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Exercise 1 :

Let 𝐴 and 𝐵 be two terminating relations on the same set of terms. Show that if 𝐴𝐵 ⊆ 𝐵𝐴 then
𝐴 ∪ 𝐵 is a terminating relation. Use well-founded induction.

Solution:

We prove that (𝐴 ∪ 𝐵)* ⊆ 𝐵*𝐴* by well-founded induction on steps of (𝐴 ∪ 𝐵)*. The
induction hypothesis is: 𝑡(→𝐴∪𝐵)𝑛𝑡′ =⇒ 𝑡 →*

𝐵→*
𝐴 𝑡′. W.l.o.g. suppose 𝑡 →𝑛+1

𝐴∪𝐵 𝑡′ such that
𝑡 →𝐴 𝑡′′ →𝐵 (→𝐴∪𝐵)𝑛−1𝑡′ for some 𝑛 ∈ N. Then by hypothesis 𝐴𝐵 ⊆ 𝐵𝐴 it holds that there
exists 𝑡′′′ such that 𝑡 →𝐵 𝑡′′′ →𝐴 (→𝐴∪𝐵)𝑛−1𝑡′. By inductive hypothesis, since 𝑡′′′(→𝐴∪𝐵)𝑛𝑡′,
𝑡′′′ →*

𝐵→*
𝐴 𝑡′ and therefore 𝑡 →*

𝐵→*
𝐴 𝑡′. Since 𝐴 and 𝐵 are terminating relations, 𝐵*𝐴* is a

terminating relation. It follows that 𝐴 ∪ 𝐵 is terminating.

Given a strict order > on a set 𝐴, we define the corresponding multiset order >mul on Mult(𝐴)
as follows: 𝑀 >mul 𝑁 if and only if there exist 𝑋, 𝑌 ∈ Mult(𝐴) such that

1. ∅ ≠ 𝑋 ⊆ 𝑀 ;
2. 𝑁 = (𝑀 ∖ 𝑋) ∪ 𝑌 ;
3. ∀𝑦 ∈ 𝑌 ∃𝑥 ∈ 𝑋 𝑥 > 𝑦.

Exercise 2 :

Prove that 𝑀 >mul 𝑁 if and only if 𝑀 ̸= 𝑁 and for all 𝑛 ∈ 𝑁 ∖ 𝑀 there exists 𝑚 ∈ 𝑀 ∖ 𝑁 such
that 𝑚 > 𝑛.

Solution:

Assume 𝑀 >mul 𝑁 , 𝑋 and 𝑌 as in the definition. We first show that 𝑁 ∖ 𝑀 = 𝑌 ∖ 𝑋 and
𝑀 ∖ 𝑁 = 𝑋 ∖ 𝑌 .

• 𝑁 ∖ 𝑀 = ((𝑀 ∖ 𝑋) ∪ 𝑌 ) ∖ 𝑀 = ((𝑀 ∪ 𝑌 ) ∖ 𝑋) ∖ 𝑀 = ((𝑀 ∪ 𝑌 ) ∖ 𝑀) ∖ 𝑋 = 𝑌 ∖ 𝑋.
Here, the second equality holds because 𝑋 ⊆ 𝑀 (moreover, recall that we are working
with multisets and not sets! Otherwise, (𝑀 ∖ 𝑋) ∪ 𝑌 ̸= (𝑀 ∪ 𝑌 ) ∖ 𝑋).

• 𝑀 ∖ 𝑁 = 𝑀 ∖ ((𝑀 ∖ 𝑋) ∪ 𝑌 ) = (𝑀 ∖ (𝑀 ∖ 𝑋)) ∖ 𝑌 = 𝑋 ∖ 𝑌 .
Here, the last equality holds as 𝑋 ⊆ 𝑀 . Indeed, 𝑀 ∖ (𝑀 ∖ 𝑋) is then

𝜆𝑥.(𝑀(𝑥) − (𝑀(𝑥) − 𝑋(𝑥))).

(⇒) 𝑀 ̸= 𝑁 follows from irreflexivity of >mul. For the 2nd condition, suppose 𝑦1 ∈ 𝑁 ∖ 𝑀 =
𝑌 ∖ 𝑋. By definition, there is a 𝑦2 ∈ 𝑋 such that 𝑦2 > 𝑦1. Either 𝑦2 ∈ 𝑋 ∖ 𝑌 = 𝑀 ∖ 𝑁 , in
which case we are done, or 𝑦2 ∈ 𝑋 ∩ 𝑌 (where (𝑋 ∩ 𝑌 )(𝑥) = min(𝑋(𝑥), 𝑌 (𝑥))), in which case
there is 𝑦3 ∈ 𝑋 such that 𝑦3 > 𝑦2. Because our multisets are finite and > is a strict order,
there is no infinite ascending chain 𝑦1 < 𝑦2 < . . . in 𝑋 ∩ 𝑌 . This process therefore terminate
with some 𝑦𝑛 ∈ 𝑋 ∖ 𝑌 = 𝑀 ∖ 𝑁 . Transitivity yields 𝑦𝑛 > 𝑦1.
(⇐) Let 𝑁 ∖ 𝑀 = 𝑌 and 𝑀 ∖ 𝑁 = 𝑋. Since 𝑀 ̸= 𝑁 , it cannot be that 𝑀 and 𝑁 are both
empty. Moreover it holds that 𝑋 ̸= ∅. Indeed, suppose that 𝑋 = 𝑀 ∖ 𝑁 is empty, then for
all 𝑒 𝑀(𝑒) ≤ 𝑁(𝑒) and since 𝑀 ̸= 𝑁 it will hold that 𝑁 ̸= ∅, which will lead 𝑁 ∖ 𝑀 not
empty. This is contradictory, as we assumed 𝑀 ∖ 𝑁 = ∅ but, from the second condition we
have that 𝑁 ∖ 𝑀 ̸= ∅ implies 𝑀 ∖ 𝑁 ̸= ∅. Moreover from it’s definition 𝑋 ⊆ 𝑀 . By definition
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it also holds that 𝑁 = (𝑀 ∖ 𝑋) ∪ 𝑌 . Indeed, 𝑁 = (𝑁 ∩ 𝑀) ∪ (𝑁 ∖ 𝑀). We can easily show
that 𝑁 ∩ 𝑀 = (𝑀 ∖ (𝑀 ∖ 𝑁)). Then by definition of 𝑋 and 𝑌 we obtain 𝑁 = (𝑀 ∖ 𝑋) ∪ 𝑌 .
From the last hypothesis it holds that for all 𝑛 ∈ 𝑌 there exists 𝑚 ∈ 𝑋 such that 𝑚 > 𝑛. We
conclude 𝑀 >mul 𝑁 .

The lexicographic order >lex for the Cartesian product × of two domains (𝐴, >𝐴) and (𝐵, >𝐵)
is defined as follows: (𝑎1, 𝑏1) >lex (𝑎2, 𝑏2) if and only if 𝑎1 > 𝑎2 or 𝑎1 = 𝑎2 and 𝑏1 > 𝑏2. This order
can be readily extended con Cartesian products of arbitrary length by recursively applying this
definition, i.e by observing that 𝐴 × 𝐵 × 𝐶 = 𝐴 × (𝐵 × 𝐶).

In the following, let Σ be a finite signature, 𝑉 a set of variables and 𝑇 (Σ, 𝑉 ) the terms built from
those sets.

For every 𝑓 ∈ Σ let status(𝑓) ∈ {mul, lex} be its status (status is then called status function)
and let > be a strict order on Σ. The recursive path order >rpo on 𝑇 (Σ, 𝑉 ) induced by > is
defined as follows. 𝑠 >rpo 𝑡 if and only if one of the following holds:

1. 𝑡 is a variable appearing in 𝑠 and 𝑠 ̸= 𝑡, or

let 𝑠 = 𝑓(𝑠1, . . . , 𝑠𝑚) and 𝑡 = 𝑔(𝑡1, . . . , 𝑡𝑛),

2. there exists 𝑖 ∈ [1, 𝑚] such that 𝑠𝑖 ≥rpo 𝑡, or
3. 𝑓 > 𝑔 and 𝑠 >rpo 𝑡𝑗 for all 𝑗 ∈ [1, 𝑛], or
4. 𝑓 = 𝑔, for all 𝑗 ∈ [1, 𝑚] it holds 𝑠 >rpo 𝑡𝑗 and (𝑠1, . . . , 𝑠𝑚)(>rpo)status(𝑓)(𝑡1, . . . , 𝑡𝑚).

The lexicographic path order is a recursive path order s.t. for all 𝑓 ∈ Σ, status(𝑓) = lex,
whereas the multiset path order is a recursive path order s.t. for all 𝑓 ∈ Σ, status(𝑓) = mul,
where we define (𝑠1, . . . , 𝑠𝑚)(>rpo)mul(𝑡1, . . . , 𝑡𝑚) as {| 𝑠1, . . . , 𝑠𝑚 |}(>rpo)mul{| 𝑡1, . . . , 𝑡𝑚 |}.

Exercise 3 :

We consider the Ackermann’s function

Ack 0 𝑦 = 𝑦 + 1
Ack 𝑥 0 = Ack (𝑥 − 1) 1
Ack 𝑥 𝑦 = Ack (𝑥 − 1) (Ack 𝑥 (𝑦 − 1))

1. Prove its termination via well-founded induction.
2. The following rewrite system simulates Ack

a(0, 𝑦) → s(𝑦)
a(s(𝑥), 0) → a(𝑥, s(0))

a(s(𝑥), s(𝑦)) → a(𝑥, a(s(𝑥), 𝑦))

Prove its termination using a RPO.
3. Consider the well-founded domain (Mult(N × N), (>lex)mul). Prove the termination of Ack

using the following abstraction:

𝜑 : 𝑇 ({a, s}, 𝑋) → Mult(N × N)
𝑡 → {| (|𝑢|, |𝑣|) | 𝑡|𝑝∈Pos(𝑡) = a(𝑢, 𝑣) |}

where |0| = 1, |a(𝑥, 𝑦)| = |𝑥| + |𝑦| + 1 and |s(𝑥)| = |𝑥| + 1.

Solution:

(1) Induction on (N × N, >lex). We prove that the calculus of Ack 𝑢 𝑣 terminates by induction
(𝑢, 𝑣) ordered lexicographically on integers.
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• Base cases: Ack terminates for (0, 𝑛), 𝑛 ∈ N;

• We need to show that Ack terminates for (𝑛, 𝑚), 𝑛 > 0. Induction hypothesis: Ack
terminates for all (𝑗, 𝑘) such that 𝑗 < 𝑛 or (𝑗 = 𝑛 and 𝑘 < 𝑚). If 𝑚 = 0 then by
induction hypothesis the function terminates since (𝑛 − 1, 1) < (𝑛, 𝑚). Instead, if 𝑚 > 0,
by induction hypothesis the function terminates on input (𝑛, 𝑚 − 1) with output 𝑟 and
terminates on input (𝑛 − 1, 𝑟).

(2) Let > be such that a > s and let status(a) = status(s) = lex. It holds:

• a(0, 𝑡) >rpo s(𝑡), since a > s and a(0, 𝑡) >rpo 𝑡;

• a(s(𝑡), 0) >rpo a(𝑡, s(0)) since a(s(𝑡), 0) > 𝑡, a(s(𝑡), 0) > s(0) and (s(𝑡), 0)(>rpo)lex(𝑡, s(0));

• a(s(𝑡), s(𝑡′)) >rpo a(𝑡, a(s(𝑡), 𝑡′)) since

a(s(𝑡), s(𝑡′)) >rpo 𝑡, a(s(𝑡), s(𝑡′)) >rpo a(s(𝑡), 𝑡′), (s(𝑡), s(𝑡′))(>rpo)lex(𝑡, a(s(𝑡), 𝑡′))

(3) Let 𝑠 → 𝑡,

• if 𝑠 = 𝐶[a(0, 𝑡′)] and 𝑡 = 𝐶[s(𝑡′)], then 𝜑(𝑡) = 𝜑(𝑠) ∖ {| (1, |𝑡′|) |}. Therefore it holds

𝜑(𝑠)(>lex)mul𝜑(𝑡).

• if 𝑠 = 𝐶[a(s(𝑡′), 0)] and 𝑡 = 𝐶[a(s(𝑡′), s(0))], then

𝜑(𝑡) = 𝜑(𝑠) ∪ {| (|𝑡′|, 2) |} ∖ {| (|𝑡′| + 1, 1) |}.

• if 𝑠 = 𝐶[a(s(𝑡′), s(𝑡′′))] and 𝑡 = 𝐶[a(𝑡′, a(s(𝑡′), 𝑡′′))], then

𝜑(𝑡) = 𝜑(𝑠) ∪ {| (|𝑡′|, |𝑡′| + |𝑡′′| + 2), (|𝑡′| + 1, |𝑡′′|) |} ∖ {| (|𝑡′| + 1, |𝑡′′| + 1) |}.

Exercise 4 :

Show that is not possible to prove termination using lexicographic path ordering of the following
term rewrite system:

{ a(a(𝑥)) → s(𝑥), s(s(𝑥)) → a(𝑥) }

Solution:

Suppose a > s. Let 𝑠 → 𝑡 with 𝑠 = 𝐶[s(s(𝑡′)] and 𝑡 = 𝐶[a(𝑡′)]. Then we need to prove that
s(s(𝑡′)) >rpo a(𝑡′), which does not hold. If instead s > a, then from the first rule we get
a(a(𝑡′)) >rpo s(𝑡′) which, again, does not hold.

Exercise 5 :

Show that the termination of the following rewriting system cannot be proven with lexicographic
path order but can be proven with multiset path order.

0 + 𝑥 → 0 0 × 𝑥 → 𝑥

s(𝑥) + 𝑦 → s(𝑥 + 𝑦) s(𝑥) × 𝑦 → (𝑦 × 𝑥) + 𝑦

Solution:

We need to impose the precedence × > + > s. With this, the lexicographic path order
cannot orient the last rule as it does not hold that (s(𝑥), 𝑦) >lex (𝑦, 𝑥). Instead, it holds
{| s(𝑥), 𝑦 |} >mul {| 𝑦, 𝑥 |} since s(𝑥) dominates 𝑥.
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