Exercise 1:
Given the following term rewriting system (TRS):

\[
\begin{align*}
x \times 0 & \rightarrow 0 \\
0 \times x & \rightarrow 0 \\
s(x) \times y & \rightarrow (x \times y) + y \\
x \times s(y) & \rightarrow (x \times y) + x \\
0 + 0 & \rightarrow 0 \\
x + 0 & \rightarrow x \\
0 + x & \rightarrow x \\
x + s(y) & \rightarrow s(x + y) \\
s(x) + y & \rightarrow s(x + y)
\end{align*}
\]

Show the reduction graph of \(((0 \times 0) + 0) + s(0)\).

Solution:

Exercise 2:
Given the signature \(\{\mathbb{N}, \text{List}\}, \{0, s, \epsilon, :, \text{merge}, \text{sort}\}\) where the set of functions is typed as follows:

\[
0 : \mathbb{N}, \quad s : \mathbb{N} \rightarrow \mathbb{N}, \quad \epsilon : \text{List}, \quad (:) : \mathbb{N} \times \text{List} \rightarrow \text{List}, \\
\text{merge} : \text{List} \times \text{List} \rightarrow \text{List}, \quad \text{sort} : \text{List} \rightarrow \text{List}
\]

Define a finite TRS that simulates the \textit{mergesort algorithm}. If needed, you can define auxiliary sorts and function symbols.

Solution:

We will use the additional sort \(\mathbb{B} = \{\top, \bot\}\) and the following function symbols:

\[
\begin{align*}
\text{even} : \text{List} & \rightarrow \text{List}, \quad \text{odd} : \text{List} \rightarrow \text{List}, \\
\geq : \mathbb{N} \times \mathbb{N} & \rightarrow \mathbb{B}, \quad \text{aux} : \mathbb{N} \times \text{List} \times \text{List} \rightarrow \text{List}
\end{align*}
\]

We define the following TRS:

\[
\begin{align*}
\text{even}(\epsilon) & \rightarrow \epsilon \\
\text{odd}(\epsilon) & \rightarrow \epsilon \\
\text{even}(x:\epsilon) & \rightarrow \epsilon \\
\text{odd}(x:\epsilon) & \rightarrow x:\epsilon \\
\text{even}(x:y:z) & \rightarrow y: \text{even}(z) \\
\text{odd}(x:y:z) & \rightarrow x: \text{odd}(z) \\
0 \geq 0 & \rightarrow \top \\
\text{aux}(\top, x:y:z:w) & \rightarrow z: \text{merge}(x:y, w) \\
\text{aux}(\bot, x:y:z:w) & \rightarrow x: \text{merge}(y, z:w) \\
0 \geq s(x) & \rightarrow \bot \\
s(x) \geq 0 & \rightarrow \top \\
s(x) \geq s(y) & \rightarrow x \geq y
\end{align*}
\]
merge(x, ε) → x
merge(ε, x) → x
merge(x, y, z, w) → aux(x ≥ z, x, y, z, w)

\(\text{sort}(\epsilon) \rightarrow \epsilon \)
\(\text{sort}(x: \epsilon) \rightarrow x: \epsilon \)
\(\text{sort}(x, y, z) \rightarrow \text{merge} (\text{sort} (\text{even}(x, y, z)), \text{sort} (\text{odd}(x, y, z))) \)

Exercise 3:
Let \(M = (\Sigma, Q, \Delta) \) be a non-deterministic Turing machine where

- \(\Sigma = \{s_0, \ldots, s_n\} \) is a finite alphabet and \(s_0 \) is considered the blank symbol;
- \(Q = \{q_0, \ldots, q_p\} \) is a finite set of states;
- \(\Delta \subseteq Q \times \Sigma \times \Sigma \times \{l, r\} \) transition relation.

A configuration is an ordered triple \((x, q, k) \in \Sigma^{*} \times Q \times \mathbb{N} \) where \(x \) denotes the string on the tape, \(q \) denotes the machine’s current state, and \(k \) denotes the position of the machine on the tape.

Translate \(M \) into a finite TRS such that there exists an injection \(f \) from configurations of \(M \) to terms satisfying for each configuration \(\gamma, \gamma' \):

\[
\begin{align*}
\gamma & \Delta \gamma' \\
\gamma & \rightarrow \gamma'
\end{align*}
\]

\[
\begin{align*}
f(\gamma) & \rightarrow f(\gamma) \\
f(\gamma') & \rightarrow f(\gamma')
\end{align*}
\]

\[
\begin{align*}
f^{-1}(\gamma) & \rightarrow f^{-1}(\gamma) \\
f^{-1}(\gamma') & \rightarrow f^{-1}(\gamma')
\end{align*}
\]

Solution:
For each \(s \in \Sigma \) we introduce the unary function symbol \(s \). For each \(q \in Q \) we introduce the unary function symbol \(q \). Lastly, we introduce the constant \(r \) and the unary function symbol \(1 \).

We now define the TRS:

- For each transition \((q, s_i, q', s_j, r) \in \Delta \) we add the rewriting rule \(q(s_i(x)) \rightarrow s_j(q'(x)) \) and if \(i = 0 \) we also add the rule \(q(x) \rightarrow s_j(q'(r)) \).
- For each transition \((q, s_i, q', s_j, l) \in \Delta \) we add the rule \(l(q(s_i(x))) \rightarrow l(q'(s_0(s_j(x)))) \) and for every \(k \in [1, n] \) we add the rewriting rule \(s_k(q(s_i(x))) \rightarrow q'(s_k(s_j(x))) \). Moreover, if \(i = 0 \), we also add \(l(q(r)) \rightarrow l(q'(s_0(s_j(x)))) \) and the rule \(s_k(q(r)) \rightarrow q'(s_k(s_j(x))) \), where \(k \in [1, n] \).

Finally, for a configuration \((x, q, k) \) where \(x = s_{i_0}s_{i_1}\ldots s_{i_k-1}s_{i_k}s_{i_k+1}\ldots s_{i_t} \), the injection \(f \) is defined as \(l(s_{i_0}(s_{i_1}(\ldots s_{i_k-1}(q(s_{i_k}(s_{i_k+1}(\ldots s_{i_t}(r)))))))) \).

Exercise 4:
Are the following TRS terminating?

1. \{ \(s(p(x)) \rightarrow x, p(s(x)) \rightarrow x \) \};
2. \{ \(s(p(x)) \rightarrow x, p(s(x)) \rightarrow s(p(x)) \) \};
3. \{ \(s(p(x)) \rightarrow x, p(s(x)) \rightarrow s(s(p(x))) \) \};

For each transition system, let \(t \) and \(t' \) be two terms with the same normal form. What is the relationship between \(t \) and \(t' \)?
A polynomial interpretation on integers is the following:

- a subset A of \mathbb{N};
- for every symbol f of arity n, a polynomial $p_f \in \mathbb{N}[X_1, \ldots, X_n]$;
- for every $a_1, \ldots, a_n \in A$, $p_f(a_1, \ldots, a_n) \in A$;
- for every $a_1, \ldots, a_i > a'_i, \ldots, a_n \in A$, $p_f(a_1, \ldots, a_i, \ldots, a_n) > p_f(a_1, \ldots, a'_i, \ldots, a_n)$;

Then $(A, (p_f)_f, >)$ is a well-founded monotone algebra.

Exercise 5:
Prove the termination of the following TRS

$$
\begin{align*}
0 \times x & \rightarrow 0 \\
\text{s}(x) \times y & \rightarrow (x \times y) + y \\
x + 0 & \rightarrow x \\
x + \text{s}(y) & \rightarrow \text{s}(x + y)
\end{align*}
$$

using the polynomial interpretation on integers:

$$p_0 = 2 \quad p_s(X) = X + 1 \quad p_p(X, Y) = X + 2Y \quad p_x(X, Y) = (X + Y)^2$$

Is this polynomial interpretation suitable to prove termination of the TRS of Exercise 1?

Solution:

(1) From the polynomial interpretation we get the following polynomial for the various rules of the TRS: $p_{0 \times x}(X) = (X + 2)^2$, $p_{\text{s}(x) \times y}(X, Y) = (X + Y + 1)^2$, $p_{(x \times y) + y}(X, Y) = (X + Y)^2 + 2Y$, $p_x(X) = X + 4$, $p_{x + s(y)}(X, Y) = X + 2(Y + 1)$ and $p_{s(x + y)} = X + 2Y + 1$.

- $p_{0 \times x}(X) > p_0$ true since $(X + 2)^2 = X^2 + 4X + 4 > 2$;
- $p_{\text{s}(x) \times y}(X, Y) > p_{(x \times y) + y}(X, Y)$ true since $(X + Y + 1)^2 = X^2 + 2XY + Y^2 + 2X + 2Y + 1$ is greater than $(X + Y)^2 + 2Y = X^2 + 2XY + Y^2 + 2Y$;
- $p_x(X) > X$ true since $X + 4 > X$;
- $p_{x + s(y)}(X, Y) > p_{s(x + y)}$ since $X + 2(Y + 1) > X + 2Y + 1$.

(2) No. For the rule $\text{s}(x) + y \rightarrow \text{s}(x + y)$. Indeed, $p_{\text{s}(x) + y}(X, Y) = p_{\text{s}(x + y)}(X, Y) = X + 2Y + 1$.

Exercise 6:
Prove the termination of the following TRS by finding a polynomial interpretation on integers:

$$
\begin{align*}
x \times (y + z) & \rightarrow (x \times y) + (x \times z) \\
(x + y) + z & \rightarrow x + (y + z)
\end{align*}
$$
Solution:
Let $P_\times(X, Y)$ and $P_+(X, Y)$ be the two polynomial interpretation that we want to find. We can start by showing that the polynomial interpretation for the second rule must have degree 1. Let $\deg_{\times}(X)$ be the degree of the polynomial $P_\times(X, Y)$ w.r.t. the variable X. Similarly we denote with $\deg_{\times}(Y)$ the degree of the polynomial $P_\times(X, Y)$ w.r.t. Y, whereas $\deg_{+}(X)$ and $\deg_{+}(Y)$ are the degrees of the polynomial $P_+(X, Y)$ w.r.t. X and Y respectively. From the first rule it must hold that $\deg_{\times}(X) \geq \deg_{\times}(X) \times \deg_{+}(X)$, which implies $\deg_{+}(X) = 1$. Moreover it holds $\deg_{\times}(X) \geq \deg_{\times}(X) \times \deg_{+}(Y)$, which implies $\deg_{+}(Y) = 1$. Therefore, $P_+(X, Y)$ must be of the form $s_2X + s_1Y + s_0$. From the second rule we obtain

$$s_2(s_2X + s_1Y + s_0) + s_1Z + s_0 > s_2X + s_1(s_2Y + s_1Z + s_0) + s_0$$

Which can be rewritten as $s_2^2X + s_1Z + s_0s_2 > s_2X + s_1^2Z + s_0s_1$. It follows that s_2 must be greater than s_1. With a similar reasoning it follows that $P_\times(X, Y)$ must have degree 2.

Let’s define the polynomial interpretation on $\mathbb{N} \setminus \{0, 1\}$, $P_\times(X, Y) = XY$ and $P_+(X, Y) = 2X + Y + 1$. For the first rule, the left side of the rule is interpreted with $X(2Y + Z + 1)$ whereas the right side is $2XY + XZ + 1$. It holds $2XY + XZ + 1 > 2XY + XZ + 1$ whenever $X > 1$ (and for this reason we use an interpretation on $\mathbb{N} \setminus \{0, 1\}$). Similarly, for the second one it holds that $4X + 2Y + Z + 3 > 2X + 2Y + Z + 2$.

A polynomial interpretation on real numbers is the following:

- a subset A of \mathbb{R}^+;
- a positive real number δ;
- for every symbol f of arity n, a polynomial $P_f \in \mathbb{R}[X_1, \ldots, X_n]$;
- for every $a_1, \ldots, a_n \in A$, $P_f(a_1, \ldots, a_n) \in A$;
- for every $a_1, \ldots, a_i > \delta a'_i, \ldots, a_n \in A$, $P_f(a_1, \ldots, a_i, \ldots, a_n) > \delta P_f(a_1, \ldots, a'_i, \ldots, a_n)$ where $x > \delta y$ iff $x > y + \delta$.

Then $(A, (P_f), > \delta)$ is a well-founded monotone algebra.

Exercise 7:
Consider the following two TRS:

$$R_1 = \{ p(1(x)) \rightarrow p(p(1(x))), \ s(a(x)) \rightarrow s(s(a(x))), \ p(x) \rightarrow a(x, x), \ s(x) \rightarrow a(x, 0), \ s(x) \rightarrow a(0, x) \}$$

$$R_2 = \{ r(r(r(x))) \rightarrow a(r(x), r(x)), \ s(a(r(x), r(x))) \rightarrow r(r(r(x))) \}$$

1. Prove that $R_1 \cup R_2$ terminates using the following polynomial interpretation on real numbers: $\delta = 1$, $P_0(X) = 0$, $P_1(X) = X^2$, $P_2(X) = X + 4$, $P_3(X) = 3X + 5$, $P_4(X, Y) = X + Y$ and $P_5(X) = \sqrt{2}X + 1$.
2. Prove that in any polynomial interpretation on integers proving the termination of R_1 it must hold that $P_2(X)$ is of the form $X + s_0$ and $P_4(X, Y)$ is of the form $X + Y + a_0$, with $s_0 > a_0$.

hint: look at the dominant terms of the polynomials computed from the rewrite rules.
3. Deduce that the termination of $R_1 \cup R_2$ cannot be proved using a polynomial interpretation of integers.
Solution:

(1) \[
P_{\ell(p(z)))}(X) = 9X^2 + 30X + 25 >_1 P_{\ell(p(1z)))}(X) = 9X^2 + 20
\]
\[
P_{\ell(p(z)))}(X) = 3X + 17 >_1 P_{\ell(s(p(z)))}(X) = 3X + 13
\]
\[
P_{\ell(p(z)))}(X) = 3X + 5 >_1 P_{\ell(s,z,x))(X) = 2X
\]
\[
P_{\ell(s,z))(X) = X + 4 >_1 P_{\ell(s,0,z))(X) = X
\]
\[
P_{\ell(s,z,x))(X) = 2\sqrt{2}X + 3 + \sqrt{2} >_1 P_{\ell(v,(z)))}(X) = 2\sqrt{2}X + 2
\]
\[
P_{\ell(s,v,(z)))}(X) = 2\sqrt{2}X + 6 >_1 P_{\ell(v,(z)))}(X) = 2\sqrt{2}X + 3 + \sqrt{2}
\]

(2) Let \(P_0 = z \geq 0 \). From the second rule of \(R_1 \), let \(\alpha \) be the degree of \(P_a(X) \) and let \(\beta \) be the degree of \(P_b(X) \). From \(P_{a(x)}(X) > P_{a(p(x)))}(X) \) it must hold that \(\beta \alpha \geq \alpha \alpha \beta \). Therefore \(\alpha = 1 \). Similarly, from the first rule, also \(P_b(X) \) is of degree one. From the third rule it must hold that \(P_a(X, Y) \) is also of degree one. So \(P_b(X) \) is of the form \(p_1X + p_0 \), \(P_b(X) \) is of the form \(s_1X + s_0 \) whereas \(P_a(X, Y) \) is of the form \(a_2X + a_1Y + a_0 \). From the fourth rule it must hold \(s_1 + s_0 > a_2X + a_0 + a_1z \), which implies \(s_1 \geq a_2 \geq 1 \). Similarly, from the fifth rule, \(s_1 \geq a_1 \geq 1 \). From the second rule \(s_1p_1 + s_0p_1 + p_0 > s_1^2p_1 + s_1^2p_0 + s_1s_0 + s_0 \) and therefore it must hold that \(s_1p_1 \geq s_1^2p_1 \). Therefore \(s_1 = 1 \), which also implies \(a_2 = a_1 = 1 \). Moreover from \(s_1 + s_0 > a_2X + a_0 + a_1z \), it must hold \(s_0 > a_0 \).

(3) Let \(\alpha \) be the degree of the polynomial \(P(X) \). From the second rule of \(R_2 \) it must hold that \(\alpha^3 \leq \alpha \) and therefore \(\alpha = 1 \) and \(P(X) \) is of the form \(r_1X + r_0 \). Looking now at the first rule, it must hold that \(r_1(r_1X + r_0) + r_0 > 2r_1X + 2r_0 + a_0 \) which implies \(r_1^2 \geq 2r_1 \) and therefore \(r_1^2 \geq 2 \). Similarly, from the second rule of \(R_2 \) it must hold that \(2r_1 \geq r_1^3 \) or alternatively \(r_1^2 \leq 2 \). Therefore \(r_1^2 \) must be equal to \(2 \), which requires \(r_1 = \sqrt{2} \) not to be a natural number.

A matrix interpretation on integers is the following:

- a positive integer \(d \);
- for every symbol \(f \) of arity \(n \), \(n \) matrices \(M_{f,1}, \ldots, M_{f,n} \in \mathbb{N}^{d \times d} \);
- for every symbol of arity \(n \), a vector \(V_f \in \mathbb{N}^d \);
- a non-empty set \(I \subseteq \{1, \ldots, d\} \) satisfying that for every symbol \(f \) of arity \(n \) the map

\[
L_f : (\mathbb{N}^d)^n \to \mathbb{N}^d \text{ defined as } L_f(X_1, \ldots, X_n) = V_f + \sum_{i=1}^n M_{f,i}X_i
\]

is monotonic with respect to \(>_I \) were \(X >_I Y \) holds if and only if for every \(i \in \{1, \ldots, d\} \), \(X[i] > Y[i] \) and there is \(j \in I \) such that \(X[j] > Y[j] \).

Then \((\mathbb{N}^d, (L_f)_f, >_I) \) is a well-founded monotone algebra.

Exercise 8:

Consider the TRS \{ \(s(a) \to s(p(a)), p(b) \to p(s(b)) \) \}.

1. Prove that its termination cannot be proved by a polynomial interpretation on integers;

2. Use the following matrix interpretation to prove termination w.r.t. \(>_{\{1,2\}} \):

 \[
 L_a(X) = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} X \quad L_p(X) = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} X \quad L_a = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \quad L_b = \begin{bmatrix} 1 \\ 0 \end{bmatrix}
 \]

3. Why does it fail if we take \(>_{\{1\}} \) instead? Is there another matrix interpretation that works with this ordering?
Deduce that the TRS simulating the Ackermann’s function, cannot be proved terminating using a polynomial interpretation.

Consider now any finite TRS and a function symbol of a polynomial interpretation of integers for a TRS.

Let \(A \) be respectively the domain and the interpretation, for each function symbol \(f \), of a polynomial interpretation of integers for a TRS (note: the TRS is therefore terminating). Take \(a \in A \setminus \{0\} \).

1. Define \(\pi_a : T(F,X) \rightarrow A \) as the function which maps every variable \(x \) to \(a \) and every term of the form \(f(t_1, \ldots, t_n) \) to \(P_f(\pi_a(t_1), \ldots, \pi_a(t_n)) \). Prove that \(\pi_a(t) \) is greater or equal to the length of every reduction starting from \(t \).

2. Show that there exists \(d \) and \(k \) positive integers such that for every \(f \in F \) of arity \(n \) and every \(a_1, \ldots, a_n \in A \setminus \{0\} \) it holds \(P_f(a_1, \ldots, a_n) \leq d \prod_{i=1}^n a_i^k \).

3. From the previous point, pick \(d \) to be also greater or equal than \(a \) and fix \(c \geq k + \log_2(d) \). Prove that \(\pi_a(t) \leq 2^{2^{|t|}} \).

Consider now any finite TRS and a function symbol \(f \). Prove that there exists an integer \(k \) such that if \(s \rightarrow t \) then \(|t|_f \leq k(|s|_f + 1) \), where \(|.|_f \) is the number of \(f \).

Deduce that the TRS
\[
\{ a(0, y) \rightarrow s(y), \ a(s(x), 0) \rightarrow a(x, s(0)), \ a(s(x), s(y)) \rightarrow a(x, a(s(x), y)) \}
\]
simulating the Ackermann’s function, cannot be proved terminating using a polynomial interpretation over integers.

Solution:

(1) The proof is by induction on the \(\rightarrow \) relation. Let \(t \) be irreducible. Then the length of all its reductions is 0 and \(\pi_a(t) \geq 0 \) by definition. For the inductive step, suppose \(t \rightarrow t’ \) s.t. \(t \rightarrow t’ \ldots \) is the maximal reduction from \(t \). There exists a context \(C \), a valuation \(\sigma \) and a rewriting rule \(l \rightarrow r \) such that \(t = C[l\sigma] \rightarrow C[r\sigma] = t’ \). Without loss of generality, we can consider just terms of the form \(l\sigma \rightarrow r\sigma \). Let \(P_f \) and \(P_r \) be the polynomials resulting from the polynomial interpretation, for \(l \) and \(r \) respectively. We have that, for all \(X_1, \ldots, X_n, P_f(X_1, \ldots, X_n) > P_r(X_1, \ldots, X_n) \).
inductive hypothesis, \(\pi_a(r\sigma) = P_f(\pi_a(\sigma(X_1)), \ldots, \pi_a(\sigma(X_n))) \) is greater or equal to the length of every reduction starting from \(r\sigma \). It follow that \(\pi_a(l\sigma) = P_f(\pi_a(\sigma(X_1)), \ldots, \pi_a(\sigma(X_n))) \geq \pi_a(r\sigma) + 1 \) and therefore \(\pi_a(l\sigma) \) is greater or equal to the length of every reduction starting from \(l\sigma \).

(2) Let \(\{s_0, \ldots, s_m\} \) be the coefficient of the polynomial \(P_f \), let \(d \geq \sum_{i=0}^{n} s_i \) (so \(d \geq 1 \)) and let \(k \geq 1 \) be also greater or equal to the degree of \(P_f \). The thesis can be rewritten as \(P_f(a_1, \ldots, a_n) \leq (\sum_{i=1}^{m} s_i) \prod_{j=1}^{n} a_j^k = \sum_{i=1}^{m} (s_i \prod_{j=1}^{n} a_j^k) \). Moreover there exists

\[
k_{1,1}, \ldots, k_{1,n}, k_{2,1}, \ldots, k_{2,n}, \ldots, k_{m,1}, \ldots, k_{m,n}
\]

such that \(P_f(a_1, \ldots, a_n) = \sum_{i=1}^{m} (s_i \prod_{j=1}^{n} a_j^{k_{i,j}}) \) and for all \(i \in [1, m] \) \(k_{1,1} + \cdots + k_{i,n} \leq k \). Moreover \(a_1, \ldots, a_n \in A \setminus \{0\} \), and therefore the thesis trivially holds since for all \(i \in [1, m] \) \(s_i \prod_{j=1}^{n} a_j^{k_{i,j}} \leq s_i \prod_{j=1}^{n} a_j^k \).

(3) By induction of \(t \). If \(t \) is a variable, then \(|t| = 1 \) and \(\pi_a(t) = a \leq 2^k \leq 2^{2\log_2(d)} \leq 2^{2^c} \). If \(t \) is of the form \(f(t_1, \ldots, t_n) \) then \(\pi_a(t) = P_f(\pi_a(t_1), \ldots, \pi_a(t_n)) \). By inductive hypothesis, since \(P_f \) is monotone, \(\pi_a(t) \leq P_f(2^{2^c}, \ldots, 2^{2^c}) \). From (2) it follows that \(P_f(2^{2^c}, \ldots, 2^{2^c}) \leq d \prod_{i=1}^{n} (2^{2^c})^{k} = d 2^{\sum_{i=1}^{n} (2^{2^c})^{k}} = 2^{d \log_2(d) + k(2^{2^c})} \leq 2^{(d \log_2(d) + k)(2^{2^c})} \). Since \(d \geq a \geq 1 \) and \(k \geq 1 \) it holds that \(c \geq 1 \) and therefore \(2^{d \log_2(d) + k)(2^{2^c})} \leq 2^{2^{(d + k)(2^{2^c})}} \leq 2^{2^c} \).

(4) W.l.o.g. consider \(s = l\sigma \) and \(t = r\sigma \) for a rewriting rule \(l \rightarrow r \) and a valuation \(\sigma \). The number of occurrences of \(f \) in \(l\sigma \) is \(|l|_f + \sum_{p \in \{p|\sigma(p) \in X\}} |\sigma(p)|_f \) where \(|l|_f \) only depends on the left side of the rewriting rule. Similarly, \(|r\sigma|_f = |r|_f + \sum_{p \in \{p|\sigma(p) \in X\}} |\sigma(p)|_f \) where \(|r|_f \) depends only on the right side of the rewriting rule. Let \(V \) the number of variables in \(r \) (i.e. \(\{p|\sigma(p) \in X\} \)). It holds that \(|r|_f \leq |r|_f + V \max_{p \in \{p|\sigma(p) \in X\}} |\sigma(p)|_f \). Since every variable of \(r \) also occurs in \(l \) it must hold that \(|r|_f \leq |r|_f + V \max_{p \in \{p|\sigma(p) \in X\}} |\sigma(p)|_f \). Moreover \(\max_{p \in \{p|\sigma(p) \in X\}} |\sigma(p)|_f \) is trivially less or equal that all the occurrences of \(f \) in \(l\sigma \), therefore \(|r|_f \leq |r|_f + V |\sigma|_f \leq (|r|_f + V)(|\sigma|_f + 1) \). |\sigma|_f and \(V \) only depends on the rule itself. Let \(k \) be greater or equal than the maximum number of occurrences of \(f \) in the right side of each rule of the TRS plus the number of variables in the right side of each rule of the TRS. It holds that \(|r|_f \leq k(|\sigma|_f + 1) \).

(5) From the above point, it holds that for all terms \(s \) and \(t \) such that \(s \rightarrow t \), \(|t|_a \leq k(|s|_a + 1) \). So at each step of the rewriting system, the number of \(a \) can at most increase \(k \) times (from the previous proof, for Ackermann this should hold for \(k \geq 5 \)). If Ackermann could be proved terminating using a polynomial interpretation over integers then given any term \(t \), the maximum number of steps will be \(\pi_a(t) \leq 2^{2^c} \), where \(c \) is fixed (and depends on the polynomial interpretation, see proof (2)). The size of a term of the form \(a(m, n) \) is \(m + n + 3 \). We conclude that there must exists \(k \) and \(c \) such that for any \(X, Y \) it should hold \(Ack(X, Y) \leq k \cdot 2^{2^c} \). This cannot hold since \(Ack(X, Y) \) is not primitive recursive whereas \(k \cdot 2^{2^c} \) is, and therefore there exists \(X, Y \) such that \(Ack(X, Y) > k \cdot 2^{2^c} \).