
Internal calculi for Separation Logic

Stéphane Demri1 Étienne Lozes2 Alessio Mansutti1

January 14, 2020

1LSV, CNRS, ENS Paris-Saclay

2I3S, Université Côte d’Azur

Separation Logic

‘99 Logic of Bunched Implication (BI) [P. O’Hearn, D. Pym]

‘02 Separation Logic [P. O’Hearn, D. Pym, J. Reynolds]

• Logic for modular verification of pointer programs.

• Used in state-of-the-art, industrial tools:

• Infer (Facebook)

• Slayer (Microsoft)

• “Why Separation Logic Works” [‘18 - D. Pym et al.]

Multiplicative connectives (from BI):

|= ϕ ∗ ψ iff can be split into and s.t.

|= ϕ and |= ψ.

|= ϕ−∗ ψ iff for every mergeable with ,

if |= ϕ then |= ψ

Problem: How to deal with ∗ and −∗, on concrete models

and in the context of Hilbert-style axiomatisations.

1

Separation Logic, with apples

‘99 Logic of Bunched Implication (BI) [P. O’Hearn, D. Pym]

‘02 Separation Logic [P. O’Hearn, D. Pym, J. Reynolds]

Multiplicative connectives (from BI):

|= ϕ ∗ ψ iff can be split into and s.t.

|= ϕ and |= ψ.

|= ϕ−∗ ψ iff for every mergeable with ,

if |= ϕ then |= ψ

Problem: How to deal with ∗ and −∗, on concrete models

and in the context of Hilbert-style axiomatisations.

1

Modelling the memory

Separation Logic is interpreted over memory states (s, h) where:

• store, s : VAR→ N • heap, h : N→fin N

where VAR = {x, y, z, . . . } set of variables,

N represents the set of addresses.

s(z)s(y)

s(x)

h

here, h(s(x)) = s(y)

• Disjoint heaps (h1 ⊥ h2): dom(h1) ∩ dom(h2) = ∅

• Union of disjoint heaps (h1 + h2): union of partial functions.
2

Modelling the memory

Separation Logic is interpreted over memory states (s, h) where:

• store, s : VAR→ N • heap, h : N→fin N

where VAR = {x, y, z, . . . } set of variables,

N represents the set of addresses.

s(z)s(y)

s(x)

h

here, h(s(x)) = s(y)

• Disjoint heaps (h1 ⊥ h2): dom(h1) ∩ dom(h2) = ∅

• Union of disjoint heaps (h1 + h2): union of partial functions.
2

The separating conjunction (∗)

(s, h) |= ϕ ∗ ψ

ϕ ∗ ψ ⇔
ϕ

ψ

Semantics:

There are two heaps h1 and h2 s.t.

• h1 ⊥ h2 and h = h1 + h2,

• (s, h1) |= ϕ,

• (s, h2) |= ψ.

3

The separating implication (−∗)

(s, h) |= ϕ−∗ ψ

ψ⇔
ϕ−∗ ψ

ϕ

Semantics:

For every heap h′,

if h′ ⊥ h and (s, h′) |= ϕ,

then (s, h + h′) |= ψ.

Note: ∗ and −∗ are adjoint operators:

ϕ ∗ ψ |= γ if and only if ϕ |= ψ −∗ γ.

4

First-order Separation Logic

ϕ := > | ¬ϕ | ϕ1 ∧ ϕ2

| emp | x= y | x ↪→ y

| ∃xϕ | ϕ1 ∗ϕ2 | ϕ1−∗ϕ2

(s, h) |= emp iff dom(h) = ∅,

(s, h) |= x = y iff s(x) = s(y),

(s, h) |= x ↪→ y iff s(x) ∈ dom(h) and h(s(x)) = s(y),

(s, h) |= ∃xϕ iff there is n ∈ N s.t. (s[x← n], h) |= ϕ.

5

Satisfiability problem: some complexity results.

Fsttcs’01 Quantifier-free SL (0SL) is PSpace-complete.

[C. Calcagno, P.W. O’Hearn, H. Yang]

Tocl’15 SL with two quantified variables (2SL) is undecidable.

[S. Demri, M. Deters]

Fossacs’18 0SL + reachability predicates is undecidable.

Without −∗ it is PSpace-complete.

[S. Demri, E. Lozes, A. Mansutti]

Fsttcs’18 1SL + restricted reachability predicate is PSpace-c.

Weakening restrictions makes it Tower-hard.

6

Satisfiability ≈ Validity ≈ Entailment ≈ Model checking

Let ϕ−~ ψ def
= ¬(ϕ−∗ ¬ψ).

(s, h) |= ϕ−~ ψ iff ∃h′ s.t. h′⊥h, (s, h′) |= ϕ and (s, h+h′) |= ψ

Satisfiability to validity

|= emp⇒ ∃x1 . . . ∃xn(ϕ−~>) iff ∃ s ∃ h s.t. (s, h) |= ϕ

where {x1, . . . , xn} = fv(ϕ).

• Reduction can be done also without quantification, but

requires exponentially many queries of validity (w.r.t. fv(ϕ)).

• Satisfiability to validity works also for 0SL.

7

Undecidability implies non-axiomatisability

Validity R.E. → Satisfiability R.E. → Unvalidity R.E.

→ Validity decidable.

Tocl’15: SL with two quantified variables (2SL) is undecidable.

Fossacs’18: 0SL + reachability predicates is undecidable.

This Talk: Hilbert-style axiomatisation for SLs (on memory states)

• Quantifier-free Separation Logic (0SL);

• SL without −∗ and with a (novel) guarded form of

quantification that can express reachability predicates.

8

Calculi for Bunched Implication / Separation Logics

Fsttcs’06 Hilbert-style axiomatisation of Boolean BI

[D. Galmiche, D. Larchey-Wending]

Popl’14 Axiomatisation of an hybrid version of Boolean BI

and axiomatisation of abstract separation logics

[J. Brotherston, J. Villard]

Tocl’18 Sequent calculi for abstract separation logics

[Z. Hou, R. Clouston, R. Goré, A. Tiu.]

Fossacs’18 Modular tableaux calculi for Boolean BI

[S. Docherty, D. Pym.]

9

On axiomatising 0SL, internally

ϕ := ¬ϕ | ϕ1 ∧ ϕ2 | emp | x=y | x↪→y | ϕ1 ∗ ϕ2 | ϕ1 −∗ ϕ2

Methodology:

1A. Model theoretical analysis of 0SL (Lozes’04);

(EF-games / simulation arguments)

1B. Definition of a “normal form” for formulae of 0SL;

(Gaifman-like locality theorem for 0SL)

2. Axiomatisation specific to the formulae in this normal form;

3. Add axioms & rules to put every formula in normal form.

(similar to reduction axioms in dynamic epistemic logic)

10

What can 0SL express?

• The heap has size at least β:

size≥β def
= ¬emp ∗ . . . ∗ ¬emp︸ ︷︷ ︸

β times

• x corresponds to a location in the domain of the heap:

alloc(x)
def
= ¬

(
x↪→x −~>

)

Let X ⊆fin VAR and α∈N. We define the set of core formulae:

Core(X, α)
def
= {x= y, x ↪→ y, alloc(x), size≥β | x, y∈ X, β ∈ [0, α]}.

11

An indistinguishability relation for 0SL

(s, h) ≈X
α (s ′, h′) iff ∀ϕ∈ Core(X, α), (s, h) |= ϕ⇔ (s ′, h′) |= ϕ.

A simulation Lemma for the operator ∗
Let (s, h) ≈X

α (s ′, h′).

∀α1, α2 satisfying α1 +α2 = α, ∀h1, h2 satisfying h1 + h2 = h,

∃h′1, h′2 s.t. h′1+h′2 = h′, (s, h1)≈X
α1

(s ′, h′1) and (s, h2)≈X
α2

(s ′, h′2).

Similar lemma for −∗.

A “Gaifman locality theorem” for 0SL

Every formula ϕ in 0SL is logically equivalent to a Boolean

combination of core formulae from Core(vars(ϕ), size(ϕ)).

Core(X, α)
def
= {x= y, x ↪→ y, alloc(x), size≥β | x, y∈ X, β ∈ [0, α]}.

12

An indistinguishability relation for 0SL

(s, h) ≈X
α (s ′, h′) iff ∀ϕ∈ Core(X, α), (s, h) |= ϕ⇔ (s ′, h′) |= ϕ.

A simulation Lemma for the operator ∗
Let (s, h) ≈X

α (s ′, h′).

∀α1, α2 satisfying α1 +α2 = α, ∀h1, h2 satisfying h1 + h2 = h,

∃h′1, h′2 s.t. h′1+h′2 = h′, (s, h1)≈X
α1

(s ′, h′1) and (s, h2)≈X
α2

(s ′, h′2).

Similar lemma for −∗.

A “Gaifman locality theorem” for 0SL

Every formula ϕ in 0SL is logically equivalent to a Boolean

combination of core formulae from Core(vars(ϕ), size(ϕ)).

Core(X, α)
def
= {x= y, x ↪→ y, alloc(x), size≥β | x, y∈ X, β ∈ [0, α]}.

12

An indistinguishability relation for 0SL

(s, h) ≈X
α (s ′, h′) iff ∀ϕ∈ Core(X, α), (s, h) |= ϕ⇔ (s ′, h′) |= ϕ.

A simulation Lemma for the operator ∗
Let (s, h) ≈X

α (s ′, h′).

∀α1, α2 satisfying α1 +α2 = α, ∀h1, h2 satisfying h1 + h2 = h,

∃h′1, h′2 s.t. h′1+h′2 = h′, (s, h1)≈X
α1

(s ′, h′1) and (s, h2)≈X
α2

(s ′, h′2).

Similar lemma for −∗.This lemma hides a Spoiler/Duplicator EF-games for 0SL,

and shows the existence of a winning strategy for Duplicator.

For every move of Spoiler, the Duplicator has a winning answer.

A “Gaifman locality theorem” for 0SL

Every formula ϕ in 0SL is logically equivalent to a Boolean

combination of core formulae from Core(vars(ϕ), size(ϕ)).

Core(X, α)
def
= {x= y, x ↪→ y, alloc(x), size≥β | x, y∈ X, β ∈ [0, α]}.

12

An indistinguishability relation for 0SL

(s, h) ≈X
α (s ′, h′) iff ∀ϕ∈ Core(X, α), (s, h) |= ϕ⇔ (s ′, h′) |= ϕ.

A simulation Lemma for the operator ∗
Let (s, h) ≈X

α (s ′, h′).

∀α1, α2 satisfying α1 +α2 = α, ∀h1, h2 satisfying h1 + h2 = h,

∃h′1, h′2 s.t. h′1+h′2 = h′, (s, h1)≈X
α1

(s ′, h′1) and (s, h2)≈X
α2

(s ′, h′2).

Similar lemma for −∗.

A “Gaifman locality theorem” for 0SL

Every formula ϕ in 0SL is logically equivalent to a Boolean

combination of core formulae from Core(vars(ϕ), size(ϕ)).

Core(X, α)
def
= {x= y, x ↪→ y, alloc(x), size≥β | x, y∈ X, β ∈ [0, α]}.

12

Normalising connectives & reasoning on core formulae

` ϕ⇔ ψ ` ψ

` ϕ

Normalisation of ∗ and −∗

` ψ4 −∗ ψ5 ⇔ ψ6

` ψ1 ∗ ψ2 ⇔ ψ3
Completeness for

core formulae

where ϕ in SL, and ψi , ψ are in
⋃

X,α Bool(Core(X, α)).

13

From a simple calculus for Core formulae...

(PC) propositional calculus;

(R) x = x

(S) ϕ ∧ x = y⇒ ϕ[y←x]

(A) x ↪→ y⇒ alloc(x)

(F) x ↪→ y ∧ x ↪→ z⇒ y = z

(H1) size ≥ β+1⇒ size ≥ β

(H2)
∧
x∈X

(alloc(x) ∧
∧

y∈X\{x}

x 6= y)⇒ size ≥ card(X), where X ⊆fin VAR.

CoreTypes(X, α) : set of complete1 conjunctions

of formulae in Core(X, card(X) + α).

Lemma
Let ϕ ∈ CoreTypes(X, α). We have, |= ¬ϕ iff ` ¬ϕ.

1Every ϕ ∈ Core(X, card(X) + α) appears in a literal of the conjunction.

14

From a simple calculus for Core formulae...

(PC) propositional calculus;

(R) x = x

(S) ϕ ∧ x = y⇒ ϕ[y←x]

(A) x ↪→ y⇒ alloc(x)

(F) x ↪→ y ∧ x ↪→ z⇒ y = z

(H1) size ≥ β+1⇒ size ≥ β

(H2)
∧
x∈X

(alloc(x) ∧
∧

y∈X\{x}

x 6= y)⇒ size ≥ card(X), where X ⊆fin VAR.

CoreTypes(X, α) : set of complete1 conjunctions

of formulae in Core(X, card(X) + α).

Lemma
Let ϕ ∈ CoreTypes(X, α). We have, |= ¬ϕ iff ` ¬ϕ.

Lemma

A Boolean combination of core formulae, |= ϕ iff ` ϕ.

1Every ϕ ∈ Core(X, card(X) + α) appears in a literal of the conjunction.

14

...to a sound and complete proof system for 0SL

(M) alloc(x) ∗ > ⇒ alloc(x)

(N) ¬alloc(x) ∗ ¬alloc(x)⇒ ¬alloc(x)

(I) alloc(x)⇒ (alloc(x) ∧ size=1) ∗ >
ϕ ∗ ψ ⇒ γ ∗ ψ

ϕ⇒ γ

Lemma
∀ϕ,ψ∈Bool(Core(X, α)) ∃γ∈Bool(Core(X, 2α)) s.t. ` ϕ ∗ ψ ⇔ γ.

(P) ¬alloc(x)⇒ ((x ↪→ y∧ size = 1)−~>)
ϕ⇒ (ψ −∗ γ)
ϕ ∗ ψ ⇒ γ

Lemma
∀ϕ,ψ∈Bool(Core(X, α)) ∃γ∈Bool(Core(X, α)) s.t. ` (ϕ−~ψ)⇔ γ.

15

A separation logic with path quantifiers

• We want to test our methodology on other SLs,

• First-order quantification? Reachability predicates?

• Both extensions are undecidable, hence validity is not R.E.

We consider 0SL + path quantifiers, w/o −∗ (for decidability).

ϕ := ¬ϕ | ϕ1 ∧ ϕ2 | emp | x=y | x↪→y | ϕ1 ∗ ϕ2 | ∃z:〈x y〉ϕ

16

A separation logic with path quantifiers

(s, h) |= ∃z:〈x y〉 ϕ
iff

∃ ` ∈ s.t. (s[z← `], h) |= ϕ.

(the path must be of length at least 1 and minimal)
y

x

• ∃z:〈x y〉> is the predicate reach+(x, y),

• it can express the (standard) list-segment predicate (ls),

• also cyclic structures, path of exponential length...

∃z:〈x y〉
(
(reach+(x, z) ∗ reach+(z, z)) ∧ ϕ

)
17

A separation logic with path quantifiers

(s, h) |= ∃z:〈x y〉 ϕ
iff

∃ ` ∈ s.t. (s[z← `], h) |= ϕ.

(the path must be of length at least 1 and minimal)
y

x

• ∃z:〈x y〉> is the predicate reach+(x, y),

• it can express the (standard) list-segment predicate (ls),

• also cyclic structures, path of exponential length...

∃z:〈x y〉
(
(reach+(x, z) ∗ reach+(z, z)) ∧ ϕ

)
17

We axiomatise SL(∗,∃:) as done for 0SL

I. With the help of simulations Lemmata for ∗ and ∃: ,

we find the right set of core formulae Core(X, α).

II. We axiomatise the Boolean combination of core formulae.

III. We add axioms to treat ∗ and ∃: , completing the system.

` ϕ⇔ ψ ` ψ

` ϕ

Normalisation of ∗ and ∃:

` ψ4 ∗ ψ5 ⇔ ψ6

` ∃z:〈x y〉ψ1 ⇔ ψ2
Completeness for

core formulae

From the normalisation, we also conclude that validity and

satisfiability for SL(∗,∃:) are PSpace-complete.
18

Recap

1. First axiomatisations of separation logics (on memory states),

• quantifier-free SL,

• SL(∗,∃:) (here introduced).

2. For program verification, ∃: is a natural form of quantification.

3. Satisfiability/validity of SL(∗,∃:) found to be PSpace-complete.

4. The proof technique is quite reusable

• Already used succesfully on two Modal Separation Logics

[Jelia’19 - S. Demri, R. Fervari, A. Mansutti]

19

