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Two terms 𝑠 and 𝑡 are joinable (written 𝑠 ↓ 𝑡) w.r.t. a reduction → if there is 𝑘 such that

𝑠→* 𝑘 ←* 𝑡.

A reduction → is called:

• terminating if there is no infinite descending chain 𝑎0 → 𝑎1 → . . . ;

• locally confluent if 𝑣1 ← 𝑢→ 𝑣2 implies 𝑣1 ↓ 𝑣2;

• confluent if 𝑣1 ←* 𝑢→* 𝑣2 implies 𝑣1 ↓ 𝑣2;

A pair (𝐴,≤), where ≤ is a binary relation on the set 𝐴, is a well quasi-ordering (wqo) if ≤ :

• is a quasi-order, i.e. ≤ is reflexive and transitive;

• is well-founded, i.e. there are no infinite strictly decreasing sequences 𝑎0 > 𝑎1 > 𝑎2 > . . . in 𝐴;

• does not have infinite anti-chains, i.e. it does not exists an infinite subset 𝐼 of 𝐴 such that

for each 𝑎, 𝑏 ∈ 𝐼, 𝑎 ̸≤ 𝑏 and 𝑏 ̸≤ 𝑎.

Exercise 1 :

Which of the following are true? Give a justification or a counter-example.

1. Every locally confluent TRS is confluent.

2. Every confluent TRS is terminating.

3. If ℛ is a non-terminating TRS then there are terms 𝑢, 𝑣 such that 𝑢→*
ℛ 𝑣 and 𝑢 E 𝑣 (where

E is the sub-term relation).

4. If ℛ is terminating TRS, then →*
ℛ is a wqo on 𝑇 (ℱ).

Solution:

(1) False. Consider for instance ℛ2 from the solution of Exercise 4.3 of TD5:

a→ b, b→ a, a→ 0, b→ 1

represented by the following diagram.

a b0 1

(2) False. Consider the TRS {𝑎→ 𝑎}.
(3) True. Let 𝑢1 →ℛ 𝑢2 →ℛ · · · →ℛ 𝑢𝑛 →ℛ . . . be an infinite sequence of rewriting. We may

assume that all 𝑢𝑖 are ground (replace all variables with a constant). Since E is a wqo on 𝑇 (ℱ)

for finite ℱ , there are no infinite anti-chains and therefore 𝑢𝑖 E 𝑢𝑗 holds for two indices 𝑖 < 𝑗.

(4) False. Consider ℛ empty. A sequence a, f(a), f(f(a)), . . . of distinct terms is an infinite

anti-chain.
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Exercise 2 :

Is the following rewrite system confluent and terminating?

sel(0, cons(𝑥, 𝑙))→ 𝑥

sel(succ(𝑛), cons(𝑥, 𝑙))→ sel(𝑛, 𝑙)

from(𝑛)→ cons(𝑛, from(succ(𝑛)))

first(0, 𝑙)→ nil

first(succ(𝑛), cons(𝑥, 𝑙))→ cons(𝑥, first(𝑛, 𝑙))

Solution:

It is confluent as it is orthogonal (left-linear and has no non-trivial critical pairs). It does not

terminate (see third rule).

Exercise 3 :

Let ℛ1 and ℛ2 be two confluent TRS such that ←ℛ2 ∘ →ℛ1 ⊆ →ℛ1 ∘ ←ℛ2 .

1. Prove that ←*
ℛ1
∘ →*

ℛ1∪ℛ2
⊆ →*

ℛ1∪ℛ2
∘ ←*

ℛ1∪ℛ2

2. Show that ℛ1 ∪ℛ2 is confluent.

Solution:

(1) Assume 𝑢←*
ℛ1

𝑡→𝑛
ℛ1∪ℛ2

𝑣. We prove the result by induction on 𝑛. If 𝑛 = 0, this is trivial:

𝑡 = 𝑣 →*
ℛ1

𝑢. Otherwise, there are two cases.

• the first step is a reduction by ℛ1:

𝑢←*
ℛ1

𝑡→ℛ1 𝑡′ →𝑛−1
ℛ1∪ℛ2

𝑣

By confluence of ℛ1, 𝑢 →*
ℛ1

𝑢′ ←*
ℛ1

𝑡′ →𝑛−1
ℛ1∪ℛ2

𝑣 and it is sufficient to apply the

induction hypothesis.

• the first step is a reduction by ℛ2:

𝑢←𝑘
ℛ1

𝑡→ℛ2 𝑡′ →𝑛−1
ℛ1∪ℛ2

𝑣

Then, by induction on 𝑘, thanks to the inclusion ←ℛ2 ∘ →ℛ1 ⊆ →ℛ1 ∘ ←ℛ2 , it holds

𝑢→ℛ2 ∘ ←𝑘
ℛ1

𝑡′. We may again apply the induction hypothesis.

(2) From the previous question, by symmetry ←ℛ1∪ℛ2 ∘ →*
ℛ1∪ℛ2

⊆ →*
ℛ1∪ℛ2

∘ ←*
ℛ1∪ℛ2

.

Hence ℛ1 ∪ℛ2 is semi-confluent and therefore confluent.

Let status(𝑓) ∈ {mul, lex} (i.e. multiset order or lexicographic order) a status function on Σ and

let > be a strict order on Σ. The recursive path order >rpo on 𝑇 (Σ, 𝑉 ) induced by > is defined

as follows. 𝑠 >rpo 𝑡 if and only if one of the following holds:

1. 𝑡 is a variable appearing in 𝑠 and 𝑠 ̸= 𝑡, or

let 𝑠 = 𝑓(𝑠1, . . . , 𝑠𝑚) and 𝑡 = 𝑔(𝑡1, . . . , 𝑡𝑛),

2. there exists 𝑖 ∈ [1, 𝑚] such that 𝑠𝑖 ≥rpo 𝑡, or

3. 𝑓 > 𝑔 and 𝑠 >rpo 𝑡𝑗 for all 𝑗 ∈ [1, 𝑛], or

4. 𝑓 = 𝑔, for all 𝑗 ∈ [1, 𝑛] it holds 𝑠 >rpo 𝑡𝑗 and (𝑠1, . . . , 𝑠𝑚)(>rpo)status(𝑓)(𝑡1, . . . , 𝑡𝑚).
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A polynomial interpretation on integers is the following:

• a subset 𝐴 of N;

• for every symbol 𝑓 of arity 𝑛, a polynomial P𝑓 ∈ N[𝑋1, . . . , 𝑋𝑛];

• for every 𝑎1, . . . , 𝑎𝑛 ∈ 𝐴, P𝑓 (𝑎1, . . . , 𝑎𝑛) ∈ 𝐴;

• for every 𝑎1, . . . , 𝑎𝑖 > 𝑎′
𝑖, . . . , 𝑎𝑛 ∈ 𝐴, P𝑓 (𝑎1, . . . , 𝑎𝑖, . . . , 𝑎𝑛) > P𝑓 (𝑎1, . . . , 𝑎′

𝑖, . . . , 𝑎𝑛);

Then (𝐴, (P𝑓 )𝑓 , >) is a well-founded monotone algebra.

Exercise 4 :

Let ℛ be the following TRS:

f(f(𝑥, 𝑦), 𝑧)→ f(𝑥, f(𝑦, 𝑧))

f(𝑦, f(𝑥, 𝑧))→ f(𝑥, 𝑥)

1. Show that the termination of ℛ cannot be proved with RPO.

2. Show that ℛ terminates by defining a suitable polynomial interpretation over integers.

Solution:

(1) If we consider status(f) = lex then 𝑦 >rpo 𝑥 (from the second rule) does not holds, whereas

{|f(𝑥, 𝑦), 𝑧|}(>rpo)mul{|𝑥, f(𝑦, 𝑧)|} does not holds when we consider status(f) = mul.

(2) We consider 𝐴 = N ∖ {0, 1, 2} and 𝑃f = 𝑋2 + 𝑋𝑌 . It holds that

𝑃f(f(𝑥,𝑦),𝑧) = 𝑋4 + 2𝑋3𝑌 + 𝑋2𝑦2 + 𝑋2𝑍 + 𝑋𝑌 𝑍 > 𝑋2 + 𝑌 2𝑋 + 𝑋𝑌 𝑍 = 𝑃f(𝑥,f(𝑦,𝑧))

𝑃f(𝑦,f(𝑥,𝑧)) = 𝑌 2 + 𝑋2𝑌 + 𝑋𝑍 > 2𝑋2 = 𝑃f(𝑥,𝑥)

Exercise 5 :

An order > is total if, for all 𝑥, 𝑦, 𝑥 < 𝑦, 𝑥 = 𝑦 or 𝑥 > 𝑦. Prove that if > is a total order on function

symbols and >𝑙𝑝𝑜 is an order, then >𝑙𝑝𝑜 is total on closed terms.

Solution:

By induction on the size of terms (i.e. suppose that the property holds for terms of size less

or equal than 𝑛, show that it holds for terms of size less or equal than 𝑛 + 1). The base case

for constants symbol is trival as > is a total order. For the inductive case, simply apply the

definition of LPO.

A completion procedure is a program that accepts as input a finite set of identities 𝐸0 and a reduc-

tion order >, and generate a (finite or infinite) sequence (called run) (𝐸0, 𝑅0), (𝐸1, 𝑅1), (𝐸2, 𝑅2), . . .
where 𝑅0 = ∅, by applying the rules:

𝐸, 𝑅 𝑠←𝑅 𝑢→𝑅 𝑡

𝐸 ∪ {𝑠 = 𝑡}, 𝑅
Deduce

𝐸 ∪ {𝑠 =̇ 𝑡}, 𝑅 𝑠 > 𝑡

𝐸, 𝑅 ∪ {𝑠→ 𝑡}
Orient

𝐸 ∪ {𝑠 = 𝑠}, 𝑅

𝐸, 𝑅
Delete

𝐸 ∪ {𝑠 =̇ 𝑡}, 𝑅 𝑠→𝑅 𝑢

𝐸 ∪ {𝑢 = 𝑡}, 𝑅
Simplify

𝐸, 𝑅 ∪ {𝑠→ 𝑡} 𝑡→𝑅 𝑢

𝐸, 𝑅 ∪ {𝑠→ 𝑢}
Compose

𝐸, 𝑅 ∪ {𝑠→ 𝑡} 𝑠
A→𝑅 𝑢

𝐸 ∪ {𝑢 = 𝑡}, 𝑅
Collapse

where 𝑠 =̇ 𝑡 if and only if 𝑠 = 𝑡 or 𝑡 = 𝑠, whereas 𝑠
A→𝑅 𝑢 is used to express that 𝑠 is reduced to 𝑢

by a rule 𝑙→ 𝑟 of 𝑅 such that each sub-term of 𝑙 is not an instance of 𝑠. A special case of Deduce
is to apply it only if (𝑠, 𝑡) is a critical pair. Most completion procedures use the rule Deduce only in

this way. The goal of these procedures is to transform an initial pair (𝐸0, ∅) into a pair (∅,ℛ) such

that ℛ is a convergent TRS such that for every equivalence 𝑠 = 𝑡 ∈ 𝐸0, 𝑠 and 𝑡 are joinable by ℛ.
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Exercise 6 :

Consider the single equation I(𝑥)× (𝑥× 𝑦) = 𝑦. Compute a convergent TRS for the equational

theory defined by this equation. hint: you don’t need to use all the rules.

Solution:

For this Exercise, we will just use the rules Orient and Deduce, as follows:

1. Update 𝑅 by using Orient on an element of 𝐸,

2. Check for a critical pair (𝑠, 𝑡) in 𝑅 s.t. 𝑠 are 𝑡 are not joinable w.r.t. 𝑅.

- if (𝑠, 𝑡) exists, then 𝑅 is not locally confluent. Deduce 𝑠 = 𝑡 (which is added to 𝐸).

- if (𝑠, 𝑡) does not exists, 𝑅 is locally confluent.

3. if 𝐸 is empty, terminate. Otherwise, go to (1).

Let 𝐸0 = {I(𝑥)× (𝑥× 𝑦) = 𝑦} and 𝑅0 = ∅. By applying the Orient rule we obtain 𝐸1 = ∅ and
𝑅1 = {I(𝑥) × (𝑥 × 𝑦) → 𝑦}. The only critical peak in 𝑅1 is I(I(𝑥)) × (I(𝑥) × (𝑥 × 𝑦)) with

critical pair (I(I(𝑥))× 𝑦, 𝑥× 𝑦). 𝑅1 is not locally confluent. By applying Deduce we obtain

𝐸2 = {I(I(𝑥))× 𝑦 = 𝑥× 𝑦} and 𝑅2 = 𝑅1. By orienting the new identity we obtain 𝐸3 = ∅ and

𝑅3 = {I(𝑥)× (𝑥× 𝑦)→ 𝑦, I(I(𝑥))× 𝑦 → 𝑥× 𝑦}

which has a new critical peak I(I(𝑥)) × (I(𝑥) × 𝑦). 𝑅3 is not locally confluent. Therefore,

we apply Deduce to the critical pair (𝑥 × (I(𝑥) × 𝑦, 𝑦) of this new critical peak and obtain

𝐸4 = {𝑥× (I(𝑥)× 𝑦 = 𝑦} and 𝑅4 = 𝑅3.

We now apply Orient and obtain 𝐸5 = ∅ and

𝑅5 = {I(𝑥)× (𝑥× 𝑦)→ 𝑦, I(I(𝑥))× 𝑦 → 𝑥× 𝑦, 𝑥× (I(𝑥)× 𝑦 → 𝑦}

It’s easy to prove that 𝑅5 is a convergent TRS. Termination is trivial, whereas confluence

follows by Newman’s Lemma from its local confluency, which holds since all of its critical

pairs are joinable. For example, consider the critical peak 𝑥× (I(𝑥)× (I(I(𝑥))× 𝑦)) which is

associated with the following diagram

𝑥× (I(𝑥)× (I(I(𝑥))× 𝑦))

I(I(𝑥))× 𝑦 𝑥× 𝑦

Exercise 7 :

Let 𝑅 and 𝐵 be two well-founded relations such that

𝑅𝐵 ⊆ 𝑅 ∪ (𝐵(𝑅 ∪𝐵)*)

We say that (𝑥, 𝑦) is a blue (resp. red) edge if (𝑥, 𝑦) ∈ 𝐵 (resp. (𝑥, 𝑦) ∈ 𝑅). A blue path is a

sequence of blue edges. A node 𝑥 is infinite if there is an infinite 𝑅 ∪𝐵-sequence starting from 𝑥.
Otherwise 𝑥 is said to be finite. An infinite node 𝑥 is red if, from 𝑥, every blue edge arrives at a

finite node.

1. Prove that, from every infinite node, there is a blue path arriving at a red node.

2. Prove that 𝑅𝐵* ⊆ 𝑅 ∪ (𝐵(𝑅 ∪𝐵)*).

3. Prove that, from every red node, there is a red edge arriving at a red node.

4. Conclude that 𝑅 ∪𝐵 is well-founded.

5. As a consequence, prove that, in particular, 𝑅∪𝐵 is well-founded if 𝑅 and 𝐵 are well-founded

and 𝑅 ∪𝐵 is transitive.
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