Internal calculi for Separation Logic

1 1

Stéphane Demri Etienne Lozes> Alessio Mansutti

January 14, 2020
1ILSV, CNRS, ENS Paris-Saclay

213S, Université Céte d’Azur

Separation Logic

‘99 Logic of Bunched Implication (BI) [P. O'Hearn, D. Pym]
‘02 Separation Logic [P. O'Hearn, D. Pym, J. Reynolds]
e Logic for modular verification of pointer programs.

e Used in state-of-the-art, industrial tools:
e Infer (Facebook)

e Slayer (Microsoft)

e "Why Separation Logic Works” ['18 - D. Pym et al.]

Separation Logic, with apples

‘99 Logic of Bunched Implication (BI) [P. O'Hearn, D. Pym]
‘02 Separation Logic [P. O'Hearn, D. Pym, J. Reynolds]

Multiplicative connectives (from BI):

\b Epxy iff \b can be split into ¢ and P s.t.
epand Dl
D= iff forevery ¢ mergeable with),
if‘/|:<pthen \b):w

Problem: How to deal with % and —, on concrete models

and in the context of Hilbert-style axiomatisations.

Modelling the memory

Separation Logic is interpreted over memory states (s, h) where:

e store, s : VAR — N e heap, h: N —4, N

where VAR = {x,y,z,...} set of variables,
N represents the set of addresses.

h

s(y) s(z) =—=

il here, h(s(x)) = s(y)

e Disjoint heaps (h1 L hy): dom(hy) Ndom(hy) =0

e Union of disjoint heaps (h1 + h2): union of partial functions.

Modelling the memory

Separation Logic is interpreted over memory states (s, h) where:

e store, s : VAR — N e heap, h: N —4, N

where VAR = {x,y,z,...} set of variables,
N represents the set of addresses.

h sy) p s(z) ~—s
al here, h(s(x)) = s(y)

AT

e Disjoint heaps (h1 L hy): dom(hy) Ndom(hy) =0

e Union of disjoint heaps (h; + h2): union of partial functions.

The separating conjunction (x)

(s,h) Epx1

Semantics:
There are two heaps h; and hy s.t.

¥ o hy L hy and h= hy + ho,

AN Y I Y VAT
Q (57h2)):w

The separating implication (—x)

(s;h) E¢ 9
Semantics:
— For every heap /,
& P if i L hand (s,h)E o,

I—T%O then (s,h+ h') |= 1.

Note: * and — are adjoint operators:

exy =~ ifandonlyif ¢ E¥-—7y.

First-order Separation Logic

o= T | =0 | ©1A¢
| emp | x=y | =xoy
| 3xe | @ixp2 | o1
o—>o—> 5(y)
(s,h) = emp iff dom(h) =0, el
s(x)
(s,HhEx=y iff s(x)=s(y), X A

(s,h) Ex—y iff s(x) € dom(h) and h(s(x)) = s(y),

(s,h) E3Ixp iff thereis n € Ns.t. (s[x < n|, h) = ¢.

Satisfiability problem: some complexity results.

Fsttcs’01 Quantifier-free SL (0SL) is PSPACE-complete.
[C. Calcagno, P.W. O'Hearn, H. Yang]

Tocl’'l5 SL with two quantified variables (2SL) is undecidable.
[S. Demri, M. Deters|

Fossacs’18 OSL + reachability predicates is undecidable.
Without — it is PSPACE-complete.
[S. Demri, E. Lozes, A. Mansutti

Fsttcs’18 1SL + restricted reachability predicate is PSPACE-c.
Weakening restrictions makes it TOWER-hard.

Satisfiability ~ Validity ~ Entailment ~ Model checking

dei

Let ¢ & 9 £ (o = —).
(s,h) = w1 iff 30 st. HLh, (s,h) = v and (s,h+h) E

Satisfiability to validity
Femp=3x;...3x,(p=T) iff 3s3hst. (s,h) =
where {x1,...,x,} = fv(p).

e Reduction can be done also without quantification, but
requires exponentially many queries of validity (w.r.t. fv(y)).

e Satisfiability to validity works also for OSL.

Undecidability implies non-axiomatisability

Validity R.E. — Satisfiability R.E. — Unvalidity R.E.
— Validity decidable.

Tocl'15: SEk-with-tweo-quantified-variables{28E}-is-undecidable-
Fossacs'18: OSt—+-reachability-predicates-is-undecidable:

This Talk: Hilbert-style axiomatisation for SLs (on memory states)
e Quantifier-free Separation Logic (0SL);

e SL without — and with a (novel) guarded form of
quantification that can express reachability predicates.

Calculi for Bunched Implication / Separation Logics

Fsttcs’06 Hilbert-style axiomatisation of Boolean BI
[D. Galmiche, D. Larchey-Wending]

Popl’14 Axiomatisation of an hybrid version of Boolean BI
and axiomatisation of abstract separation logics
[J. Brotherston, J. Villard]

Tocl’18 Sequent calculi for abstract separation logics
[Z. Hou, R. Clouston, R. Goré, A. Tiu.]

Fossacs’'18 Modular tableaux calculi for Boolean BI
[S. Docherty, D. Pym.]

On axiomatising 0SL, internally

pi=-p | p1Apz| emp | x=y | x2y | 12 | o1 %02
Methodology:

1A. Model theoretical analysis of OSL (Lozes'04);
<> (EF-games / simulation arguments)

1B. Definition of a “normal form” for formulae of 0SL;

(Gaifman-like locality theorem for OSL)
2. Axiomatisation specific to the formulae in this normal form;

3. Add axioms & rules to put every formula in normal form.

(similar to reduction axioms in dynamic epistemic logic)

10

What can 0SL express?

e The heap has size at least 3:

. def
size >3 = —emp * ... x —emp

3 times

e x corresponds to a location in the domain of the heap:

alloc(x) = “(x>x)

Let X Cgn VAR and oo € N. We define the set of core formulae:

Core(X,a) € {x=y, x>y, alloc(x), size> 3 | x,y€X, B€[0,]}

11

An indistinguishability relation for 0SL

(s,h) =X (s',0') iff Vp €Core(X,a), (s,h) E ¢ < (s, H) E .

12

An indistinguishability relation for 0SL

(s,h) =X (s',0') iff Vp €Core(X,a), (s,h) E ¢ < (s, H) E .
A simulation Lemma for the operator x

Let (s, h) = (s',K).

Vaq, ag satisfying ag + ap = a, Vhy, hy satisfying hy + hp = h,
3L, hy st hi+h = i, (s, hi)~E (s',) and (s, ho)=E, (', h).

Similar lemma for —.

12

An indistinguishability relation for 0SL

(s,h) =X (s',0') iff Vp €Core(X,a), (s,h) E ¢ < (s, H) E .
A simulation Lemma for the operator x

Let (s, h) = (s',K).

Vaq, ag satisfying ag + ap = «a, Vhy, hy satisfying hy + ho = h,

This lemma hides a Spoiler/Duplicator EF-games for 0SL,
and shows the existence of a winning strategy for Duplicator.

For every move of Spoiler,

12

An indistinguishability relation for 0SL

(s,h) =X (s',0') iff Vp €Core(X,a), (s,h) E ¢ < (s, H) E .
A simulation Lemma for the operator x

Let (s, h) =% (s/, H).

Vaq, ag satisfying ag + ap = a, Vhy, hy satisfying hy + hp = h,
3L, hy st hi+h = i, (s, hi)~E (s',) and (s, ho)=E, (', h).

Similar lemma for —.

A “Gaifman locality theorem” for OSL
Every formula ¢ in OSL is logically equivalent to a Boolean
combination of core formulae from Core(vars(y), size(yp)).

Core(X, a) &f {x=y, x—y, alloc(x), size >3 | x,y€X,€[0,a]}.

12

Normalising connectives & reasoning on core formulae

Normalisation of * and —

gy % g < 3 Completeness for
core formulae
14 = 1bs & g
Hosy U

o

where ¢ in SL, and 1;, are in U , Bool(Core(X, a)).

13

From a simple calculus for Core formulae...

(PC) propositional calculus; (A) x — y = alloc(x)
(R) x=x (F) x> yAx—oz=>y=z
(S) pAx=y = p[y+x] (H1) size > f+1 = size > [

(H2) /\(alloc(x) A /\ x #y) = size > card(X), where X Cyqn VAR.

x€X yex\{x}

CoreTypes(X,a) : set of complete! conjunctions
of formulae in Core(X, card(X) +).

Lemma
Let ¢ € CoreTypes(X,a). We have, | —¢ iff - —p.

'Every ¢ € Core(X, card(X) + «) appears in a literal of the conjunction.

14

From a simple calculus for Core formulae...

(PC) propositional calculus; (A) x — y = alloc(x)
(R) x=x (F) x> yAx—oz=>y=z
(S) pAx=y = p[y+x] (H1) size > f+1 = size > [

(H2) /\(alloc(x) A /\ x #y) = size > card(X), where X Cyqn VAR.

x€X yex\{x}

CoreTypes(X,a) : set of complete! conjunctions
of formulae in Core(X, card(X) +).

Lemma
A Boolean combination of core formulae, = ¢ iff F .

'Every ¢ € Core(X, card(X) + «) appears in a literal of the conjunction.

14

...to a sound and complete proof system for OSL

(M) alloc(x) * T = alloc(x)
=79

(N) —alloc(x)* —alloc(x) = —alloc(x) oxPp >y

(1) alloc(x) = (alloc(x) Asize=1)* T

Lemma
Vo, peBool(Core(X, o)) FyeBool(Core(X,2a)) s.t. - @ *x 1 < 7.

prY =7

(P) -alloc(x) = ((x = yAsize=1)=T) o= (Y =7)

Lemma
Vo, p€Bool(Core(X, o)) IyEBool(Core(X,) s.t. F (¢ ® 1) & .

ii5)

A separation logic with path quantifiers

e We want to test our methodology on other SLs,
e First-order quantification? Reachability predicates?

e Both extensions are undecidable, hence validity is not R.E.

We consider OSL + path quantifiers, w/o — (for decidability).

= | p1 A2 | emp | x=y | x=y | 1% @2 | Tz (xvy)e

16

A separation logic with path quantifiers

iff
3re] st (s[z+ 4,h) = .
(the path must be of length at least 1 and minimal) Q

e Jz:(x~y)T is the predicate reach™(x,y),

(s h) = Tz (xoy) @ N

e it can express the (standard) list-segment predicate (1s),
e also cyclic structures, path of exponential length...

Jz:(x~~y) ((reach’(x, z) * reach’(z,z)) A ¢) .

A separation logic with path quantifiers

(s, h) = Fz:{xy) @ N
iff
3re] st (s[z+ 4,h) = .
(the path must be of length at least 1 and minimal) »

e Jz:(x~y)T is the predicate reach™(x,y),

e it can express the (standard) list-segment predicate (1s),
e also cyclic structures, path of exponential length...

Jz:(x~~y) ((reach’(x, z) * reach’(z,z)) A ¢) .

We axiomatise SL(x,3:~~) as done for OSL

|. With the help of simulations Lemmata for % and J:~,
we find the right set of core formulae Core(X,).

[1. We axiomatise the Boolean combination of core formulae.

[1]. We add axioms to treat % and J:~~, completing the system.

Completeness for
core formulae

Fosey Fa

Normalisation of * and J:~~

F 3z (x~y)h < o

g * 15 < e

Fo

From the normalisation, we also conclude that validity and

satisfiability for SL(x, 3:~~) are PSPACE-complete. "

1. First axiomatisations of separation logics (on memory states),

e quantifier-free SL,
e SL(x,3:~) (here introduced).

N

. For program verification, 3:~~ is a natural form of quantification.

w

. Satisfiability/validity of SL(x,3:~~) found to be PSPACE-complete.

N

. The proof technique is quite reusable

e Already used succesfully on two Modal Separation Logics
[Jelia'19 - S. Demri, R. Fervari, A. Mansutti]

19

