
Rewriting Techniques: TD 4

6-12-2018

An argument filtering TRS (AFTRS) on the set of functions 𝐹 is a rewrite system 𝐴 on 𝐹 ∪ 𝐹 ′

for some set of function symbols 𝐹 ′ disjoint from 𝐹 , such that the rules of 𝐴 are of the form:

• 𝑓(𝑥1, . . . , 𝑥𝑛)→ 𝑔(𝑦1, . . . , 𝑦𝑘) with 𝑓 ∈ 𝐹 , 𝑔 ∈ 𝐹 ′, the 𝑥𝑖 are pairwise different variables and

the 𝑦𝑗 ∈ {𝑥1, . . . , 𝑥𝑛} are also pairwise different, or

• 𝑓(𝑥1, . . . , 𝑥𝑛)→ 𝑥𝑖 with 𝑓 ∈ 𝐹 and the 𝑥𝑖 are pairwise different variables.

Moreover, for every symbol 𝑓 ∈ 𝐹 , there is at most one rule of this form.

Exercise 1 :

1. Prove that an AFTRS always terminates and is confluent.

2. Fix 𝐴 an AFTRS and denote with 𝑡𝐴 the normal form of 𝑡 w.r.t. 𝐴. Let 𝐼𝑁 be a set of

inequalities on terms. Prove that if the inequalities

{𝑠𝐴 > 𝑡𝐴 | 𝑠 > 𝑡 ∈ 𝐼𝑁} ∪ {𝑠𝐴 ≥ 𝑡𝐴 | 𝑠 ≥ 𝑡 ∈ 𝐼𝑁}

are satisfied by a well-founded weakly monotonic quasi-ordering where both > and ≥ are

closed under substitution, on terms of 𝐹 ⊎ 𝐹 ′, then there is a well-founded quasi-ordering ≥′

satisfying the inequalities 𝐼𝑁 .

In the last TD we considered the following TRS (Exercise 2):

m(𝑥, 0)→ 0 m(s(𝑥), s(𝑦))→ m(𝑥, 𝑦)

q(0, s(𝑦))→ 0 q(s(𝑥), s(𝑦))→ s(q(m(𝑥, 𝑦), s(𝑦)))

p(0, 𝑦)→ 𝑦 p(𝑥, s(𝑦))→ s(p(𝑥, 𝑦))

m(m(𝑥, 𝑦), 𝑧)→ m(𝑥, p(𝑦, 𝑧))

and obtained the disequalities (solution of Exercise 2.5):

m(𝑥, 0) ≥ 𝑥

m(s(𝑥), s(𝑦)) ≥ m(𝑥, 𝑦)

q(0, s(𝑦)) ≥ 0

q(s(𝑥), s(𝑦)) ≥ s(q(m(𝑥, 𝑦), s(𝑦)))

p(0, 𝑦) ≥ 𝑦

p(𝑥, s(𝑦)) ≥ s(p(𝑥, 𝑦))

m(m(𝑥, 𝑦), 𝑧) ≥ m(𝑥, p(𝑦, 𝑧))

m#(s(𝑥), s(𝑦)) > m#(𝑥, 𝑦)

q#(s(𝑥), s(𝑦)) > q#(m(𝑥, 𝑦), s(𝑦))

p#(𝑥, s(𝑦)) > p#(𝑥, 𝑦)

m#(m(𝑥, 𝑦), 𝑧) > m#(𝑥, p(𝑦, 𝑧))

3. Find a suitable AFTRS that you can use to apply the result in the second point of this exercise

on the set of inequalities above. Then, prove termination using a weakly monotonic polynomial

interpretation on integers or a RPO.

Solution:

(1) Termination can be shown, for example, via KBO by defining an order where for each 𝑓 ∈ 𝐹
and 𝑔 ∈ 𝐹 ′, 𝑤(𝑓) > 𝑤(𝑔). We can prove strong confluency. Here’s a sketch of the proof. Let 𝑡
be a term and 𝑝, 𝑝′ two positions where we can apply respectively the rewriting rules 𝑅 and 𝑅′.

If 𝑝 = 𝑝′ then 𝑅 = 𝑅′ from the conditions of AFTRS and the result holds. If 𝑝 ̸< 𝑝′ and 𝑝′ ̸< 𝑝

then trivially 𝑡
𝑅−→ 𝑅′

−→ 𝑡′ and 𝑡
𝑅′

−→ 𝑅−→ 𝑡′. Let now 𝑅 be of the form 𝑓(𝑥1, . . . , 𝑥𝑛)→ 𝑔(𝑦1, . . . , 𝑦𝑘)

and let 𝑅′ be of the form 𝑓 ′(𝑥′
1, . . . , 𝑥′

𝑚)→ 𝑔′(𝑦′
1, . . . , 𝑦′

𝑗). W.l.o.g. suppose 𝑝′ < 𝑝. Then there

exists 𝑖 such that 𝑝′ ≤ 𝑖𝑝. By applying 𝑅 to 𝑡|𝑝 one of the following will holds

1



• if there exists 𝑙 such that, 𝑥𝑖 = 𝑦𝑙, then 𝑅′ can still be applied and it will hold that

𝑡
𝑅−→ 𝑅′

−→ 𝑡′ and 𝑡
𝑅′

−→ 𝑅−→ 𝑡′;

• otherwise, if 𝑥𝑖 does not appear in the right side of 𝑅, then 𝑅′ can not longer be applied

but it will hold that 𝑡
𝑅−→ 𝑡′ and 𝑡

𝑅′

−→ 𝑅−→ 𝑡′.

(2) Assuming that the normalized inequalities are satisfied by ≥, a relation ≥′ on terms is

defined where the terms are first normalized and then compared w.r.t. ≥, i.e. 𝑠 ≥′ 𝑡 if and only

if 𝑠𝐴 ≥ 𝑡𝐴. It is straightforward to see that ≥′ is a well-founded quasi-ordering satisfying the

inequalities 𝐼𝑁 . For any substitution 𝜎, let 𝜎𝐴 denote the substitution which results from 𝜎
by normalizing all terms in its range, w.r.t. 𝐴. Then, for all terms 𝑡 and all substitutions 𝜎 we

have (𝑡𝜎)𝐴 = 𝑡𝐴𝜎𝐴. Hence, both ≥′ and >′ are closed under substitution. Moreover, ≥′ (and

therefore >′) is weakly monotonic, because 𝑠𝐴 ≥ 𝑡𝐴 implies 𝑓(. . . , 𝑠𝐴, . . . )𝐴 ≥ 𝑓(. . . , 𝑡𝐴, . . . )𝐴

which is equivalent to 𝑓(. . . , 𝑠, . . . )𝐴 ≥ 𝑓(. . . , 𝑡, . . . )𝐴.

(3) We define the AFTRS {m(𝑥, 𝑦)→𝑀(𝑥), p(𝑥, 𝑦)→ 𝑃 (𝑦)}. After normalizing all inequalities

we have:

𝑀(𝑥) ≥ 𝑥

𝑀(s(𝑥)) ≥𝑀(𝑥)

q(0, s(𝑦)) ≥ 0

q(s(𝑥), s(𝑦)) ≥ s(q(𝑀(𝑥), s(𝑦)))

𝑃 (𝑦) ≥ 𝑦

𝑃 (s(𝑦)) ≥ s(𝑃 (𝑦))

𝑀(𝑀(𝑥)) ≥𝑀(𝑥)

m#(s(𝑥), s(𝑦)) > m#(𝑥, 𝑦)

q#(s(𝑥), s(𝑦)) > q#(𝑀(𝑥), s(𝑦))

p#(s(𝑥), 𝑦) > p#(𝑥, 𝑦)

m#(𝑀(𝑥), 𝑧) > m#(𝑥, 𝑃 (𝑧))

That can be proved terminating using RPO with lexicographic ordering w.r.t. the order (other

orders are also possible):

m# > 𝑞# > 𝑞 > 𝑝# > 𝑃 > 𝑠 > 𝑀

Otherwise, a weakly monotonic polynomial interpretation on integers can be defined as follows:

𝑃0 = 0, 𝑃𝑃 (𝑋) = 𝑋, 𝑃𝑀 (𝑋) = 𝑋 + 1, 𝑃q(𝑋, 𝑌 ) = 𝑋2 + 𝑌 , 𝑃s(𝑋) = 𝑋 + 2, 𝑃p#(𝑋, 𝑌 ) =

𝑃q#(𝑋, 𝑌 ) = 𝑃m#(𝑋, 𝑌 ) = 𝑋 + 𝑌 .

A relation → is locally confluent if and only if for all 𝑟, 𝑠, 𝑡: 𝑟 ← 𝑠→ 𝑡 =⇒ 𝑟 ↓ 𝑡.

A unification problem 𝑃 consist in a set of equations 𝑠 =? 𝑡 between terms. A solution of 𝑃
is a substitution 𝜎 such that, for every equation 𝑠 =? 𝑡 in 𝑃 we have 𝑠𝜎 = 𝑡𝜎. We say that two

terms 𝑠, 𝑡 are unifiable if the unification problem {𝑠 =? 𝑡} has a solution. If two terms are unifiable

then there exists a smallest solution, called most general unifier (mgu), w.r.t. the pointwise

instantiation quasi-order.

Let 𝑙→ 𝑟, 𝑙′ → 𝑟′ be two rules whose variables have been renamed such that (𝑉 𝑎𝑟(𝑙) ∪ 𝑉 𝑎𝑟(𝑟)) ∩
(𝑉 𝑎𝑟(𝑙′) ∪ 𝑉 𝑎𝑟(𝑟′)) = ∅. Let 𝑝 ∈ Pos(𝑙) be such that 𝑙|𝑝 is not a variable and let 𝜎 be an mgu of

𝑙|𝑝 =? 𝑙′. This determines a critical pair (𝑟𝜎, (𝑙𝜎)[𝑟′𝜎]𝑝). We are interested in non-trivial critical

pairs, i.e critical pairs (𝑠, 𝑡) where 𝑠 ̸= 𝑡.

Exercise 2 :

Compute the critical pairs of the following rewrite systems. Which one are locally confluent?

1. s(p(s(𝑦)))→ 𝑦, s(p(𝑥))→ p(s(𝑥))

2. 0 + 𝑦 → 𝑦, 𝑥 + 0→ 𝑥, s(𝑤) + 𝑧 → s(𝑤 + 𝑧), 𝑣 + s(𝑘)→ s(𝑣 + 𝑘)

Page 2



3. a(𝑥, 𝑥)→ 0, a(𝑦, p(𝑦))→ 1
4. a(a(𝑥, 𝑦), 𝑧)→ a(𝑥, a(𝑦, 𝑧)), a(𝑤, 1)→ 𝑤

Solution:

(1) The critical pairs are determined from the substitutions 𝜎1 = [𝑥/s(𝑦)] and 𝜎2 = [𝑦/p(𝑥)]

and 𝜎3 = [𝑦/p(s(𝑧))], where 𝜎3 is obtained considering s(p(s(𝑦))) with its renaming s(p(s(𝑧))).

From these three substitutions we get respectively the following three diagrams:

s(p(s(𝑦)))

𝑦 p(s(s(𝑦)))

s(p(s(p(𝑥))))

s(p(p(s(𝑥)))) p(s(s(p(𝑥))))

p(𝑥)

p(s(p(s(𝑥))))

p(p(s(s(𝑥))))

s(p(s(p(s(𝑧)))

s(p(𝑧)) p(s(𝑧))

where the critical pairs are (s(p(s(𝑦))), 𝑦), (p(𝑥), s(p(p(s(𝑥))))), (p(𝑥), p(s(s(p(𝑥))))) and

(s(p(𝑧)), p(s(𝑧))). From the diagrams it follows that the TRS is not locally confluent.

(2) The critical pairs are determined from the substitutions 𝜎1,2 = [𝑥/0, 𝑦/0], 𝜎1,4 = [𝑣/0, 𝑦/s(𝑘)],

𝜎2,3 = [𝑥/s(𝑤), 𝑧/0], 𝜎3,4 = [𝑣/s(𝑤), 𝑧/s(𝑘)]., where 𝜎𝑖,𝑗 is defined from the rules 𝑖 and 𝑗. From
these substitutions we get the following diagrams:

0 + 0

0

0 + s(𝑘)

s(0 + 𝑘) s(𝑘)

s(𝑤) + 0

s(𝑤 + 0) s(𝑤)

s(𝑤) + s(𝑘)

s(𝑤 + s(𝑘)) s(s(𝑤) + 𝑘)

s(s(𝑤 + 𝑘))

where the critical pairs are (0, 0), (s(0 + 𝑘), s(𝑘), (s(𝑤 + 0), s(𝑤)), (s(𝑤 + s(𝑘)), s(s(𝑤) + 𝑘)).

From the diagrams it follows that the TRS is locally confluent (actually stronger than that:

the diamond property is satisfied).

(3) There are no non-trivial critical pairs since the unification problem 𝑦 =? p(𝑦) does not

admit any solution. Therefore, the TRS is locally confluent.

(4) The critical pairs are determined from the substitutions 𝜎1 = [𝑤/a(𝑥, 𝑦), 𝑧/1], 𝜎2 =

[𝑥/𝑤, 𝑦/1] and 𝜎3 = [𝑥/a(𝑥′, 𝑦′), 𝑦/𝑧′], where 𝜎3 is obtained considering a(a(𝑥, 𝑦), 𝑧) with its

renaming a(a(𝑥′, 𝑦′), 𝑧′). From these three substitutions we get respectively the following

diagrams:

a(a(𝑥, 𝑦), 1)

a(𝑥, a(𝑦, 1)) a(𝑥, 𝑦)

a(a(𝑤, 1), 𝑧)

a(𝑤, 𝑧) a(𝑤, a(1, 𝑧))

a(a(a(𝑥′, 𝑦′), 𝑧′), 𝑧)

a(a(𝑥′, a(𝑦′, 𝑧′)), 𝑧) a(a(𝑥′, 𝑦′), a(𝑧′, 𝑧))

a(𝑥′, a(a(𝑦′, 𝑧′), 𝑧)) a(𝑥′, a(𝑦′, a(𝑧′, 𝑧)))

where the critical pairs are (a(𝑥, a(𝑦, 1)), a(𝑥, 𝑦)) and (a(𝑤, 𝑧), a(𝑤, a(1, 𝑧))). From the diagrams

it follows that the TRS is not locally confluent.

Page 3



A completion procedure is a program that accepts as input a finite set of identities 𝐸0 and a reduc-

tion order >, and generate a (finite or infinite) sequence (called run) (𝐸0, 𝑅0), (𝐸1, 𝑅1), (𝐸2, 𝑅2), . . .
where 𝑅0 = ∅, by applying the rules:

𝐸, 𝑅 𝑠←𝑅 𝑢→𝑅 𝑡

𝐸 ∪ {𝑠 ≈ 𝑡}, 𝑅
Deduce

𝐸 ∪ {𝑠 ≈̇ 𝑡}, 𝑅 𝑠 > 𝑡

𝐸, 𝑅 ∪ {𝑠→ 𝑡}
Orient

𝐸 ∪ {𝑠 ≈ 𝑠}, 𝑅

𝐸, 𝑅
Delete

𝐸 ∪ {𝑠 ≈̇ 𝑡}, 𝑅 𝑠→𝑅 𝑢

𝐸, 𝑅 ∪ {𝑢→ 𝑡}
Simplify-Id

𝐸, 𝑅 ∪ {𝑠→ 𝑡} 𝑡→𝑅 𝑢

𝐸, 𝑅 ∪ {𝑠→ 𝑢}
R-Simplify

𝐸, 𝑅 ∪ {𝑠→ 𝑡} 𝑠
A→𝑅 𝑢

𝐸 ∪ {𝑢 ≈ 𝑡}, 𝑅
L-Simplify

where 𝑠 ≈̇ 𝑡 if and only if 𝑠 ≈ 𝑡 or 𝑡 ≈ 𝑠, whereas 𝑠
A→𝑅 𝑢 is used to express that 𝑠 is reduced to 𝑢

by a rule 𝑙→ 𝑟 of 𝑅 such that each subterm of 𝑙 is not an instance of 𝑠.

Warning: these inference rules are different from the ones seen during the lecture (they can be

found HERE). You should be able to prove that the two sets of rules are equivalent. I advise you

to use the definition in the lecture notes for the next exercise. The current solution of the following

exercise is however given with respect to the rules above.

A special case of Deduce is to apply it only if (𝑠, 𝑡) is a critical pair. Most completion procedures

use the rule Deduce only in this way. The goal of these procedures is to teransform an initial pair

(𝐸0, ∅) into a pair (∅,ℛ) such that ℛ is a convergent TRS equivalent to 𝐸0.

Algorithm 1 Huet’s completion procedure

Require: A finite set 𝐸 of identities and a reduction order >
Ensure: A finite convergent (terminating and confluent) rewrite system 𝑅 equivalent to 𝐸 if the

procedure terminates successfully, FAIL if the procedure terminates unsuccessfully

1: 𝑅0 := ∅ ; 𝐸0 := 𝐸 ; 𝑖 := 0 ; all identities of 𝐸 are unmarked

2: while 𝐸𝑖 ̸= ∅ or there is an unmarked rule in 𝑅𝑖 do

3: while 𝐸𝑖 ̸= ∅ do

4: Choose an identity (𝑠, 𝑡) ∈ 𝐸 and reduce 𝑠 and 𝑡 to some 𝑅𝑖-normal forms 𝑠 and 𝑡
5: if 𝑠 = 𝑡 then
6: 𝑅𝑖+1 := 𝑅𝑖 ; 𝐸𝑖+1 := 𝐸𝑖 ∖ {(𝑠, 𝑡)} ; 𝑖 := 𝑖 + 1

7: else if 𝑠 ≯ 𝑡 ∧ 𝑡 ≯ 𝑠 then

8: terminates with output FAIL

9: else

10: let 𝑙 and 𝑟 such that {𝑙, 𝑟} = {𝑠, 𝑡} and 𝑙 > 𝑟
11: 𝑅𝑖+1 := {(𝑔, 𝑑) | (𝑔, 𝑑) ∈ 𝑅𝑖∧𝑔 cannot be reduced with 𝑙→ 𝑟∧𝑑 is a 𝑅𝑖∪{(𝑙, 𝑟)}-normal

form of 𝑑} ∪ {(𝑙, 𝑟)}
12: (𝑙, 𝑟) is not marked and (𝑔, 𝑑) is marked in 𝑅𝑖+1 iff (𝑔, 𝑑) is marked in 𝑅𝑖

13: 𝐸𝑖+1 := (𝐸𝑖 ∖ {(𝑠, 𝑡)}) ∪ {(𝑔′, 𝑑) | (𝑔, 𝑑) ∈ 𝑅𝑖 ∧ 𝑔 can be reduced to 𝑔′ with 𝑙→ 𝑟}
14: 𝑖 := 𝑖 + 1

15: end if

16: end while

17: if there is an unmarked rule in 𝑅𝑖 then

18: let (𝑙, 𝑟) be such a rule

19: 𝑅𝑖+1 := 𝑅𝑖

20: 𝐸𝑖+1 := {(𝑠, 𝑡) | (𝑠, 𝑡) is a critical pair of (𝑙, 𝑟) with itself or with a marked rule in 𝑅𝑖}
21: Mark (𝑙, 𝑟) ; 𝑖 := 𝑖 + 1

22: end if

23: end while

24: return 𝑅𝑖

Exercise 3 :

Show that Huet’s completion procedure is indeed correct (w.r.t. the definition of a completion

procedure).

Page 4

http://rewriting.gforge.inria.fr/1-33/ln4.pdf


Solution:

The computation of critical pairs in the outer while-loop can be realized using Deduce. The step
at line 4 can be achieved using Simplify-Id, whereas lines 5 and 6 correspond to Delete. The
steps of lines 10-13 can be achieved using Orient (line 10), R-Simplify (line 11) and L-Simplify
(line 13). This is trivial for the orientation step. In order to show that R-Simplify can be used

to generate rules 𝑔 → 𝑑 ∈ 𝑅𝑖+1, one must prove that the simultaneous reductions 𝑑 →*
𝑅𝑖

𝑑,
which are all done with the original system 𝑅𝑖, can be realized by a sequence of R-Simplify
steps, in which the already partially modified TRS must be used in each simplification step.

Lastly, note that the A condition of L-Simplify is satisfied when reducing the left-hand side of

a rule 𝑔 → 𝑑 ∈ 𝑅𝑖 with 𝑙→ 𝑟 since 𝑙 is in 𝑅𝑖-normal form and thus any subterm of 𝑙 cannot be
an instance of 𝑔.

Some notions from previous lectures and TDs:

A strict order > on 𝑇 (Σ, 𝑉 ) is called a rewrite order if and only iff

1. is compatible: for all 𝑠1, 𝑠2 ∈ 𝑇 (Σ, 𝑉 ), all 𝑓 ∈ Σ, if 𝑠1 > 𝑠2 then

𝑓(𝑡1, . . . , 𝑡𝑖−1, 𝑠1, 𝑡𝑖+1, . . . , 𝑡𝑛) > 𝑓(𝑡1, . . . , 𝑡𝑖−1, 𝑠2, 𝑡𝑖+1, . . . , 𝑡𝑛)

where 𝑛 is the arity of 𝑓 ;

2. is closed under substitution: for all 𝑠1, 𝑠2 ∈ 𝑇 (Σ, 𝑉 ) and all substitutions 𝜎 : 𝑉 → 𝑇 (Σ, 𝑉 ), if

𝑠1 > 𝑠2 then 𝜎(𝑠1) > 𝜎(𝑠2).

A reduction order is a well-founded rewrite order. LPO (and KBO, see previous TD) are two

examples of reduction orders.

The lexicographic path order (LPO) >𝑙𝑝𝑜 on 𝑇 (Σ, 𝑉 ) induced by a strict order > on Σ is defined

as follows. 𝑠 >𝑙𝑝𝑜 𝑡 if and only if one of the following holds:

1. 𝑡 is a variable appearing in 𝑠 and 𝑠 ̸= 𝑡, or

let 𝑠 = 𝑓(𝑠1, . . . , 𝑠𝑚) and 𝑡 = 𝑔(𝑡1, . . . , 𝑡𝑛),

2. there exists 𝑖 ∈ [1, 𝑚] such that 𝑠𝑖 ≥𝑙𝑝𝑜 𝑡, or

3. 𝑓 > 𝑔 and 𝑠 >𝑙𝑝𝑜 𝑡𝑗 for all 𝑗 ∈ [1, 𝑛], or

4. 𝑓 = 𝑔, for all 𝑗 ∈ [1, 𝑛] it holds 𝑠 >𝑙𝑝𝑜 𝑡𝑗 and (𝑠1, . . . , 𝑠𝑚)(>𝑙𝑝𝑜)lex(𝑡1, . . . , 𝑡𝑚).

where (>𝑙𝑝𝑜)lex is the lexicographic w.r.t. >𝑙𝑝𝑜.

Exercise 4 :

Apply the Huet’s completion procedure on the following set of identities, with the suitable reduction

order:

1. {(𝑥 * (𝑦 + 𝑧), (𝑥 * 𝑦) + (𝑥 * 𝑧)), ((𝑢 + 𝑣) * 𝑤, (𝑢 * 𝑤) + (𝑣 * 𝑤))} and > the LPO with * > +.

2. {(𝑓(𝑔(𝑓(𝑥))), 𝑥)} and the LPO with 𝑓 > 𝑔.

3. {(𝑥 + 0, 𝑥), (𝑧 + s(𝑦), s(𝑧 + 𝑦))} and > the KBO with s > + and weight 1 for all variables and

symbols. Consider then the KBO with + > s and weight 1 for all variables and symbols.

Solution:

In the following solution, we only consider non-trivial critical pairs.

(1) From the LPO it holds that 𝑥*(𝑦+𝑧) >𝑙𝑝𝑜 (𝑥*𝑦)+(𝑥*𝑧) and (𝑢+𝑣)*𝑤 >𝑙𝑝𝑜 (𝑢*𝑤)+(𝑣*𝑤).

𝐸0 = {(𝑥 * (𝑦 + 𝑧), (𝑥 * 𝑦) + (𝑥 * 𝑧)), ((𝑢 + 𝑣) * 𝑤, (𝑢 * 𝑤) + (𝑣 * 𝑤))} and 𝑅0 = ∅. Select

the first identity, that is already in normal form w.r.t. 𝑅0. The procedure will compute

𝐸1 = {((𝑢 + 𝑣) *𝑤, (𝑢 *𝑤) + (𝑣 *𝑤))} and 𝑅1 = {(𝑥 * (𝑦 + 𝑧), (𝑥 * 𝑦) + (𝑥 * 𝑧))}. Select now the

only identity in 𝐸1, which is already in normal form w.r.t. 𝑅1. 𝑥*(𝑦+𝑧) cannot be reduced using

Page 5



(𝑢+𝑣)*𝑤 (line 13) and therefore 𝑅2 = {(𝑥*(𝑦+𝑧), (𝑥*𝑦)+(𝑥*𝑧)), ((𝑢+𝑣)*𝑤, (𝑢*𝑤)+(𝑣*𝑤))}
and 𝐸2 = ∅. Both elements in 𝑅2 are not marked and therefore the procedure will continue

by selecting one of these two identities (line 21). Since each identity does not have critical

pairs with itself, and 𝑅2 does not have any marked rules, it will holds (for example if the first

identity is selected) 𝑅3 = 𝑅2, 𝐸3 = 𝐸2 and the first identity is marked. Now the procedure

will select the second one (line 21) and compute the critical pair between that identity and

the first rule. The only critical pair between 𝑥 * (𝑦 + 𝑧) and (𝑢 + 𝑣) * 𝑤 is determined by the

substitution 𝜎 = [𝑥/𝑢 + 𝑣, 𝑤/𝑦 + 𝑧] which leads to the following diagram

(𝑢 + 𝑣) * (𝑦 + 𝑧)

((𝑢 + 𝑣) * 𝑦) + ((𝑢 + 𝑣) * 𝑧) (𝑢 * (𝑦 + 𝑧)) + (𝑣 * (𝑦 + 𝑧))

((𝑢 * 𝑦) + (𝑣 * 𝑦)) + ((𝑢 * 𝑧) + (𝑣 * 𝑧)) ((𝑢 * 𝑦) + (𝑢 * 𝑧)) + ((𝑣 * 𝑦) + (𝑣 * 𝑧))

where the two terms ((𝑢+𝑣)*𝑦)+((𝑢+𝑣)*𝑧) and (𝑢*(𝑦 +𝑧))+(𝑣 *(𝑦 +𝑧)) from a critical pair

whereas the two terms ((𝑢*𝑦)+(𝑣*𝑦))+((𝑢*𝑧)+(𝑣*𝑧)) and ((𝑢*𝑦)+(𝑢*𝑧))+((𝑣*𝑦)+(𝑣*𝑧))

are their normal form. So 𝑅4 = {(𝑥 * (𝑦 + 𝑧), (𝑥 * 𝑦) + (𝑥 * 𝑧)), ((𝑢 + 𝑣) *𝑤, (𝑢 *𝑤) + (𝑣 *𝑤))}
whereas 𝐸4 = {(((𝑢 + 𝑣) * 𝑦) + ((𝑢 + 𝑣) * 𝑧), (𝑢 * (𝑦 + 𝑧)) + (𝑣 * (𝑦 + 𝑧)))}, with both identities

of 𝑅4 marked. The procedure will then evaluate the loop starting at line 3 by selecting

(((𝑢 + 𝑣) * 𝑦) + ((𝑢 + 𝑣) * 𝑧), (𝑢 * (𝑦 + 𝑧)) + (𝑣 * (𝑦 + 𝑧))) and reducing it to its normal form

(𝑠, 𝑡). It holds that 𝑠 ̸= 𝑡, 𝑠 ≯𝑙𝑝𝑜 𝑡 and 𝑡 ≯𝑙𝑝𝑜 𝑠 and the condition at line 9 will be verified and

the procedure will terminate with output FAIL.

(2) Trivially 𝑅1 = {(𝑓(𝑔(𝑓(𝑥))), 𝑥)}, 𝐸1 = ∅ and 𝑓(𝑔(𝑓(𝑥))) >𝑙𝑝𝑜 𝑥 w.r.t. the LPO >𝑙𝑝𝑜. The

only critical pair of 𝑅1 is determined by the substitution 𝜎 = [𝑥/𝑔(𝑓(𝑧))] obtained considering

𝑓(𝑔(𝑓(𝑥))) with its renaming 𝑓(𝑔(𝑓(𝑧))). 𝜎 leads to the following diagram

𝑓(𝑔(𝑓(𝑔(𝑓(𝑧)))))

𝑔(𝑓(𝑧)) 𝑓(𝑔(𝑧))

Where (𝑔(𝑓(𝑧)), 𝑓(𝑔(𝑧))) form a critical pair. The two term of these pair are already in

normal form and it holds 𝑓(𝑔(𝑧)) >𝑙𝑝𝑜 𝑔(𝑓(𝑧)). Therefore 𝑅2 = {(𝑓(𝑔(𝑓(𝑥))), 𝑥)} whereas

𝐸2 = {(𝑓(𝑔(𝑧)), 𝑔(𝑓(𝑧)))}. The identity (𝑓(𝑔(𝑧)), 𝑔(𝑓(𝑧))) will then be selected (line 4).

The procedure will enter the else branch in line 12 where (𝑓(𝑔(𝑓(𝑥))), 𝑥) will be reduced

by (𝑓(𝑔(𝑧)), 𝑔(𝑓(𝑧))) to (𝑔(𝑓(𝑓(𝑥))), 𝑥). It will therefore hold 𝐸3 = {(𝑔(𝑓(𝑓(𝑥))), 𝑥)} and

𝑅3 = {(𝑓(𝑔(𝑧)), 𝑔(𝑓(𝑧)))}. The procedure will then select the only element in 𝐸3. It holds

𝑔(𝑓(𝑓(𝑥))) >𝑙𝑝𝑜 𝑥 and this identity cannot be used to reduce (𝑓(𝑔(𝑧)), 𝑔(𝑓(𝑧))). Therefore

𝑅4 = 𝑅3 ∪ 𝐸3, 𝐸4 = ∅ and both rules in 𝑅4 are not marked. The procedure will then mark

one of the two rules in 𝑅4 = {(𝑔(𝑓(𝑓(𝑥))), 𝑥), (𝑓(𝑔(𝑧)), 𝑔(𝑓(𝑧)))} and then check the critical

pairs between the unmarked rule and the marked one. There are two critical pairs determined

from the substitutions 𝜎′
1 = [𝑧/𝑓(𝑓(𝑥))] and 𝜎′

2 = [𝑥/𝑔(𝑧)]. From these substitutions we get

the following diagrams:

𝑓(𝑔(𝑓(𝑓(𝑥))))

𝑔(𝑓(𝑓(𝑓(𝑥)))) 𝑓(𝑥)

𝑔(𝑓(𝑓(𝑔(𝑧))))

𝑔(𝑓(𝑔(𝑓(𝑧)))

𝑔(𝑔(𝑓(𝑓(𝑧)))

𝑔(𝑧)

The two critical pairs (𝑔(𝑓(𝑓(𝑓(𝑥)))), 𝑓(𝑥)) and (𝑔(𝑓(𝑔(𝑓(𝑧))), 𝑔(𝑧)) will then be added to 𝐸5,

whereas 𝑅5 = 𝑅4 = {(𝑔(𝑓(𝑓(𝑥))), 𝑥), (𝑓(𝑔(𝑧)), 𝑔(𝑓(𝑧)))}. The procedure will then select the

Page 6



identities in 𝐸5 but, since the two diagrams shown are confluent, it holds that the normal

form (𝑠, 𝑡) of each identity is such that 𝑠 = 𝑡. Therefore (line 5) the procedure will remove

the elements from 𝐸 without any update on 𝑅. Lastly, since all elements of 𝑅5 were already

marked, the procedure will successfully return {(𝑔(𝑓(𝑓(𝑥))), 𝑥), (𝑓(𝑔(𝑧)), 𝑔(𝑓(𝑧)))}.
(3) From the KBO (herein >kbo) it holds that s(𝑧 +𝑦) >kbo 𝑧 +s(𝑦) and 𝑥+0 >kbo 𝑥. Skipping
some easy steps, it will holds

𝑅2 = {(s(𝑧 + 𝑦), 𝑧 + s(𝑦)), (𝑥 + 0, 𝑥)} and 𝐸2 = ∅

The only critical pair of 𝑅2 is determined by the substitution 𝜎 = [𝑦/0, 𝑧/𝑥] which leads to the

following diagram

s(𝑥 + 0)

𝑥 + s(0) s(𝑥)

where 𝑥 + s(0) and s(𝑥) form a critical pair and it holds 𝑥 + s(0) >kbo s(𝑥). Therefore,

the procedure will define 𝑅3 = 𝑅2 and 𝐸3 = {(𝑥 + s(0), s(𝑥))}, where the identities of 𝑅3
are marked. The procedure will then compute 𝑅4 = 𝑅3 ∪ 𝐸3 and 𝐸4 = ∅. The identity

(𝑥 + s(0), s(𝑥)) in 𝑅4 is the only one not marked and therefore we need to compute its critical

pairs w.r.t. itself and the marked identities (i.e. all the identities in 𝑅3. There is one new

critical pair between s(𝑧 +𝑦) and 𝑥+s(0), correspondent to the substitution 𝜎′ = [𝑦/s(0), 𝑧/𝑥].

The critical pair is (𝑥 + s(s(0)), s(s(𝑥)) and it holds that 𝑥 + s(s(0)) >kbo s(s(𝑥)). The pair

(𝑥+s(s(0)), s(s(𝑥))) will therefore be the only element of 𝐸5, whereas 𝑅5 = 𝑅4. The procedure

will then evaluate again the while loop of line 3, resulting in 𝑅6 = 𝑅5 ∪ 𝐸5.

In general, we can show that the following invariant will always hold for 𝑛 ≥ 2 at line 20.

• 𝑅2𝑛 = {(s(𝑧, 𝑦), 𝑧 + s(𝑦)), (𝑥 + 0, 𝑥)} ∪ {(𝑥 + s𝑘(0), s𝑘(𝑥)) | 𝑘 ≤ 𝑛− 1};

• 𝐸2𝑛 = ∅;

• all identities in 𝑅2𝑛 but (𝑥 + s𝑛−1(0), s𝑛−1(𝑥)) are marked;

• (𝑥+s𝑛(0), s𝑛(𝑥)) is a critical pair between (𝑥+s𝑛−1(0), s𝑛−1(𝑥)) and (s(𝑧, 𝑦), 𝑧 +s(𝑦)).

Therefore the procedure will not terminate. Instead, by considering the KBO with + >kbo s
and weight 1 for all variables and symbols it will hold that s(𝑧 +𝑦) < 𝑧 +s(𝑦) and 𝑥+0 >kbo 𝑥
and 𝑅2 = {(𝑧 + s(𝑦), s(𝑧 + 𝑦)), (𝑥 + 0, 𝑥)}. 𝑅2 does not have any critical pairs and therefore is

the convergent rewrite system returned by the procedure.

Exercise 5 :

1. Prove that the set of identities

(@(nil, 𝑥), 𝑥),

(@(cons(𝑥, 𝑦), 𝑧), cons(𝑥, @(𝑦, 𝑧))),

(rev(nil), nil),

(rev(cons(𝑥, 𝑦)), @(rev(𝑦), cons(𝑥, nil)))

can be oriented to give a convergent TRS. Let 𝑅 this TRS.

2. Why the associativity 𝐴 of @, @(@(𝑥, 𝑦), 𝑧) = @(𝑥, @(𝑦, 𝑧)) is not a consequence of 𝑅?

3. Prove that you can complete (𝐴, 𝑅). You can use Huet’s completion procedure.

4. Show that Huet’s completion fails to complete ({rev(𝑥) = @(𝑥, 𝑥)}, 𝑅).

Page 7



Solution:

(1) We use LPO w.r.t. the order rev > @ > cons > nil to orient the rules as follows:

@(nil, 𝑥) >𝑙𝑝𝑜 𝑥

@(cons(𝑥, 𝑦), 𝑧) >𝑙𝑝𝑜 cons(𝑥, @(𝑦, 𝑧))

rev(nil) >𝑙𝑝𝑜 nil

rev(cons(𝑥, 𝑦)) >𝑙𝑝𝑜 @(rev(𝑦), cons(𝑥, nil))

𝑅 = {@(nil, 𝑥)→ 𝑥, @(cons(𝑥, 𝑦), 𝑧)→ cons(𝑥, @(𝑦, 𝑧)), rev(nil)→ nil, rev(cons(𝑥, 𝑦))→
@(rev(𝑦), cons(𝑥, nil))} is a TRS with no critical pairs. Therefore, by critical pairs Lemma,

𝑅 is locally confluent. Moreover, since we can use LPO to prove its termination, by Newman’s

Lemma (which implies confluency of 𝑅), 𝑅 is convergent.

Notice that if we change the orientation of the last rule to

@(rev(𝑦), cons(𝑥, nil)) >𝑙𝑝𝑜 rev(cons(𝑥, 𝑦))

we obtain a TRS with a critical pair derived from the following diagram:

@(rev(nil), cons(𝑥, nil))

@(nil, cons(𝑥, nil))

cons(𝑥, nil)

rev(cons(𝑥, nil))

Which is not a convergent critical pair. Therefore this orientation is not enough to get a

convergent TRS and we would need to apply a completion procedure.

(2) @(@(𝑥, 𝑦), 𝑧) and @(𝑥, @(𝑦, 𝑧)) are already in normal form w.r.t. 𝑅 and therefore associa-

tivity is not a consequence of 𝑅.

(3) Consider the LPO of (1), 𝐸0 equal to

1 : (@(nil, 𝑥), 𝑥),

2 : (@(cons(𝑥, 𝑦), 𝑧), cons(𝑥, @(𝑦, 𝑧))),

3 : (rev(nil), nil),

4 : (rev(cons(𝑥, 𝑦)), @(rev(𝑦), cons(𝑥, nil))),

5 : (@(@(𝑥′, 𝑦′), 𝑧′), @(𝑥′, @(𝑦′, 𝑧′)))

and 𝑅0 = ∅. Notice that, as written here, 𝐸0 is already oriented w.r.t. LPO, i.e. 𝐸0 ⊆>𝑙𝑝𝑜.

Moreover, the first argument of each pair in 𝐸0 cannot be reduced w.r.t. the TRS induced

by 𝐸0 (i.e. 𝑙 → 𝑟 is in the TRS iff (𝑙, 𝑟) ∈ 𝐸0). Also, the second argument of each pair

in 𝐸0 is already in normal form w.r.t. the TRS induced by 𝐸0. As such, the while of line

3 of the Huet’s procedure will simply move each element of 𝐸0 to 𝑅5. As such, consider

𝐸4 = {(@(@(𝑥′, 𝑦′), 𝑧′), @(𝑥′, @(𝑦′, 𝑧′)))} = 𝐴 and 𝑅4 = 𝐸0 ∖ 𝐴 = 𝐸, which is what we want

to compute in the exercise. The procedure will continue by moving also the fifth rule to 𝑅5.

So, 𝑅5 = 𝐸0 and 𝐸5 = ∅. The procedure will continue by evaluating the conditional at line 20.

As already shown in (1), without the last rule 𝐸 does not have any critical pairs. As such, we

only consider the critical pairs between the associativity rule and the other rules. We derive

the following diagrams based on the substitutions 𝜎5,1 = [𝑥′/nil], 𝜎5,2 = [𝑥′/cons(𝑥, 𝑦)] and

𝜎5,5 = [𝑥′/@(𝑥, 𝑦)], where 𝜎𝑖,𝑗 is the mgu that can be used to compute a critical pair between

the rules 𝑖 and 𝑗:

@(@(nil, 𝑦), 𝑧)

@(nil, @(𝑦, 𝑧)) @(𝑦, 𝑧)

@(@(cons(𝑥, 𝑦), 𝑧), 𝑤)

@(cons(𝑥, 𝑦), @(𝑧, 𝑤)) @(cons(𝑥, @(𝑦, 𝑧)), 𝑤)

cons(𝑥, @(𝑦, @(𝑧, 𝑤)))

Page 8



@(@(@(𝑥, 𝑦), 𝑧), 𝑤)

@(@(𝑥, 𝑦), @(𝑧, 𝑤)) @(@(𝑥, @(𝑦, 𝑧)), 𝑤)

@(𝑥, @(@(𝑦, 𝑧), 𝑤))

@(𝑥, @(𝑦, @(𝑧, 𝑤)))

The critical pairs in these diagrams are

• (@(nil, @(𝑦, 𝑧)), @(𝑦, 𝑧)) where @(nil, @(𝑦, 𝑧)) >𝑙𝑝𝑜 @(𝑦, 𝑧),

• (@(cons(𝑥, 𝑦), @(𝑧, 𝑤)), @(cons(𝑥, @(𝑦, 𝑧)), 𝑤)) where

@(cons(𝑥, 𝑦), @(𝑧, 𝑤)) >𝑙𝑝𝑜 @(cons(𝑥, @(𝑦, 𝑧)), 𝑤)

• (@(@(𝑥, 𝑦)@(𝑧, 𝑤)), @(@(𝑥, @(𝑦, 𝑧)), 𝑤) where @(@(𝑥, @(𝑦, 𝑧)), 𝑤) >𝑙𝑝𝑜 @(@(𝑥, 𝑦)@(𝑧, 𝑤)).

Notice how all three diagrams are confluent. For this reason, lets put aside the Huet’s procedure

and consider the TRS:

@(nil, 𝑥)→ 𝑥

@(cons(𝑥, 𝑦), 𝑧)→ cons(𝑥, @(𝑦, 𝑧))

rev(nil)→ nil

rev(cons(𝑥, 𝑦))→ @(rev(𝑦), cons(𝑥, nil))

(@(@(𝑥′, 𝑦′), 𝑧′)→ @(𝑥′, @(𝑦′, 𝑧′)))

its easy to show that this TRS is terminating w.r.t. the LPO induced by the order the order

rev > @ > cons > nil. Moreover, from the diagrams above, all critical pairs are convergent.

As such, the TRS is locally confluent and by Newman’s Lemma, is also convergent. Moreover,

in this TRS it trivially holds that (@(@(𝑥′, 𝑦′), 𝑧′) and @(𝑥′, @(𝑦′, 𝑧′))) have the same normal

form and the TRS is a completion for (𝐴, 𝑅).

(4) For simplicity, let 𝑅0 = 𝑅 and 𝐸0 = {(rev(𝑥), @(𝑥, 𝑥))} and suppose we start the evaluation

of Huet’s procedure from line 3. It holds that rev(𝑥) >𝑙𝑝𝑜 @(𝑥, 𝑥) and the two terms are already

in 𝑅0-normal form. The rules (rev(nil), nil) and (rev(cons(𝑥, 𝑦)), @(rev(𝑦), cons(𝑥, nil)))

can be reduced via rev(𝑥). As such, it will hold that

𝑅1 = {(@(nil, 𝑥), 𝑥), (@(cons(𝑥, 𝑦), 𝑧), cons(𝑥, @(𝑦, 𝑧))), (rev(𝑥), @(𝑥, 𝑥))}

and

𝐸1 = {(@(nil, nil), nil), (@(cons(𝑥, 𝑦), cons(𝑥, 𝑦)), @(rev(𝑦), cons(𝑥, nil)))}

The first identity of 𝑅1 will be simply removed since the 𝑅1-normal form of @(nil, nil) is

exactly nil. Instead, the normal form of the second identity in 𝐸1 is

(cons(𝑥, @(𝑦, cons(𝑥, 𝑦))), @(@(𝑦, 𝑦), cons(𝑥, nil)))

and is such that @(@(𝑦, 𝑦), cons(𝑥, nil)) >𝑙𝑝𝑜 cons(𝑥, @(𝑦, cons(𝑥, 𝑦))). Therefore, 𝐸 and 𝑅
will be updated so that 𝐸3 = ∅ and

𝑅3 ={(@(nil, 𝑥), 𝑥), (@(cons(𝑥, 𝑦), 𝑧), cons(𝑥, @(𝑦, 𝑧))), (rev(𝑥), @(𝑥, 𝑥)),

(@(@(𝑦, 𝑦), cons(𝑥, nil)), cons(𝑥, @(𝑦, cons(𝑥, 𝑦))))}

The procedure will then search for critical pairs of 𝑅3 and eventually find the critical pairs

between @(cons(𝑥, 𝑦), 𝑧) and @(@(𝑦′, 𝑦′), cons(𝑥′, nil)), in particular w.r.t. the substitution

𝜎 = [𝑦′/cons(𝑥, 𝑦), 𝑧/cons(𝑥, 𝑦)] from which we derive the following diagram

Page 9



@(@(cons(𝑥, 𝑦), cons(𝑥, 𝑦)), cons(𝑥′, nil)))

@(cons(𝑥, @(𝑦, cons(𝑥, 𝑦))), cons(𝑥′, nil)) cons(𝑥′, @(cons(𝑥, 𝑦), cons(𝑥′, cons(𝑥, 𝑦))))

cons(𝑥, @(@(𝑦, cons(𝑥, 𝑦)), cons(𝑥′, nil)))

the critical pair

(@(cons(𝑥, @(𝑦, cons(𝑥, 𝑦))), cons(𝑥′, nil)), cons(𝑥′, @(cons(𝑥, 𝑦), cons(𝑥′, cons(𝑥, 𝑦)))))

will be added to 𝐸 and eventually selected in line 4. However, from the diagram we can see

that the normal form of this critical pair is (𝑠, 𝑡) =

(cons(𝑥, @(@(𝑦, cons(𝑥, 𝑦)), cons(𝑥′, nil))), cons(𝑥′, @(cons(𝑥, 𝑦), cons(𝑥′, cons(𝑥, 𝑦)))))

and is such that 𝑠 ̸= 𝑡, 𝑠 ≯𝑙𝑝𝑜 𝑡 and 𝑡 ≯𝑙𝑝𝑜 𝑠 and therefore the completion procedure will

return FAIL. The completion will also fail if we considered an order where @(𝑥, 𝑥) > rev(𝑥),

as implied by (1).

Background

We recall that the Post Correspondence Problem (PCP) is an undecidable decision problem

defined as follows: the input of the problem consists of a finite set of pairs of non-empty words

{(𝛼1, 𝛽1), (𝛼2, 𝛽2), . . . , (𝛼𝑛, 𝛽𝑛)} over some alphabet 𝐴, where |𝐴| ≥ 2. The problem has a so-

lution whenever there is a sequence of indices (𝑖𝑘)1≤𝑘≤𝐾 with 𝐾 ≥ 1 and 𝑖𝑘 ∈ [1, 𝑛] such that

𝛼𝑖1𝛼𝑖2 . . . 𝛼𝑖𝑘−1𝛼𝑖𝑘
= 𝛽𝑖1𝛼𝑖2 . . . 𝛽𝑖𝑘−1𝛽𝑖𝑘

.

Exercise 6 :

Let 𝑃 = (𝛼𝑖, 𝛽𝑖)1≤𝑖≤𝑛 be an instance of PCP, with 𝛼𝑖, 𝛽𝑖 ∈ {0, 1}+ for 𝑖 ∈ [1, 𝑛]. Define

𝑅(𝑃 ) = {𝐴→ 𝑓(𝛼𝑖(𝜖), 𝛽𝑖(𝜖)), 𝑓(𝑥, 𝑦)→ 𝑓(𝛼𝑖(𝑥), 𝛽𝑖(𝑦)), 𝑓(𝑥, 𝑥)→ 𝐵, 𝑓(𝑥, 𝑦)→ 𝐴}

on ℱ = {𝑓(2), 𝐴(0), 𝐵(0), 0(1), 1(1), 𝜖(0)}.

1. Prove that 𝑃 has a solution iff 𝐴→* 𝐵.

2. Deduce that confluence is undecidable.

Solution:

(1) If 𝑃 has a solution 𝑖1, . . . , 𝑖𝑘 and therefore 𝛼𝑖1𝛼𝑖2 . . . 𝛼𝑖𝑘
= 𝛽𝑖1𝛽𝑖2 . . . 𝛽𝑖𝑘

. Then it holds that:

𝐴→ 𝑓(𝛼𝑖𝑘
(𝜖), 𝛽𝑖𝑘

(𝜖))→ 𝑓(𝛼𝑖𝑘−1𝛼𝑖𝑘
(𝜖), 𝛽𝑖𝑘−1𝛽𝑖𝑘

(𝜖))→ . . .

→ 𝑓(𝛼𝑖1 . . . 𝛼𝑖𝑘−1𝛼𝑖𝑘
(𝜖), 𝛽𝑖1 . . . 𝛽𝑖𝑘−1𝛽𝑖𝑘

(𝜖))→ 𝐵

The converse is also easy, by looking at the rules applications that leads to 𝐵.

(2) Sufficient to notice that, thanks to the rule 𝑓(𝑥, 𝑦) → 𝐴, each term which is different

from 𝐵 will reach 𝐴. In particular, terms of the form 𝑓(𝑥, 𝑥) are such that 𝑓(𝑥, 𝑥)→ 𝐴 and

𝑓(𝑥, 𝑥) → 𝐵.If 𝐴 →* 𝐵 holds, then the TRS is confluent. Otherwise, since there is no path

from 𝐴 to 𝐵, which are both reduced from 𝑓(𝑥, 𝑥), the TRS won’t be confluent. From the

previous point, it therefore holds that PCP has a solution if and only if the TRS herein defined

is confluent. It follows that confluence is undecidable.

Exercise 7 :

Prove that the most general unifier is unique up to renaming.

Page 10



Solution:

W.l.o.g. we can assume only one equation 𝑠 =? 𝑡. Let 𝜎1, 𝜎2 be two most general unifiers for

𝑠 =? 𝑡. From the definition of mgu, it holds that a unifier 𝜎 is a mgu for 𝑠 and 𝑡 if and only

if for all unifiers 𝜎 there exists 𝜎′ such that 𝑠𝜎 = (𝑠𝜎)𝜎′ and 𝑡𝜎 = (𝑡𝜎)𝜎′. Therefore, since 𝜎1
and 𝜎2 it must hold that there exists two unifiers 𝑟, 𝑟′ such that

𝑠𝜎1 = (𝑠𝜎2)𝑟

𝑡𝜎1 = (𝑡𝜎2)𝑟

𝑠𝜎2 = (𝑠𝜎1)𝑟′

𝑡𝜎2 = (𝑡𝜎1)𝑟′

in particular it must therefore hold that 𝑠𝜎1 = ((𝑠𝜎1)𝑟)𝑟′ that holds if and only if 𝑟 and 𝑟′ are

variable renaming. We conclude that 𝜎2 is a renaming of 𝜎1 (and vice-versa) and therefore the

mgu is unique up to renaming.

Page 11


