic structures, path of exponential length...

$$\exists \mathtt{z}: \langle \mathtt{x} \leadsto \mathtt{y} \rangle \big((\mathtt{reach}^+(\mathtt{x}, \mathtt{z}) \ast \mathtt{reach}^+(\mathtt{z}, \mathtt{z})) \land \varphi \big)$$

A separation logic with path quantifiers

- $\exists z: \langle x \rightsquigarrow y \rangle \top$ is the predicate reach⁺(x, y),
- it can express the (standard) list-segment predicate (ls),
- also cyclic structures, path of exponential length...

$$\exists \mathtt{z}: \langle \mathtt{x} \leadsto \mathtt{y} \rangle \big((\mathtt{reach}^+(\mathtt{x}, \mathtt{z}) \ast \mathtt{reach}^+(\mathtt{z}, \mathtt{z})) \land \varphi \big)$$

We axiomatise $SL(*, \exists: \rightarrow)$ as done for OSL

- I. With the help of simulations Lemmata for * and $\exists: \rightsquigarrow$, we find the right set of core formulae Core(X, α).
- II. We axiomatise the Boolean combination of core formulae.
- III. We add axioms to treat * and $\exists: \rightsquigarrow$, completing the system.

From the normalisation, we also conclude that validity and satisfiability for $SL(*, \exists: \rightsquigarrow)$ are PSPACE-complete.

- 1. First axiomatisations of separation logics (on memory states),
 - quantifier-free SL,
 - $SL(*, \exists: \rightsquigarrow)$ (here introduced).
- 2. For program verification, $\exists: \rightsquigarrow$ is a natural form of quantification.
- 3. Satisfiability/validity of SL(*, \exists : \rightsquigarrow) found to be PSPACE-complete.
- 4. The proof technique is quite reusable
 - Already used succesfully on two Modal Separation Logics [Jelia'19 - S. Demri, R. Fervari, A. Mansutti]