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Exercise 1:
Let A and B be two terminating relations on the same set of terms. Show that if AB C BA then
AU B is a terminating relation. Use well-founded induction.

Solution:

We prove that (AU B)* C B*A* by well-founded induction on steps of (AU B)*. The
induction hypothesis is: ¢(—aup)"t = t —5—% t'. W.Lo.g. suppose t =", ¢’ such that
t —at’ =g (—aup)" ' for some n € N. Then by hypothesis AB C BA it holds that there
exists " such that t —p t"" —4 (—aup)" 't'. By inductive hypothesis, since t"'(— aup)"t’,
t"" —5—7% t' and therefore t -5 —7% t'. Since A and B are terminating relations, B*A* is a
terminating relation. It follows that A U B is terminating.

Given a strict order > on a set A, we define the corresponding multiset order >, on Mult(A)
as follows: M >, N if and only if there exist X,Y € Mult(A) such that

1. 0 # X C M;

2. N=(M\X)UY;

3. VyeY dre X z>y.
Exercise 2:

Prove that M >, N if and only if M # N and for all n € N \ M there exists m € M \ N such
that m > n.

Solution:

Assume M >, N, X and Y as in the definition. We first show that N\ M =Y \ X and
M\N=X\Y.

e N\M=(M\X)UY)\M=(MUV\X)\M=(MUY)\M)\X =Y \X.
Here, the second equality holds because X C M (moreover, recall that we are working
with multisets and not sets! Otherwise, ( M\ X)UY # (M UY)\ X ).

« MAN=M\((M\X)UY)=(M\(M\X)\Y =X\Y.
Here, the last equality holds as X C M. Indeed, M \ (M \ X) is then

Mo (M () - (M(x) - X(2))).

(=) M # N follows from irreflexivity of >,,1. For the 2nd condition, suppose y; € N\ M =
Y \ X. By definition, there is a y2 € X such that yo > y;. Either yo € X \Y = M \ N, in
which case we are done, or yo € X NY (where (X NY)(x) = min(X (z),Y (x))), in which case
there is y3 € X such that y3 > yo. Because our multisets are finite and > is a strict order,
there is no infinite ascending chain y; < yo < ... in X N'Y. This process therefore terminate
with some y, € X \Y = M \ N. Transitivity yields y, > y1.

(<)Let N\M =Y and M\ N = X. Since M # N, it cannot be that M and N are both
empty. Moreover it holds that X # (). Indeed, suppose that X = M \ N is empty, then for
all e M(e) < N(e) and since M # N it will hold that N # (), which will lead N \ M not
empty. This is contradictory, as we assumed M \ N = ) but, from the second condition we
have that N \ M # () implies M \ N # @. Moreover from it’s definition X C M. By definition




it also holds that N = (M \ X)UY. Indeed, N = (NN M)U (N \ M). We can easily show
that NN M = (M \ (M \ N)). Then by definition of X and ¥ we obtain N = (M \ X)UY.
From the last hypothesis it holds that for all n € Y there exists m € X such that m > n. We
conclude M >, N.

The lexicographic order >, for the Cartesian product x of two domains (A,>4) and (B, >g)
is defined as follows: (a1,b1) >1ex (a2, b2) if and only if a; > ag or a; = ag and by > by. This order
can be readily extended con Cartesian products of arbitrary length by recursively applying this
definition, i.e by observing that A x B x C = A x (B x C).

In the following, let X be a finite signature, V' a set of variables and T'(X, V) the terms built from
those sets.

For every f € ¥ let status(f) € {mul,lex} be its status (status is then called status function)
and let > be a strict order on ¥. The recursive path order >,,, on T'(X,V) induced by > is
defined as follows. s >, t if and only if one of the following holds:

1. t is a variable appearing in s and s # t, or
let s = f(s1,...,8m) and t = g(t1,...,t,),
2. there exists ¢ € [1,m] such that s; >0 t, or
3. f>gand s> t; forall j €[1,n], or
4. f =g, forall j € [1,m] it holds s >, t; and (s1,...,5m)(>rpo)status(f)(t1s -« - tm)-
The lexicographic path order is a recursive path order s.t. for all f € X, status(f) = lex,

whereas the multiset path order is a recursive path order s.t. for all f € ¥, status(f) = mul,
where we define (s1,. .., S$m)(>rpo)mul(t1,- -+, tm) as { s1,.. -, 8m [ (Grpo)mu{l t1,-- -, tm [}

Exercise 3:
We consider the Ackermann’s function
AckOy = y+1
Ackx 0 = Ack (z—1) 1
Ackzy = Ack (z—1) (Ack z (y — 1))

1. Prove its termination via well-founded induction.

2. The following rewrite system simulates Ack
a(0,y) — s(y)
a(z,s(0))
a(s(z),s(y)) = a(z,a(s(z),y))
Prove its termination using a RPO.

3. Consider the well-founded domain (Mult(N X N), (>1ex)mul). Prove the termination of Ack
using the following abstraction:

¢: T({a,s}, X) = Mult(N x N)
t = (ful, [0]) | tlpepos(r) = alu,v) [}

where |0 =1, |a(z,y)| = |=| + |y| + 1 and |s(x)| = |z| + 1.

Solution:

(1) Induction on (N x N, >.x). We prove that the calculus of Ack u v terminates by induction
(u,v) ordered lexicographically on integers.
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o Base cases: Ack terminates for (0,n), n € N;

e We need to show that Ack terminates for (n,m), n > 0. Induction hypothesis: Ack
terminates for all (j,k) such that j < n or (j = n and k¥ < m). If m = 0 then by
induction hypothesis the function terminates since (n — 1,1) < (n,m). Instead, if m > 0,
by induction hypothesis the function terminates on input (n,m — 1) with output r and
terminates on input (n — 1,r).

(2) Let > be such that a > s and let status(a) = status(s) = lex. It holds:
a(0,t) >po s(t), since a > s and a(0,t) >po t;

)
a(s(t),0) >po alt, (0)) since a(s(t),0) > £, a(s(t),0) > s(0) and (s(t), 0) (>rpo)iex (£, 5(0))}
a(s(t),s(t')) >rpo a(t,a(s(t),t')) since
a(s(t),s(t) >rpo t, a(s(t),s(t')) >rpo a(s(t),t), (s(t),s(t)(>rpo)ex(t, a(s(t), 1))

(3) Let s — ¢,

e if s = C[a(0,#)] and t = C[s(t')], then ¢(t) = é(s)\ { (1, ]) ). Therefore it holds

O(5)(Z1ex)mum b (t)-
e if s = Cla(s(t'),0)] and t = Cla(s(¢'), s(0))], then
o(t) = ¢(s) U (I,2) P\A (¥ +1,1) [}
e if s = Cla(s(t'),s(t"))] and t = Cla(t’,a(s(t'),"))], then

¢(t) = @(s) UL (1], [+ [¢7] +2), (T + 1171 AL (] + 1,187 + 1) -

Exercise 4:
Show that is not possible to prove termination using lexicographic path ordering of the following

term rewrite system:
{ a(a(z)) = s(z), s(s(z)) = a(z) }

Solution:
Suppose a > s. Let s — t with s = C[s(s(¥)] and ¢t = C[a(#')]. Then we need to prove that

s(s(t')) >ipo a(t’), which does not hold. If instead s > a, then from the first rule we get
a(a(t’)) >rpo s(t') which, again, does not hold.

Exercise 5:
Show that the termination of the following rewriting system cannot be proven with lexicographic
path order but can be proven with multiset path order.

O+x—0 OXox—x
s(z) +y —s(z+y) s(z) xy = (yxz)+y

Solution:

We need to impose the precedence x > + > s. With this, the lexicographic path order
cannot orient the last rule as it does not hold that (s(z),y) >1ex (y, ). Instead, it holds
{ s(z),y [} >mu {| y;= [} since s(z) dominates x.
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