Rewriting Techniques: TD 2

22 - 11 - 2018

Exercise 1:

Let A and B be two terminating relations on the same set of terms. Show that if $AB \subseteq BA$ then $A \cup B$ is a terminating relation. Use well-founded induction.

Solution:

We prove that $(A \cup B)^* \subseteq B^*A^*$ by well-founded induction on steps of $(A \cup B)^*$. The induction hypothesis is: $t(\rightarrow_{A\cup B})^n t' \Longrightarrow t \rightarrow_B^* \rightarrow_A^* t'$. W.l.o.g. suppose $t \rightarrow_{A\cup B}^{n+1} t'$ such that $t \rightarrow_A t'' \rightarrow_B (\rightarrow_{A\cup B})^{n-1}t'$ for some $n \in \mathbb{N}$. Then by hypothesis $AB \subseteq BA$ it holds that there exists t''' such that $t \rightarrow_B t''' \rightarrow_A (\rightarrow_{A\cup B})^{n-1}t'$. By inductive hypothesis, since $t'''(\rightarrow_{A\cup B})^n t'$, $t''' \rightarrow_B^* \rightarrow_A^* t'$ and therefore $t \rightarrow_B^* \rightarrow_A^* t'$. Since A and B are terminating relations, B^*A^* is a terminating relation. It follows that $A \cup B$ is terminating.

Given a strict order > on a set A, we define the corresponding **multiset order** >_{mul} on Mult(A) as follows: $M >_{mul} N$ if and only if there exist $X, Y \in Mult(A)$ such that

$$\begin{split} 1. & \emptyset \neq X \subseteq M; \\ 2. & N = (M \setminus X) \cup Y; \\ 3. & \forall y \in Y \; \exists x \in X \; x > y. \end{split}$$

Exercise 2:

Prove that $M >_{\text{mul}} N$ if and only if $M \neq N$ and for all $n \in N \setminus M$ there exists $m \in M \setminus N$ such that m > n.

Solution:

Assume $M >_{\text{mul}} N$, X and Y as in the definition. We first show that $N \setminus M = Y \setminus X$ and $M \setminus N = X \setminus Y$.

- $N \setminus M = ((M \setminus X) \cup Y) \setminus M = ((M \cup Y) \setminus X) \setminus M = ((M \cup Y) \setminus M) \setminus X = Y \setminus X$. Here, the second equality holds because $X \subseteq M$ (moreover, recall that we are working with multisets and not sets! Otherwise, $(M \setminus X) \cup Y \neq (M \cup Y) \setminus X$).
- $M \setminus N = M \setminus ((M \setminus X) \cup Y) = (M \setminus (M \setminus X)) \setminus Y = X \setminus Y$. Here, the last equality holds as $X \subseteq M$. Indeed, $M \setminus (M \setminus X)$ is then

$$\lambda x.(M(x) - (M(x) - X(x))).$$

(⇒) $M \neq N$ follows from irreflexivity of >_{mul}. For the 2nd condition, suppose $y_1 \in N \setminus M = Y \setminus X$. By definition, there is a $y_2 \in X$ such that $y_2 > y_1$. Either $y_2 \in X \setminus Y = M \setminus N$, in which case we are done, or $y_2 \in X \cap Y$ (where $(X \cap Y)(x) = \min(X(x), Y(x))$), in which case there is $y_3 \in X$ such that $y_3 > y_2$. Because our multisets are finite and > is a strict order, there is no infinite ascending chain $y_1 < y_2 < \ldots$ in $X \cap Y$. This process therefore terminate with some $y_n \in X \setminus Y = M \setminus N$. Transitivity yields $y_n > y_1$.

(⇐) Let $N \setminus M = Y$ and $M \setminus N = X$. Since $M \neq N$, it cannot be that M and N are both empty. Moreover it holds that $X \neq \emptyset$. Indeed, suppose that $X = M \setminus N$ is empty, then for all $e \ M(e) \leq N(e)$ and since $M \neq N$ it will hold that $N \neq \emptyset$, which will lead $N \setminus M$ not empty. This is contradictory, as we assumed $M \setminus N = \emptyset$ but, from the second condition we have that $N \setminus M \neq \emptyset$ implies $M \setminus N \neq \emptyset$. Moreover from it's definition $X \subseteq M$. By definition it also holds that $N = (M \setminus X) \cup Y$. Indeed, $N = (N \cap M) \cup (N \setminus M)$. We can easily show that $N \cap M = (M \setminus (M \setminus N))$. Then by definition of X and Y we obtain $N = (M \setminus X) \cup Y$. From the last hypothesis it holds that for all $n \in Y$ there exists $m \in X$ such that m > n. We conclude $M >_{\text{null}} N$.

The **lexicographic order** $>_{\text{lex}}$ for the Cartesian product \times of two domains $(A, >_A)$ and $(B, >_B)$ is defined as follows: $(a_1, b_1) >_{\text{lex}} (a_2, b_2)$ if and only if $a_1 > a_2$ or $a_1 = a_2$ and $b_1 > b_2$. This order can be readily extended con Cartesian products of arbitrary length by recursively applying this definition, i.e by observing that $A \times B \times C = A \times (B \times C)$.

In the following, let Σ be a finite signature, V a set of variables and $T(\Sigma, V)$ the terms built from those sets.

For every $f \in \Sigma$ let $status(f) \in \{mul, lex\}$ be its *status* (status is then called status function) and let > be a strict order on Σ . The **recursive path order** >_{rpo} on $T(\Sigma, V)$ induced by > is defined as follows. $s >_{rpo} t$ if and only if one of the following holds:

1. t is a variable appearing in s and $s \neq t$, or

let $s = f(s_1, ..., s_m)$ and $t = g(t_1, ..., t_n)$,

- 2. there exists $i \in [1, m]$ such that $s_i \geq_{\text{rpo}} t$, or
- 3. f > g and $s >_{\text{rpo}} t_j$ for all $j \in [1, n]$, or
- 4. f = g, for all $j \in [1, m]$ it holds $s >_{\text{rpo}} t_j$ and $(s_1, \ldots, s_m)(>_{\text{rpo}})_{\text{status}(f)}(t_1, \ldots, t_m)$.

The lexicographic path order is a recursive path order s.t. for all $f \in \Sigma$, status(f) = lex, whereas the multiset path order is a recursive path order s.t. for all $f \in \Sigma$, status(f) = mul, where we define $(s_1, \ldots, s_m)(>_{rpo})_{mul}(t_1, \ldots, t_m)$ as $\{ s_1, \ldots, s_m \} (>_{rpo})_{mul} \{ t_1, \ldots, t_m \}$.

Exercise 3:

We consider the Ackermann's function

Ack 0
$$y = y + 1$$

Ack $x 0 =$ Ack $(x - 1) 1$
Ack $x y =$ Ack $(x - 1) ($ Ack $x (y - 1))$

- 1. Prove its termination via well-founded induction.
- 2. The following rewrite system simulates Ack

$$\begin{split} \mathbf{a}(\mathbf{0},y) &\to \mathbf{s}(y) \\ \mathbf{a}(\mathbf{s}(x),\mathbf{0}) &\to \mathbf{a}(x,\mathbf{s}(\mathbf{0})) \\ \mathbf{a}(\mathbf{s}(x),\mathbf{s}(y)) &\to \mathbf{a}(x,\mathbf{a}(\mathbf{s}(x),y)) \end{split}$$

Prove its termination using a RPO.

3. Consider the well-founded domain $(Mult(\mathbb{N} \times \mathbb{N}), (>_{lex})_{mul})$. Prove the termination of Ack using the following abstraction:

$$\begin{split} \phi: \ T(\{\mathtt{a},\mathtt{s}\},X) &\to \operatorname{Mult}(\mathbb{N}\times\mathbb{N}) \\ t &\to \{ \! \mid (|u|,|v|) \mid t|_{p\in\operatorname{Pos}(t)} = \mathtt{a}(u,v) \mid \! \} \end{split}$$

where $|\mathbf{0}| = 1$, $|\mathbf{a}(x, y)| = |x| + |y| + 1$ and $|\mathbf{s}(x)| = |x| + 1$.

Solution:

(1) Induction on $(\mathbb{N} \times \mathbb{N}, >_{\text{lex}})$. We prove that the calculus of Ack u v terminates by induction (u, v) ordered lexicographically on integers.

- Base cases: Ack terminates for $(0, n), n \in \mathbb{N}$;
- We need to show that Ack terminates for (n,m), n > 0. Induction hypothesis: Ack terminates for all (j,k) such that j < n or (j = n and k < m). If m = 0 then by induction hypothesis the function terminates since (n-1,1) < (n,m). Instead, if m > 0, by induction hypothesis the function terminates on input (n,m-1) with output r and terminates on input (n-1,r).

(2) Let > be such that a > s and let status(a) = status(s) = lex. It holds:

- $\mathbf{a}(0,t) >_{\text{rpo}} \mathbf{s}(t)$, since $\mathbf{a} > \mathbf{s}$ and $\mathbf{a}(0,t) >_{\text{rpo}} t$;
- $a(s(t), 0) >_{rpo} a(t, s(0))$ since a(s(t), 0) > t, a(s(t), 0) > s(0) and $(s(t), 0)(>_{rpo})_{lex}(t, s(0))$
- $a(s(t), s(t')) >_{rpo} a(t, a(s(t), t'))$ since

$$a(s(t), s(t')) >_{rpo} t, \ a(s(t), s(t')) >_{rpo} a(s(t), t'), \ (s(t), s(t'))(>_{rpo})_{lex}(t, a(s(t), t'))$$

(3) Let $s \to t$,

• if $s = C[\mathbf{a}(0, t')]$ and $t = C[\mathbf{s}(t')]$, then $\phi(t) = \phi(s) \setminus \{|(1, |t'|)|\}$. Therefore it holds $\phi(s)(>_{\text{lex}})_{\text{mul}}\phi(t)$.

• if
$$s = C[\mathbf{a}(\mathbf{s}(t'), 0)]$$
 and $t = C[\mathbf{a}(\mathbf{s}(t'), \mathbf{s}(0))]$, then

$$\phi(t) = \phi(s) \cup \{ |(|t'|, 2)| \} \setminus \{ |(|t'| + 1, 1)| \}.$$

• if
$$s = C[\mathbf{a}(\mathbf{s}(t'), \mathbf{s}(t''))]$$
 and $t = C[\mathbf{a}(t', \mathbf{a}(\mathbf{s}(t'), t''))]$, then

$$\phi(t) = \phi(s) \cup \{ |(|t'|, |t'| + |t''| + 2), (|t'| + 1, |t''|) \} \setminus \{ |(|t'| + 1, |t''| + 1) \}.$$

Exercise 4:

Show that is not possible to prove termination using lexicographic path ordering of the following term rewrite system:

$$\{ \mathbf{a}(\mathbf{a}(x)) \rightarrow \mathbf{s}(x), \mathbf{s}(\mathbf{s}(x)) \rightarrow \mathbf{a}(x) \}$$

Solution:

Suppose $\mathbf{a} > \mathbf{s}$. Let $s \to t$ with $s = C[\mathbf{s}(\mathbf{s}(t')] \text{ and } t = C[\mathbf{a}(t')]$. Then we need to prove that $\mathbf{s}(\mathbf{s}(t')) >_{\text{rpo}} \mathbf{a}(t')$, which does not hold. If instead $\mathbf{s} > \mathbf{a}$, then from the first rule we get $\mathbf{a}(\mathbf{a}(t')) >_{\text{rpo}} \mathbf{s}(t')$ which, again, does not hold.

Exercise 5:

Show that the termination of the following rewriting system cannot be proven with lexicographic path order but can be proven with multiset path order.

$$\begin{array}{ll} \mathbf{0} + x \to \mathbf{0} & & \mathbf{0} \times x \to x \\ \mathbf{s}(x) + y \to \mathbf{s}(x+y) & & \mathbf{s}(x) \times y \to (y \times x) + y \end{array}$$

Solution:

We need to impose the precedence $\times > + > \mathbf{s}$. With this, the lexicographic path order cannot orient the last rule as it does not hold that $(\mathbf{s}(x), y) >_{\text{lex}} (y, x)$. Instead, it holds $\{ \mid \mathbf{s}(x), y \mid \} >_{\text{mul}} \{ \mid y, x \mid \}$ since $\mathbf{s}(x)$ dominates x.