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A multi-context 𝐶 is a term with distinguished variables �1, . . . ,�𝑛 occurring exactly once.
Replacing them by terms 𝑡1, . . . , 𝑡𝑛 respectively is denoted by 𝐶[𝑡1, . . . , 𝑡𝑛].

Let ℱ1 and ℱ2 be two disjoint signatures. A symbol is of color 𝑘 ∈ {1, 2} if it belongs to ℱ𝑘.
A term 𝑡 is of color 𝑘 if it’s not a variable and every symbol in it is of color 𝑘. We denote with 𝑘
the other possible color of 𝑘, i.e. 3 − 𝑘.

Let 𝑡 be a term with symbols in ℱ1 ∪ ℱ2. We define cap(𝑡) and aliens(𝑡) respectively as

cap(𝑡) =

⎧⎪⎨⎪⎩
𝑥 if 𝑡 = 𝑥 is a variable
𝐶 if 𝑡 = 𝐶[𝑡1, . . . , 𝑡𝑛] where 𝐶 is of color 𝑘 ∈ {1, 2} and

𝑡1, . . . , 𝑡𝑛 are headed by symbols of color 𝑘

aliens(𝑡) =

⎧⎪⎨⎪⎩
∅ if 𝑡 is a variable
{|𝑡1, . . . , 𝑡𝑛|} if 𝑡 = 𝐶[𝑡1, . . . , 𝑡𝑛] where 𝐶 is of color 𝑘 ∈ {1, 2} and

𝑡1, . . . , 𝑡𝑛 are headed by symbols of color 𝑘

The rank of a term 𝑡, denoted with rk(𝑡), is the maximum number of color layers in 𝑡, i.e.
rk(𝑡) = 1 + max𝑎∈aliens(𝑡)(rk(𝑎)).

Exercise 1 :

Let ℱ1 and ℱ2 be two disjoint signatures and let ℛ1, ℛ2 be two TRSs on ℱ1 and ℱ2 respectively
such that →ℛ1 terminates on 𝑇1 = 𝑇 (ℱ1, 𝑉 ) and →ℛ2 terminates on 𝑇2 = 𝑇 (ℱ2, 𝑉 ), where 𝑉 is a
set of variables. Let → be the rewrite relation on 𝑇 = 𝑇 (ℱ1 ∪ ℱ2, 𝑉 ) generated by ℛ1 ∪ ℛ2.

1. Prove that for each term 𝑡, 𝑢 ∈ 𝑇 , if 𝑡 → 𝑢 then rk(𝑡) ≥ 𝑟𝑘(𝑢).
2. Prove that if ℛ1 and ℛ2 do not have any rules of the form 𝑙 → 𝑥 where 𝑥 is a variable, then

→ terminates.
3. Prove that ℛ1 = {a(0, 1, 𝑥) → a(𝑥, 𝑥, 𝑥)} and ℛ2 = {m(𝑥, 𝑦) → 𝑥, m(𝑥, 𝑦) → 𝑦} are terminat-

ing, whereas ℛ1 ∪ ℛ2 is not.

Solution:

(1) The proof is by induction on rk(𝑡). We need to distinguish two cases:

• The reduction that leads to 𝑢 is in cap(𝑡). If 𝑢 is a variable, then rk(𝑢) = 1 ≤ rk(𝑡). If
cap(𝑡) and cap(𝑢) have distinct colors, then 𝑢 is an alien of 𝑡 and rk(𝑢) < rk(𝑡). Otherwise
it must holds that cap(𝑡) →ℛ1 cap(𝑢) or cap(𝑡) →ℛ2 cap(𝑢) (if cap(𝑡) is of color 1 or 2
respectively) and aliens(𝑢) ⊆ aliens(𝑡). Therefore, rk(𝑢) ≤ rk(𝑡).

• Let 𝑡 = 𝐶[𝑡1, . . . , 𝑡𝑛] where 𝐶 = cap(𝑡). Suppose now that reduction is in 𝑡𝑖 ∈ aliens(𝑡),
𝑖 ∈ [1, 𝑛], and it reduces 𝑡𝑖 to 𝑡′

𝑖 (therefore, 𝑢 = 𝐶[𝑡1, . . . , 𝑡𝑖−1, 𝑡′
𝑖, 𝑡𝑖+1, . . . , 𝑡𝑛]). By

induction hypothesis (since rk(𝑡𝑖) < rk(𝑡)), rk(𝑡′
𝑖) ≤ rk(𝑡𝑖). By definition of rk it holds that

rk(𝑡) = rk(𝐶[𝑡1, . . . , 𝑡𝑖−1, 𝑡𝑖, 𝑡𝑖+1, . . . , 𝑡𝑛]) ≥ rk(𝐶[𝑡1, . . . , 𝑡𝑖−1, 𝑡′
𝑖, 𝑡𝑖+1, . . . , 𝑡𝑛]) = rk(𝑢).

(2) Let 𝑡 be a term. The proof is by well-founded induction on (rk(𝑡), cap(𝑡), aliens(𝑡)) w.r.t.
the well-founded order (>, (→+

ℛ1
∪ →+

ℛ2
), →mul)lex. Notice that, since →ℛ1 and →ℛ2 are

terminating, the relation (→+
ℛ1

∪ →+
ℛ2

) ⊆ (𝑇 (ℱ1, 𝑉 ) ∪ 𝑇 (ℱ2, 𝑉 ))2 that maps elements of
𝑇 (ℱ1, 𝑉 ) to elements of 𝑇 (ℱ1, 𝑉 ) and elements of 𝑇 (ℱ2, 𝑉 ) to elements of 𝑇 (ℱ2, 𝑉 ) is well-
founded. →mul is also well-founded as explained in the last point of the proof (below). If 𝑡 is
irreducible, then → terminates on it. Instead, if 𝑡 → 𝑢, then we need to consider the following
three cases:
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Require: A finite set 𝐸 of identities and a reduction order >
Ensure: A finite convergent (terminating and confluent) rewrite system 𝑅 equivalent to 𝐸 if the

procedure terminates successfully, FAIL if the procedure terminates unsuccessfully
1: 𝑅0 := ∅ ; 𝐸0 := 𝐸 ; 𝑖 := 0 ; all identities of 𝐸 are unmarked
2: while 𝐸𝑖 ̸= ∅ or there is an unmarked rule in 𝑅𝑖 do

3: while 𝐸𝑖 ̸= ∅ do

4: Choose an identity (𝑠, 𝑡) ∈ 𝐸 and reduce 𝑠 and 𝑡 to some 𝑅𝑖-normal forms 𝑠 and 𝑡
5: if 𝑠 = 𝑡 then

6: 𝑅𝑖+1 := 𝑅𝑖 ; 𝐸𝑖+1 := 𝐸𝑖 ∖ {(𝑠, 𝑡)} ; 𝑖 := 𝑖 + 1
7: else if 𝑠 ≯ 𝑡 ∧ 𝑡 ≯ 𝑠 then

8: terminates with output FAIL
9: else

10: let 𝑙 and 𝑟 such that {𝑙, 𝑟} = {𝑠, 𝑡} and 𝑙 > 𝑟
11: 𝑅𝑖+1 := {(𝑔, 𝑑) | (𝑔, 𝑑) ∈ 𝑅𝑖 ∧𝑔 cannot be reduced with 𝑙 → 𝑟 ∧𝑑 is a 𝑅𝑖 ∪{(𝑙, 𝑟)}-normal

form of 𝑑} ∪ {(𝑙, 𝑟)}
12: (𝑙, 𝑟) is not marked and (𝑔, 𝑑) is marked in 𝑅𝑖+1 iff (𝑔, 𝑑) is marked in 𝑅𝑖

13: 𝐸𝑖+1 := (𝐸𝑖 ∖ {(𝑠, 𝑡)}) ∪ {(𝑔′, 𝑑) | (𝑔, 𝑑) ∈ 𝑅𝑖 ∧ 𝑔 can be reduced to 𝑔′ with 𝑙 → 𝑟}
14: 𝑖 := 𝑖 + 1
15: end if

16: end while

17: if there is an unmarked rule in 𝑅𝑖 then

18: let (𝑙, 𝑟) be such a rule
19: 𝑅𝑖+1 := 𝑅𝑖

20: 𝐸𝑖+1 := {(𝑠, 𝑡) | (𝑠, 𝑡) is a critical pair of (𝑙, 𝑟) with itself or with a marked rule in 𝑅𝑖}
21: Mark (𝑙, 𝑟) ; 𝑖 := 𝑖 + 1
22: end if

23: end while

24: return 𝑅𝑖

Figure 1: Huet’s completion procedure

• rk(𝑡) = 1, i.e. 𝑡 is of color 𝑘 ∈ {1, 2}. Then 𝑢 is of the same color and therefore 𝑡 →ℛ𝑘
𝑢.

We can apply the induction hypothesis (𝑢 terminates) and conclude that also 𝑡 terminates.

• rk(𝑡) > 1 and the reduction is in 𝐶 = cap(𝑡). Let 𝑘 be the color of 𝐶. Since the rules
are non-collapsing, then cap(𝑢) is of color 𝑘 and, by well-foundness of →ℛ𝑘

we can apply
the induction hypothesis (𝑢 terminates) and conclude that, 𝑡 also terminates.

• Lastly, rk(𝑡) > 1 and the reduction is in some alien 𝑎 ∈ aliens(𝑡), that is reduced to 𝑎′.
Then, since rk(𝑎) < rk(𝑡), we can apply the induction hypothesis and conclude that 𝑎 is
terminating. Since the rules are non-collapsing, it holds that cap(𝑡) = cap(𝑢) and, from
aliens(𝑢) = aliens(𝑡) − {|𝑎|} + {|𝑎′|}, all aliens of 𝑡 and 𝑢 are terminating. Therefore, it
holds that →mul is a well-founded strict order when restricted to elements of aliens(𝑡).
Since aliens(𝑡) →mul aliens(𝑢), 𝑢 terminates and so does 𝑡.

(3) For ℛ1 consider the order > where 𝑡 > 𝑠 if and only if

{| |𝑢| | ∃𝑝 ∈ Pos(𝑡) 𝑡|𝑝 = 𝑓(0, 1, 𝑢)|} >mul {| |𝑢| | ∃𝑝 ∈ Pos(𝑠) 𝑠|𝑝 = 𝑓(0, 1, 𝑢)|}

where |𝑢| is the height of 𝑢. It’s easy to show that > is a simplification order such that for
each terms 𝑡 → 𝑠 it holds 𝑡 > 𝑠. Instead, the termination of ℛ2 is trivial (consider the size of
the term). Lastly, ℛ1 ∪ ℛ2 does not terminate:

a(m(0, 1), m(0, 1), m(0, 1)) → a(0, m(0, 1), m(0, 1)) → a(0, 1, m(0, 1)) → a(m(0, 1), m(0, 1), m(0, 1))

Exercise 2 :

Page 2



1. Prove that the set of identities

(@(nil, 𝑥), 𝑥),
(@(cons(𝑥, 𝑦), 𝑧), cons(𝑥, @(𝑦, 𝑧))),
(rev(nil), nil),
(rev(cons(𝑥, 𝑦)), @(rev(𝑦), cons(𝑥, nil)))

can be oriented to give a convergent TRS. Let 𝑅 this TRS.
2. Why the associativity 𝐴 of @, @(@(𝑥, 𝑦), 𝑧) = @(𝑥, @(𝑦, 𝑧)) is not a consequence of 𝑅?
3. Prove that you can complete (𝐴, 𝑅). You can use Huet’s completion procedure (Figure 1).
4. Show that Huet’s completion fails to complete ({rev(𝑥) = @(𝑥, 𝑥)}, 𝑅).

Solution:

(1) We use LPO w.r.t. the order rev > @ > cons > nil to orient the rules as follows:

@(nil, 𝑥) >𝑙𝑝𝑜 𝑥

@(cons(𝑥, 𝑦), 𝑧) >𝑙𝑝𝑜 cons(𝑥, @(𝑦, 𝑧))
rev(nil) >𝑙𝑝𝑜 nil

rev(cons(𝑥, 𝑦)) >𝑙𝑝𝑜 @(rev(𝑦), cons(𝑥, nil))

𝑅 = {@(nil, 𝑥) → 𝑥, @(cons(𝑥, 𝑦), 𝑧) → cons(𝑥, @(𝑦, 𝑧)), rev(nil) → nil, rev(cons(𝑥, 𝑦)) →
@(rev(𝑦), cons(𝑥, nil))} is a TRS with no critical pairs. Therefore, by critical pairs Lemma,
𝑅 is locally confluent. Moreover, since we can use LPO to prove its termination, by Newman’s
Lemma (which implies confluency of 𝑅), 𝑅 is convergent.
Notice that if we change the orientation of the last rule to

@(rev(𝑦), cons(𝑥, nil)) >𝑙𝑝𝑜 rev(cons(𝑥, 𝑦))

we obtain a TRS with a critical pair derived from the following diagram:

@(rev(nil), cons(𝑥, nil))

@(nil, cons(𝑥, nil))

cons(𝑥, nil)

rev(cons(𝑥, nil))

Which is not a convergent critical pair. Therefore this orientation is not enough to get a
convergent TRS and we would need to apply a completion procedure.
(2) @(@(𝑥, 𝑦), 𝑧) and @(𝑥, @(𝑦, 𝑧)) are already in normal form w.r.t. 𝑅 and therefore associa-
tivity is not a consequence of 𝑅.
(3) Consider 𝑅0 as the LPO of (1), equal to

@(nil, 𝑥) → 𝑥,

@(cons(𝑥, 𝑦), 𝑧) → cons(𝑥, @(𝑦, 𝑧)),
rev(nil) → nil,

rev(cons(𝑥, 𝑦)) → @(rev(𝑦), cons(𝑥, nil))

and 𝑅0 = ∅. Let 𝐸0 = {(@(@(𝑥′, 𝑦′), 𝑧′), @(𝑥′, @(𝑦′, 𝑧′)))} = 𝐴 We now apply the procedure
from Line 2 of the pseudocode. by Line 4, we take the identity (@(@(𝑥′, 𝑦′), 𝑧′), @(𝑥′, @(𝑦′, 𝑧′)))
and reduce it to a normal form using 𝑅0 (by the last point in the exercise, the identity is
already in normal form). By definition of LPO, the test in Line 7 fails (fortunately) and we
will execute from Line 10, with 𝑙 = (@(@(𝑥′, 𝑦′), 𝑧′) > @(𝑥′, @(𝑦′, 𝑧′))) = 𝑟. Line 11 simply add
(𝑙, 𝑟) to 𝑅0, so that 𝑅1 = {(𝑙, 𝑟)} ∪ 𝑅0. Then, 𝐸1 = ∅ by Line 13. The procedure will continue
by evaluating the conditional at line 17. As already shown in (1), 𝑅0 does not have any critical
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pairs. Then assume that the rules of 𝑅0 are chosen before (𝑙, 𝑟), resulting in them being now
marked. We now only need to consider the critical pairs between the associativity rule and
the other rules. We derive the following diagrams based on the substitutions 𝜎5,1 = [𝑥′/nil],
𝜎5,2 = [𝑥′/cons(𝑥, 𝑦)] and 𝜎5,5 = [𝑥′/@(𝑥, 𝑦)], where 𝜎𝑖,𝑗 is the mgu that can be used to
compute a critical pair between the rules 𝑖 and 𝑗:

@(@(nil, 𝑦), 𝑧)

@(nil, @(𝑦, 𝑧)) @(𝑦, 𝑧)

@(@(cons(𝑥, 𝑦), 𝑧), 𝑤)

@(cons(𝑥, 𝑦), @(𝑧, 𝑤)) @(cons(𝑥, @(𝑦, 𝑧)), 𝑤)

cons(𝑥, @(𝑦, @(𝑧, 𝑤)))

@(@(@(𝑥, 𝑦), 𝑧), 𝑤)

@(@(𝑥, 𝑦), @(𝑧, 𝑤)) @(@(𝑥, @(𝑦, 𝑧)), 𝑤)

@(𝑥, @(@(𝑦, 𝑧), 𝑤))

@(𝑥, @(𝑦, @(𝑧, 𝑤)))

The critical pairs in these diagrams are

• (@(nil, @(𝑦, 𝑧)), @(𝑦, 𝑧)) where @(nil, @(𝑦, 𝑧)) >𝑙𝑝𝑜 @(𝑦, 𝑧),

• (@(cons(𝑥, 𝑦), @(𝑧, 𝑤)), @(cons(𝑥, @(𝑦, 𝑧)), 𝑤)) where

@(cons(𝑥, 𝑦), @(𝑧, 𝑤)) >𝑙𝑝𝑜 @(cons(𝑥, @(𝑦, 𝑧)), 𝑤)

• (@(@(𝑥, 𝑦)@(𝑧, 𝑤)), @(@(𝑥, @(𝑦, 𝑧)), 𝑤) where @(@(𝑥, @(𝑦, 𝑧)), 𝑤) >𝑙𝑝𝑜 @(@(𝑥, 𝑦)@(𝑧, 𝑤)).

Notice how all three diagrams are confluent. For this reason, lets put aside the Huet’s procedure
and consider the TRS 𝑅1:

@(nil, 𝑥) → 𝑥

@(cons(𝑥, 𝑦), 𝑧) → cons(𝑥, @(𝑦, 𝑧))
rev(nil) → nil

rev(cons(𝑥, 𝑦)) → @(rev(𝑦), cons(𝑥, nil))
(@(@(𝑥′, 𝑦′), 𝑧′) → @(𝑥′, @(𝑦′, 𝑧′)))

its easy to show that this TRS is terminating w.r.t. the LPO induced by the order the order
rev > @ > cons > nil. Moreover, from the diagrams above, all critical pairs are convergent.
As such, the TRS is locally confluent and by Newman’s Lemma, is also convergent. Moreover,
in this TRS it trivially holds that (@(@(𝑥′, 𝑦′), 𝑧′) and @(𝑥′, @(𝑦′, 𝑧′))) have the same normal
form and the TRS is a completion for (𝐴, 𝑅).
(4) For simplicity, let 𝑅0 = 𝑅 and 𝐸0 = {(rev(𝑥), @(𝑥, 𝑥))} and suppose we start the evaluation
of Huet’s procedure from line 3. It holds that rev(𝑥) >𝑙𝑝𝑜 @(𝑥, 𝑥) and the two terms are already
in 𝑅0-normal form. The rules (rev(nil), nil) and (rev(cons(𝑥, 𝑦)), @(rev(𝑦), cons(𝑥, nil)))
can be reduced via rev(𝑥). As such, it will hold that

𝑅1 = {(@(nil, 𝑥), 𝑥), (@(cons(𝑥, 𝑦), 𝑧), cons(𝑥, @(𝑦, 𝑧))), (rev(𝑥), @(𝑥, 𝑥))}

and

𝐸1 = {(@(nil, nil), nil), (@(cons(𝑥, 𝑦), cons(𝑥, 𝑦)), @(rev(𝑦), cons(𝑥, nil)))}
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The first identity of 𝐸1 will be simply removed since the 𝑅1-normal form of @(nil, nil) is
exactly nil. Instead, the normal form of the second identity in 𝐸1 is

(cons(𝑥, @(𝑦, cons(𝑥, 𝑦))), @(@(𝑦, 𝑦), cons(𝑥, nil)))

and is such that @(@(𝑦, 𝑦), cons(𝑥, nil)) >𝑙𝑝𝑜 cons(𝑥, @(𝑦, cons(𝑥, 𝑦))). Therefore, 𝐸 and 𝑅
will be updated so that 𝐸3 = ∅ and

𝑅3 ={(@(nil, 𝑥), 𝑥), (@(cons(𝑥, 𝑦), 𝑧), cons(𝑥, @(𝑦, 𝑧))), (rev(𝑥), @(𝑥, 𝑥)),
(@(@(𝑦, 𝑦), cons(𝑥, nil)), cons(𝑥, @(𝑦, cons(𝑥, 𝑦))))}

The procedure will then search for critical pairs of 𝑅3 and eventually find the critical pairs
between @(cons(𝑥, 𝑦), 𝑧) and @(@(𝑦′, 𝑦′), cons(𝑥′, nil)), in particular w.r.t. the substitution
𝜎 = [𝑦′/cons(𝑥, 𝑦), 𝑧/cons(𝑥, 𝑦)] from which we derive the following diagram

@(@(cons(𝑥, 𝑦), cons(𝑥, 𝑦)), cons(𝑥′, nil)))

@(cons(𝑥, @(𝑦, cons(𝑥, 𝑦))), cons(𝑥′, nil)) cons(𝑥′, @(cons(𝑥, 𝑦), cons(𝑥′, cons(𝑥, 𝑦))))

cons(𝑥, @(@(𝑦, cons(𝑥, 𝑦)), cons(𝑥′, nil)))

the critical pair

(@(cons(𝑥, @(𝑦, cons(𝑥, 𝑦))), cons(𝑥′, nil)), cons(𝑥′, @(cons(𝑥, 𝑦), cons(𝑥′, cons(𝑥, 𝑦)))))

will be added to 𝐸 and eventually selected in line 4. However, from the diagram we can see
that the normal form of this critical pair is (𝑠, 𝑡) =

(cons(𝑥, @(@(𝑦, cons(𝑥, 𝑦)), cons(𝑥′, nil))), cons(𝑥′, @(cons(𝑥, 𝑦), cons(𝑥′, cons(𝑥, 𝑦)))))

and is such that 𝑠 ̸= 𝑡, 𝑠 ≯𝑙𝑝𝑜 𝑡 and 𝑡 ≯𝑙𝑝𝑜 𝑠 and therefore the completion procedure will
return FAIL. The completion will also fail if we considered an order where @(𝑥, 𝑥) > rev(𝑥),
as implied by (1).
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The following exercises are taken from last year exam.

Exercise 3 :

Is the following rewrite system confluent and terminating?

add(0, 𝑦) → 𝑦

add(s(𝑥), 𝑦) → s(add(𝑥, 𝑦))
mul(0, 𝑦) → 0

mul(s(𝑥), 𝑦) → add(𝑦, mul(𝑥, 𝑦))
add(add(𝑥, 𝑦), 𝑧) → add(𝑥, add(𝑦, 𝑧))
mul(add(𝑥, 𝑦), 𝑧) → add(mul(𝑥, 𝑧), mul(𝑦, 𝑧))

Exercise 4 :

Prove that a rewrite system ℛ terminates by using a monotone polynomial interpretation on
𝐷𝑘 = {𝑛 ∈ Z | 𝑛 > 𝑘} (𝑘 ∈ Z) if and only if it does so by using a polynomial interpretation on 𝐷0.

Exercise 5 :

Let ≤ be a quasi-ordering on function symbols. Let <=≤ − ≤−1 be its strict part and ≈=≤ ∩ ≤−1

be its associated equivalence relation. Prove that <𝑙𝑝𝑜 is transitive, stable (by substitution),
monotone and contains the subterm relation.
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