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Let Σ be a finite signature with one constant (i.e. there is 𝑠 ∈ Σ having arity 0). Let 𝑉 be a set of
variable and 𝑇 (Σ, 𝑉 ) the terms built from those sets. For 𝑠 ∈ Σ ∪ 𝑉 and a term 𝑡 ∈ 𝑇 (Σ, 𝑉 ), we
denote with |𝑡|𝑠 the number of occurrences of 𝑠 in 𝑡.

Let > be a strict order on Σ. A function 𝑤 : Σ ∪ 𝑉 → R+
0 is called admissible weight function

if and only if it satisfy the following properties:

1. There exists 𝑤0 ∈ R+
0 ∖{0} s.t. 𝑤(𝑥) = 𝑤0 for all 𝑥 ∈ 𝑉 and 𝑤(𝑐) ≥ 𝑤0 for all constants 𝑐 ∈ Σ.

2. If 𝑓 ∈ Σ is a unary function symbol of weight 𝑤(𝑓) = 0 then 𝑓 is the greatest element in Σ,
i.e. 𝑓 ≥ 𝑔 for all 𝑔 ∈ Σ.

An admissible weight function 𝑤 is extended on every term 𝑡 ∈ 𝑇 (Σ, 𝑉 ) as follows:

𝑤(𝑡) =
∑︁
𝑥∈𝑉

𝑤(𝑥)|𝑡|𝑥 +
∑︁
𝑓∈Σ

𝑤(𝑓)|𝑡|𝑓

Let > be a strict order on Σ and 𝑤 : Σ ∪ 𝑉 → R+
0 be an admissible weight function. The

Knuth-Bendix order (KBO) >kbo on 𝑇 (Σ, 𝑉 ) induced by > and 𝑤 is defined as follows: for
𝑠, 𝑡 ∈ 𝑇 (Σ, 𝑉 ) we have 𝑠 >kbo 𝑡 if and only if |𝑠|𝑥 ≥ |𝑡|𝑥 for all 𝑥 ∈ 𝑉 and 𝑤(𝑠) ≥ 𝑤(𝑡). Moreover,
if 𝑤(𝑠) = 𝑤(𝑡) then one of the following properties must hold:

1. There are a unary function 𝑓 , 𝑥 ∈ 𝑉 and 𝑛 ∈ N≥1 s.t. 𝑠 = 𝑓𝑛(𝑥) and 𝑡 = 𝑥, or

2. there exist function symbols 𝑓, 𝑔 s.t. 𝑓 > 𝑔 and 𝑠 = 𝑓(𝑠1, . . . , 𝑠𝑚) and 𝑡 = 𝑔(𝑡1, . . . , 𝑡𝑛), or

3. there exist a function symbol 𝑓 such that 𝑠 = 𝑓(𝑠1, . . . , 𝑠𝑚), 𝑡 = 𝑓(𝑡1, . . . , 𝑡𝑚) and

(𝑠1, . . . , 𝑠𝑚)(>kbo)lex(𝑡1, . . . , 𝑡𝑚).

Exercise 1 :

Using a KBO, prove the termination of:

1. {l(𝑥) + (𝑦 + 𝑧) → 𝑥 + (l(l(𝑦)) + 𝑧), l(𝑥) + (𝑦 + (𝑧 + 𝑤)) → 𝑥 + (𝑧 + (𝑦 + 𝑤)) }
2. { r𝑛(l𝑘(𝑥)) → l𝑘(r𝑚(𝑥)) }, where 𝑛, 𝑘 > 0 and 𝑚 ≥ 0.

Solution:

(1) Let l > +, 𝑤(l) = 0, 𝑤(+) = 𝑤(𝑥) > 0 for each variable 𝑥. It holds that 𝑤 is admissible.
For both rules, it holds that the weight does not change after the rewrite step. To prove that
l(𝑥) + (𝑦 + 𝑧) >kbo 𝑥 + (l(l(𝑦)) + 𝑧) we therefore need to prove the third condition, which
holds since l(𝑥) >kbo 𝑥. Similarly, to prove l(𝑥) + (𝑦 + (𝑧 + 𝑤)) >kbo 𝑥 + (𝑧 + (𝑦 + 𝑤)), it is
sufficient to show that l(𝑥) >kbo 𝑥. Notice that it does not holds (𝑦 + (𝑧 + 𝑤) >kbo 𝑧 + (𝑦 + 𝑤)
because of the ordering of the variables.
(2) Let r > l, 𝑤(r) = 0 and 𝑤(l) = 1. It holds that 𝑤 is admissible. Let 𝑠 → 𝑡 with
𝑠 = 𝐶[r𝑛(l𝑘(𝑡′))] and 𝑡 = 𝐶[l𝑘(r𝑚(𝑡′))]. From the definition of 𝑤, it holds that 𝑤(𝑠) = 𝑤(𝑡)
since the number of occurrences of the function symbol l is the same in 𝑠 and 𝑡. By applying
the definition of >kbo, we get that we need to show r𝑛(l𝑘(𝑡′)) >kbo l𝑘(r𝑚(𝑡′)), which holds
since r > l.

In the following, let ℛ be a TRS.
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A symbol 𝑓 is defined by ℛ if there is a rule whose left hand-side is headed by 𝑓 . We will denote
with 𝒟(ℛ) the set of all the symbols defined by ℛ.

A dependency pair of a rewrite system ℛ is a pair of terms (𝑓 (⃗𝑙), 𝑔(𝑚⃗)) where 𝑓 (⃗𝑙) → 𝐶[𝑔(𝑚⃗)]
is a rewrite rule of ℛ with 𝑔 ∈ 𝒟(ℛ).

A marked dependency pair of ℛ is a pair of terms (𝑓#(⃗𝑙), 𝑔#(𝑚⃗)) such that (𝑓 (⃗𝑙), 𝑔(𝑚⃗)) is a
dependency pair, where 𝑓# is the marked symbol of 𝑓 .

The dependency graph of ℛ is the directed graph 𝐷𝐺(ℛ) defined as follows:

• its nodes are the set of marked dependency pairs;
• there is an edge from (ℓ1, 𝑟1) to (ℓ2, 𝑟2) whenever there are substitutions 𝜎1 and 𝜎2 such that

𝑟1𝜎1 →*
ℛ 𝑙2𝜎2.

Theorem. A finite term TRS ℛ is terminating if for each cycle 𝐶 of 𝐷𝐺(ℛ) there is a weak

reduction order ≥ such that

• for every 𝑡 →𝑅 𝑡′, 𝑡 ≥ 𝑡′;
• for every 𝑡 →𝐶 𝑡′, 𝑡 > 𝑡′.

Note that we can use a different termination method for each cycle.

The dependency graph approximation of ℛ is the directed graph defined as follows:

• its nodes are the set of marked dependency pairs;
• there is an edge from (ℓ1, 𝑟1) to (ℓ2, 𝑟2) if 𝑅𝐶(𝑟1) and ℓ2 are unifiable.

where 𝑅𝐶(𝑟) is the term obtained by replacing with a new variable every strict subterm headed by
a defined symbol or a variable, in 𝑟.

Interesting read: K. Keiichirou, T. Yoshihito, On proving AC-termination by AC-dependency pairs.
WARNING: this paper is about TRS with Associative and Commutative law. There is however a
small introduction on “standard” dependency pairs.

Exercise 2 :

We consider the following TRS:

m(𝑥, 0) → 0 m(s(𝑥), s(𝑦)) → m(𝑥, 𝑦)
q(0, s(𝑦)) → 0 q(s(𝑥), s(𝑦)) → s(q(m(𝑥, 𝑦), s(𝑦)))

p(0, 𝑦) → 𝑦 p(𝑥, s(𝑦)) → s(p(𝑥, 𝑦))
m(m(𝑥, 𝑦), 𝑧) → m(𝑥, p(𝑦, 𝑧))

1. Which rule makes the termination of this TRS not provable with KBO or RPO?
2. What are the defined symbols?
3. Compute the marked dependency pairs.
4. Draw the dependency graph approximation.
5. What are the inequalities that are enough to consider? What can instead be ignored?
6. Find a weakly monotonic polynomial interpretation on integers satisfying those inequalities.

Solution:

(1) q(s(𝑥), s(𝑦)) → s(q(m(𝑥, 𝑦), s(𝑦))), since the left-hand side of this rule is embedded in its
right-hand side if 𝑦 is instantiated with s(𝑥).
(2) The set of defined symbols is {m, q, p}.
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(3) The marked dependency pairs are:

1 : (m#(s(𝑥), s(𝑦)), m#(𝑥, 𝑦))
2 : (q#(s(𝑥), s(𝑦)), q#(m(𝑥, 𝑦), s(𝑦)))
3 : (q#(s(𝑥), s(𝑦)), m#(𝑥, 𝑦))
4 : (p#(𝑥, s(𝑦)), p#(𝑥, 𝑦))
5 : (m#(m(𝑥, 𝑦), 𝑧), m#(𝑥, p(𝑦, 𝑧)))
6 : (m#(m(𝑥, 𝑦), 𝑧), p#(𝑦, 𝑧))

(4) Dependency graph approximation:

1

5

6

4

3

2

(5) We need to consider the inequalities:

m(𝑥, 0) ≥ 𝑥

m(s(𝑥), s(𝑦)) ≥ m(𝑥, 𝑦)
q(0, s(𝑦)) ≥ 0

q(s(𝑥), s(𝑦)) ≥ s(q(m(𝑥, 𝑦), s(𝑦)))
p(0, 𝑦) ≥ 𝑦

p(𝑥, s(𝑦)) ≥ s(p(𝑥, 𝑦))
m(m(𝑥, 𝑦), 𝑧) ≥ m(𝑥, p(𝑦, 𝑧))

m#(s(𝑥), s(𝑦)) > m#(𝑥, 𝑦)
q#(s(𝑥), s(𝑦)) > q#(m(𝑥, 𝑦), s(𝑦))

p#(𝑥, s(𝑦)) > p#(𝑥, 𝑦)
m#(m(𝑥, 𝑦), 𝑧) > m#(𝑥, p(𝑦, 𝑧))

Whereas the two inequalities that can be ignored are q#(s(𝑥), s(𝑦)) > m#(𝑥, 𝑦) and m#(m(𝑥, 𝑦), 𝑧) >
p#(𝑦, 𝑧), that can be ignored since, looking at the dependency graph approximation, they
correspond to nodes that don’t belongs to any loops. In fact, we just need to consider, for
each strongly connected component, the ≥ inequalities plus the > inequalities of that strongly
connected component.
(6) In this case, it’s easy to find a weakly polynomial interpretation over integers that satisfied
all the inequalities, instead of considering separately each strongly connected component:
P0 = 0, Ps(𝑋) = 𝑋 + 2, Pm(𝑋, 𝑌 ) = 𝑋 + 1, Pq(𝑋, 𝑌 ) = 2𝑋, Pm#(𝑋, 𝑌 ) = Pq#(𝑋, 𝑌 ) = 𝑋,
Pp(𝑋, 𝑌 ) = Pp#(𝑋, 𝑌 ) = 𝑋 + 𝑌 .

We say that a term is aminimal non-terminating term if all its proper subterms are terminating
but he is not.

Let 𝐶 be a cycle in the dependency graph of ℛ such that every dependency pair symbol in 𝐶
has positive arity. A simple projection for 𝐶 is a mapping 𝜋 that assign to every 𝑛-ary marked
symbol 𝑓# in 𝐶 an argument position 𝑖 ∈ [1, 𝑛]. We define 𝜋(𝑓#(𝑡1, . . . , 𝑡𝑛)) = 𝑡𝜋(𝑓#), where
𝑓#(𝑡1, . . . , 𝑡𝑛) is a term and 𝑓# marked symbol in 𝐶.
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Theorem. For every non-terminating TRS ℛ there exists a cycle 𝐶 in the dependency graph of ℛ
and an infinite rewrite sequence in ℛ ∪ 𝐶 of the form

𝑡1 →*
ℛ 𝑡2 →𝐶 𝑡3 →*

ℛ 𝑡4 →𝐶 𝑡5 →*
ℛ . . .

where 𝑡1 = 𝑓#(𝑠1, . . . , 𝑠𝑛) is headed by a marked symbol, 𝑓(𝑠1, . . . , 𝑠𝑛) is a minimal non-terminating
term and all rules of 𝐶 are applied infinitely often.

Exercise 3 :

1. Let ℛ be a rewrite system and such that each defined symbol has positive arity. Prove that if
every cycle 𝐶 of the dependency graph of ℛ has a simple projection 𝜋 such that 𝜋(𝐶) ⊆D and
𝜋(𝐶) ∩ B ̸= ∅, where 𝜋(𝐶) = {(𝜋(𝑠), 𝜋(𝑡)) | (𝑠, 𝑡) ∈ 𝐶} and D is the subterm relation, then ℛ
terminates.

Consider the following rewriting system:

m(1) → 1 m(a(𝑥, 𝑦)) → a(s(𝑥), m(𝑦))
q(0, 0) → a(0, 1) q(s(𝑥), 0) → 1

q(s(𝑥), s(𝑦)) → m(q(𝑥, 𝑦)) q(0, s(𝑦)) → a(0, q(s(0), s(𝑦)))

2. Compute the marked dependency pairs and the dependency graph approximation.
3. Prove the termination of the rewrite system by finding a suitable simple projection that

satisfied the constraints in question 1.

Solution:

(1) From the Theorem, suppose to the contrary that there exists a rewrite sequence

𝑡1 →*
ℛ 𝑢1 →𝐶 𝑡2 →*

ℛ 𝑢2 →𝐶 𝑡3 →*
ℛ . . .

where 𝑡1 = 𝑓#(𝑠1, . . . , 𝑠𝑛) is headed by a marked symbol, 𝑓(𝑠1, . . . , 𝑠𝑛) is a minimal non-
terminating term and all rules of 𝐶 are applied infinitely often. We apply the simple projection
to this rewrite sequence:

• Consider 𝑢𝑖 →𝐶 𝑡𝑖+1. There exists a dependency pair 𝑙 → 𝑟 ∈ 𝐶 and a substitution
𝜎 such that 𝑢𝑖 = 𝑙𝜎 and 𝑡𝑖+1 = 𝑟𝜎. We have 𝜋(𝑢𝑖) = 𝜋(𝑙)𝜎 and 𝜋(𝑡𝑖+1) = 𝜋(𝑟)𝜎. Since
𝜋(𝑙) → 𝜋(𝑟) ∈ 𝜋(𝐶), by hypothesis it holds 𝜋(𝑙) D 𝜋(𝑟). So 𝜋(𝑙) = 𝜋(𝑟) or 𝜋(𝑙) B 𝜋(𝑟).
In the former case, trivially 𝜋(𝑢1) = 𝜋(𝑡𝑖+1). In the latter case, the closure under
substitution of B yields 𝜋(𝑢𝑖) B 𝜋(𝑡𝑖+1). Because of the assumption 𝜋(𝐶) ∩ B ̸= ∅, and
all rules of 𝐶 are applied infinitely often, 𝜋(𝑢𝑖) B 𝜋(𝑡𝑖+1) will hold for infinitely many 𝑖.

• Consider now 𝑡𝑖 →*
ℛ 𝑢𝑖. All steps in this sequence take place below the (marked) root

symbol, which is therefore the same for 𝑡𝑖 and 𝑢𝑖. Therefore 𝜋(𝑡𝑖) →*
ℛ 𝜋(𝑢𝑖) holds.

By applying our simple projection 𝜋 to the rewrite sequence, we transform it into a infinite
→ℛ ∪B sequence containing infinitely many B steps, starting from 𝜋(𝑡1). Since B is well-
founded, the sequence must also contain infinitely many →ℛ steps. By making repeated use
of the commutation (B →ℛ) ⊆ (→ℛ B) we obtain an infinite sequence of →ℛ starting from
𝜋(𝑡1). Therefore 𝜋(𝑡1) is not terminating w.r.t. ℛ. But 𝑓(𝑠1, . . . , 𝑠𝑛) B 𝜋(𝑡1) and 𝑓(𝑠1, . . . , 𝑠𝑛)
is a minimal non-terminating term: contradiction.
(2) The defined symbols are {m, q}. The marked dependency pairs are:

1 : (m#(a(𝑥, 𝑦)), m#(𝑦))
2 : (q#(s(𝑥), s(𝑦)), m#(q(𝑥, 𝑦)))
3 : (q#(s(𝑥), s(𝑦)), q#(𝑥, 𝑦))
4 : (q#(0, s(𝑦)), q#(s(0), s(𝑦)))

whereas the dependency graph approximation is
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1 2

3 4

There are 3 loops: {1}, {3}, {3, 4}. We define 𝜋(𝑓#) = 1 and 𝜋(𝑔#) = 2. For the first loop it
holds a(𝑥, 𝑦) B 𝑦; for the second loop s(𝑦) B 𝑦 and for the last loop s(𝑦) B 𝑦 and s(𝑦) D s(𝑦).
The conditions to apply the result in question 1 are therefore satisfied and the TRS terminates.

A strict order > on 𝑇 (Σ, 𝑉 ) is called a rewrite order if and only iff

1. is compatible: for all 𝑠1, 𝑠2 ∈ 𝑇 (Σ, 𝑉 ), all 𝑓 ∈ Σ, if 𝑠1 > 𝑠2 then

𝑓(𝑡1, . . . , 𝑡𝑖−1, 𝑠1, 𝑡𝑖+1, . . . , 𝑡𝑛) > 𝑓(𝑡1, . . . , 𝑡𝑖−1, 𝑠2, 𝑡𝑖+1, . . . , 𝑡𝑛)

where 𝑛 is the arity of 𝑓 ;
2. is closed under substitution: for all 𝑠1, 𝑠2 ∈ 𝑇 (Σ, 𝑉 ) and all substitutions 𝜎 : 𝑉 → 𝑇 (Σ, 𝑉 ), if

𝑠1 > 𝑠2 then 𝜎(𝑠1) > 𝜎(𝑠2).

A strict order > on 𝑇 (Σ, 𝑉 ) satisfies the subterm property (and is called simplification order) if
and only if it is a rewrite order such that for all terms 𝑡 ∈ 𝑇 (Σ, 𝑉 ) and all positions 𝑝 ∈ Pos(𝑡) ∖ {𝜖}
it holds 𝑡 > 𝑡|𝑝.

Exercise 4 :

In the following, we refer to 𝑠, 𝑡 and 𝑤 as in the definition of KBO.

1. Assume that 𝑓 is of arity 1, 𝑤(𝑓) = 0 and that there is 𝑔 such that 𝑓 ̸> 𝑔. Prove that under
this conditions >kbo does not satisfy the subterm property.

Prove that, if 𝑤 is admissible w.r.t. the strict order > then >kbo on 𝑇 (Σ, 𝑉 ) induced by > and 𝑤
has the subterm property. To do so, prove the followings:

2. Assume that 𝑤(𝑠) = 𝑤(𝑡) and that 𝑡 is a strict subterm of 𝑠. Prove that there exist a unary
function 𝑓 and a positive integer 𝑘 such that 𝑤(𝑓) = 0 and 𝑠 = 𝑓𝑘(𝑡);

3. Prove that >kbo is a strict order;
4. Prove that >kbo is a rewrite order;
5. Conclude that >kbo has the subterm property.

Solution:

(1) Let 𝑡 = 𝑔(𝑡1, . . . , 𝑡𝑛) be an arbitrary term with root symbol 𝑔, define 𝑠 = 𝑓(𝑡) and let 𝑠 → 𝑡.
Since 𝑤(𝑓) = 0 we have 𝑤(𝑠) = 𝑤(𝑡). Obviously, the first and third condition of KBO cannot
hold, so >kbo holds if and only if the second condition holds. But this cannot happen since
𝑓 ̸> 𝑔. As 𝑡 is a subterm of 𝑠, the subterm property is therefore violated.
(2) Proof by induction on the size of 𝑠. Since 𝑡 is a strict subterm of 𝑠, there are an 𝑛 ≥ 1
and an 𝑛-ary function symbol 𝑓 such that 𝑠 = 𝑓(𝑠1, . . . , 𝑠𝑛) and 𝑡 is a subterm of 𝑠𝑖 for some
𝑖 ∈ [1, 𝑛]. First we show that 𝑛 = 1 and 𝑤(𝑓) = 0:

• Assume 𝑛 > 1. We have 𝑤(𝑠) = 𝑤(𝑓) +
∑︀𝑛

𝑗=1 𝑤(𝑠𝑗) and (since 𝑤 admissible) we
know that for all 𝑗, 𝑤(𝑠𝑗) ≥ 𝑤0 > 0. Thus, 𝑛 > 1 implies 𝑤(𝑠) > 𝑤(𝑠𝑖) and therefore
𝑤(𝑠) > 𝑤(𝑡). This contradicts the hypothesis 𝑤(𝑠) = 𝑤(𝑡).

• Assume 𝑤(𝑓) > 0, then, even for 𝑛 = 1, 𝑤(𝑠) = 𝑤(𝑓) +
∑︀𝑛

𝑗=1 𝑤(𝑠𝑗) > 𝑤(𝑠𝑖) ≥ 𝑤(𝑡).
This contradicts the hypothesis 𝑤(𝑠) = 𝑤(𝑡).
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This shows that 𝑠 = 𝑓(𝑠′) where 𝑓 is unary, 𝑤(𝑓) = 0 and 𝑠′ has 𝑡 as a subterm. For 𝑠′ = 𝑡 we
are done. Otherwise we can apply the induction hypothesis since 𝑡 is a strict subterm of 𝑠′,
𝑤(𝑠′) = 𝑤(𝑠) = 𝑤(𝑡) and |𝑠′| < |𝑠|.
(3) Irreflexivity: Assume that >kbo is not irreflexive. then 𝑠 be a term of minimal size such
that 𝑠 >kbo 𝑠. Since 𝑤(𝑠) = 𝑤(𝑠) and the root symbol is the same, then we obtain 𝑠𝑖 >kbo 𝑠𝑖

for all 𝑖 ∈ [1, 𝑛] where 𝑛 is the arity of the root symbol of 𝑠. This contradicts the minimality of
𝑠.
To show transitivity assume 𝑟 >kbo 𝑠 and 𝑠 >kbo 𝑡, we prove 𝑟 >kbo 𝑡 by induction on the
size of 𝑟.

• From 𝑟 >kbo 𝑠 and 𝑠 >kbo 𝑡 we deduce that, for all variables 𝑥, |𝑟|𝑥 ≥ |𝑠|𝑥 and |𝑠|𝑥 ≥ |𝑡|𝑥
hold, thus e have |𝑟|𝑥 ≥ |𝑡|𝑥. The variables condition is therefore satisfied.

• 𝑟 >kbo 𝑠 and 𝑠 >kbo 𝑡 also yield 𝑤(𝑟) ≥ 𝑤(𝑠) and 𝑤(𝑠) ≥ 𝑤(𝑡), which implies 𝑤(𝑟) ≥ 𝑤(𝑡).
Moreover if 𝑤(𝑟) > 𝑤(𝑠) or 𝑤(𝑠) > 𝑤(𝑡) then 𝑤(𝑟) > 𝑤(𝑡) and we are done.

We can assume 𝑤(𝑟) = 𝑤(𝑠) = 𝑤(𝑡). Moreover the second point of the definition cannot hold
for 𝑟 >kbo 𝑠, since 𝑠 >kbo 𝑡 implies that 𝑠 is not a variable. Therefore 𝑟 and 𝑠 have a function
symbol as root, i.e. 𝑟 = 𝑓(𝑟1, . . . , 𝑟𝑙) and 𝑠 = 𝑔(𝑠1, . . . , 𝑠𝑚), such that 𝑓 ≥ 𝑔.

1. If 𝑠 >kbo 𝑡 satisfies the first condition then 𝑡 = 𝑥 for a variable 𝑥 and |𝑟|𝑥 ≥ |𝑡|𝑥 implies
that 𝑥 occurs in 𝑟. Since the root symbol of 𝑟 is a function symbol we have 𝑟 ̸= 𝑥 and
from the previous point (2) we have 𝑟 >kbo 𝑡.

2. If instead 𝑠 >kbo 𝑡 satisfies the second or third condition, then we know that there exists
a function symbol ℎ such that 𝑔 ≥ ℎ and 𝑡 = ℎ(𝑡1, . . . , 𝑡𝑛). If 𝑓 > 𝑔 or 𝑔 > ℎ then we
have 𝑓 > ℎ and by the second condition 𝑟 >kbo 𝑡. Otherwise, assume 𝑓 = 𝑔 = ℎ. Then
both 𝑟 >kbo 𝑠 and 𝑠 >kbo 𝑡 satisfy the third condition. By induction hypothesis, from
the definition of (>kbo)lex we get 𝑟 >kbo 𝑡.

(4) We first show that >kbo is compatible. Assume 𝑠1 >kbo 𝑠2 and 𝑓 𝑛-ary function symbol.
We must show that the following holds

𝑓(𝑡1, . . . , 𝑡𝑖−1, 𝑠1, 𝑡𝑖, . . . , 𝑡𝑛) >kbo 𝑓(𝑡1, . . . , 𝑡𝑖−1, 𝑠2, 𝑡𝑖, . . . , 𝑡𝑛)

From 𝑠1 >kbo 𝑠2 we can deduce that |𝑠1|𝑥 ≥ |𝑠2|𝑥 for all variables 𝑥. This obviously implies

|𝑓(𝑡1, . . . , 𝑡𝑖−1, 𝑠1, 𝑡𝑖, . . . , 𝑡𝑛)|𝑥 ≥ |𝑓(𝑡1, . . . , 𝑡𝑖−1, 𝑠2, 𝑡𝑖, . . . , 𝑡𝑛)|𝑥
Moreover, if 𝑤(𝑠1) > 𝑤(𝑠2) then

𝑤(𝑓(𝑡1, . . . , 𝑡𝑖−1, 𝑠1, 𝑡𝑖, . . . , 𝑡𝑛)) > 𝑤(𝑓(𝑡1, . . . , 𝑡𝑖−1, 𝑠2, 𝑡𝑖, . . . , 𝑡𝑛))

and yields our thesis. Assume instead 𝑤(𝑠1) = 𝑤(𝑠2). This implies that

𝑤(𝑓(𝑡1, . . . , 𝑡𝑖−1, 𝑠1, 𝑡𝑖, . . . , 𝑡𝑛)) = 𝑤(𝑓(𝑡1, . . . , 𝑡𝑖−1, 𝑠2, 𝑡𝑖, . . . , 𝑡𝑛))

and since the root symbols of the two terms are the same, the thesis holds if and only if the
third condition of KBO is satisfied. This is trivial since 𝑡1 = 𝑡1,. . . ,𝑡𝑖−1 = 𝑡𝑖−1 and 𝑠1 >kbo 𝑠2.
To show instead that >kbo is closed under substitution, assume 𝑠1 >kbo 𝑠2 and let 𝜎 : 𝑉 →
𝑇 (Σ, 𝑉 ) be a substitution. We show 𝜎(𝑠1) >kbo 𝜎(𝑠2) by induction on the size of 𝑠1. First,
consider the variable condition. Let 𝑋 be the set of variables appearing in 𝑠1. Because of
𝑠1 >kbo 𝑠2 we know that |𝑠1|𝑥 ≥ |𝑠2|𝑥 for all variables 𝑥. For an arbitrary variable 𝑥 we have

|𝜎(𝑠1)|𝑥 − |𝜎(𝑠2)|𝑥 =
∑︁
𝑦∈𝑋

|𝜎(𝑦)|𝑥(|𝑠1|𝑦 − |𝑠2|𝑦) ≥ 0

Thus the variable condition is satisfied. A similar computation can be done for weights:

𝑤(𝜎(𝑠1)) − 𝑤(𝜎(𝑠2)) = 𝑤(𝑠1) − 𝑤(𝑠2) +
∑︁
𝑦∈𝑋

(|𝑠1|𝑦 − |𝑠2|𝑦)(𝑤(𝜎(𝑦)) − 𝑤0)

For all 𝑦 ∈ 𝑋, it holds |𝑠1|𝑦 − |𝑠2|𝑦 ≥ 0 and 𝑤(𝜎(𝑦)) − 𝑤0 ≥ 0. Consequently 𝑤(𝑠1) > 𝑤(𝑠2)
implies 𝑤(𝜎(𝑠1)) > 𝑤(𝜎(𝑠2)) which yields 𝜎(𝑠1) >kbo 𝜎(𝑠2). Assume instead that 𝑤(𝑠1) = 𝑤(𝑠2)
and hence 𝑤(𝜎(𝑠1)) ≥ 𝑤(𝜎(𝑠2)).If 𝑤(𝜎(𝑠1)) > 𝑤(𝜎(𝑠2)), then 𝜎(𝑠1) >kbo 𝜎(𝑠2). Otherwise we
consider one subcase for each condition of KBO:
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1. If 𝑠1 >kbo 𝑠2 holds for the first condition, then 𝑠1 = 𝑓𝑘(𝑥) and 𝑠2 = 𝑥 for a unary symbol
𝑓 of weight 0 a variable 𝑥 and a positive integer 𝑘. We show 𝜎(𝑠1) >kbo 𝜎(𝑠2) by induction
on the size of 𝜎(𝑥). If 𝜎(𝑥) = 𝑦 is a variable, then the result trivially holds for the first
condition of KBO. Otherwise 𝜎(𝑥) = 𝑔(𝑡1, . . . , 𝑡𝑛) for a function symbol 𝑔 of arity 𝑛. If
𝑓 ̸= 𝑔 then 𝑓 > 𝑔 from the admissibility of 𝑤 and thus 𝜎(𝑠1) = 𝑓𝑘(𝑔(𝑡1, . . . , 𝑡𝑛)) >kbo
𝑔(𝑡1, . . . , 𝑡𝑛) = 𝜎(𝑠2) holds from the second condition of KBO. If 𝑓 = 𝑔 then the third
condition must apply and we need to prove that 𝑓𝑘(𝑡1) >kbo 𝑡1. By taking a substitution
𝜎′ such that 𝜎′(𝑥) = 𝑡1 then the induction hypothesis (appliable since 𝜎′(𝑥) is smaller
than 𝜎(𝑥)) yields 𝑓𝑘(𝑡1) = 𝜎′(𝑠1) >kbo 𝜎′(𝑠2) = 𝑡1.

2. If 𝑠1 >kbo 𝑠2 holds for the second condition, then the root symbol 𝑓 of 𝑠1 and the root
symbol 𝑔 of 𝑠2 are such that 𝑓 > 𝑔. Obviously 𝜎(𝑠1) has root symbol 𝑓 whereas 𝜎(𝑠2) as
root symbol 𝑔, and thus 𝜎(𝑠1) >kbo 𝜎(𝑠2).

3. If 𝑠2 >kbo 𝑠2 holds for the third condition then the root symbols for 𝑠1, 𝑠2, 𝜎(𝑠1)
and 𝜎(𝑠2) are the same. Let 𝑠1 = 𝑓(𝑠1, . . . , 𝑠𝑚) and 𝑠2 = 𝑓(𝑡1, . . . , 𝑡𝑚). It holds that
there exists 𝑖 ∈ [1, 𝑚] such that 𝑠1 = 𝑡1,. . . ,𝑠𝑖−1 = 𝑡𝑖−1 and 𝑠𝑖 >kbo 𝑡𝑖. This implies
𝜎(𝑠1) = 𝜎(𝑡1),. . . ,𝜎(𝑠𝑖−1) = 𝜎(𝑡𝑖−1) and by induction 𝜎(𝑠𝑖) >kbo 𝜎(𝑡𝑖) (since 𝑠𝑖 is smaller
than 𝑠1). Thus 𝜎(𝑠1) > 𝜎(𝑠2) holds.

(5) To show the subterm property, recall that 𝑠 >kbo 𝑥 for all variables 𝑥 and terms 𝑠 ̸= 𝑥
that contain 𝑥. This, together with the fact that >kbo is closed under substitutions, obviously
implies the subterm property.
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