Rewriting Techniques: TD 6

21 - 12 - 2017

A pair (A, \leq) , where \leq is a binary relation on the set A, is a well quasi-ordering (wqo) if \leq :

- is a *quasi-order*, i.e. \leq is reflexive and transitive;
- is well-founded, i.e. there are no infinite strictly decreasing sequences $a_0 > a_1 > a_2 > \dots$ in A;
- does not have *infinite antichains*, i.e. it does not exists an infinite subset I of A such that for each $a, b \in I$, $a \not\leq b$ and $b \not\leq a$.

Exercise 1:

Which of the following are wqo?

- 1. (\mathbb{N}, \leq)
- 2. (\mathbb{Z}, \leq)
- 3. (Σ^*, \leq) where \leq is the prefix order over a finite alphabet Σ
- 4. $(\mathbb{N}, |)$ where n|m iff n divides m
- 5. $(\mathcal{P}(\mathbb{N}), \subseteq)$
- 6. $(\mathcal{P}(\mathbb{N}), \sqsubseteq)$ where $U \sqsubseteq V$ iff for all $m \in V$ there is $n \in U$ such that $n \leq m$
- 7. $(\Sigma^*, \leq_{\text{lex}^*})$ where \leq is a strict order over a finite alphabet Σ and its extension \leq_{lex^*} to Σ^* is defined as: $a_0 \ldots a_n \leq_{\text{lex}^*} b_0 \ldots b_m$ iff $a_0 \ldots a_n$ is a prefix of $b_0 \ldots b_m$ or there is $i \leq \min(n, m)$ such that $a_i < b_i$ and for all $0 \leq j < i$, $a_j = b_j$.
- 8. $(\{(a,b) \in \mathbb{N}^2 \mid a < b\}, \preceq)$ where $(a,b) \preceq (a',b')$ iff $(a = a' \land b \leq b')$ or b < a'.

Solution:

- (1) Yes, it's total and well-founded.
- (2) No, $(-n)_{n \in \mathbb{N}}$ is strictly decreasing.
- (3) For n = 1, yes. For $n \ge 2$ no, $(a^n b)_{b \in \mathbb{N}}$ is an infinite antichain.
- (4) No, the set of prime numbers is an infinite antichain.
- (5) No, $(\{n\})_{n \in \mathbb{N}}$ is an infinite antichain.

(6) Yes, since $U \sqsubseteq V$ if and only if $V = \emptyset$ or U, V are not empty and $\min(U) \le \min(V)$. So, two sets will be in the same equivalence class whenever they are both empty or they have the same minimal element. The domain of equivalence classes is isomorphic to $(\mathbb{N} \cup \{\top\}, \le)$ where $\forall n \in \mathbb{N} \ n < \top$.

(7) For n = 1, yes. For $n \ge 2$, no, $(a^n b)_{n \in \mathbb{N}}$ is strictly decreasing.

(8) Yes. It's trivially reflexive, whereas transitivity can be shown by considering the following four cases. Let $(a, b) \preceq (a', b')$ and $(a', b') \preceq (a'', b'')$.

- if $a = a', b \le b', a' = a''$ and $b' \le b''$ then a = a'' and $b \le b''$, therefore $(a, b) \preceq (a'', b'')$;
- if $a = a', b \le b'$ and b' < a'' then b < a'', therefore $(a, b) \preceq (a'', b'')$;
- if b < a', a' = a'' and $b' \le b''$ then b < a'', therefore $(a, b) \preceq (a'', b'')$;
- if b < a', b' < a'' and a' < b' by definition, then b < a'', therefore $(a, b) \preceq (a'', b'')$;

It follows that \leq is a quasi-order.

It is also well-founded because for every (a', b'), the set $\{(a, b) \mid (a, b) \leq (a', b')\}$ is finite. To show this it is sufficient to write the set as the union $\{(a, b) \in \mathbb{N}^2 \mid a = a' \land b \leq b'\} \cup \{(a, b) \in \mathbb{N}^2 \mid a < b \land b < a'\}$ and prove the finiteness of its two sets.

Lastly, each antichain is finite. From the definition of \leq , two elements (a, b) and (a', b') are incomparable whenever $a \neq a'$, $a \leq b'$ and $b \leq a'$. Let $((a_i, b_i))_{i \in I}$ be an antichain. It must hold that for every $i, j \in I$, $a_i = a_j$ implies i = j (since $a \neq a'$). Moreover, for each $i \in I$, $a_i \leq b_1$. It follows that I is finite.

Let (A, \leq) a quasi-ordering. We say that $a \in A$ is **minimal** whenever there are no $a' \in A$ such that a' < a. Given a subset U of A, we note $\uparrow U$ the **upward-closure** of U, i.e. $\{a \in A \mid \exists a' \in U, a' \leq a\}$.

Exercise 2:

Let (A, \leq) be a quasi-ordering.

- 1. Show that if \leq is well-founded, then every element is larger than or equal to a minimal element.
- 2. Prove that (A, \leq) is a wqo iff every non-empty subset of A has at least one minimal element and at most a finite number of minimal element up to equivalence.
- 3. Prove that if (A, \leq) is a wqo then any of its upward-closed subsets can be written as $\uparrow \{a_1, \ldots, a_n\}$ for some $a_1, \ldots, a_n \in A$.
- 4. Prove that (A, \leq) is a wqo if and only if any increasing sequence $U_0 \subseteq U_1 \subseteq \cdots \subseteq U_k \subseteq \cdots$ of upward-closed subsets of A stabilizes, i.e. there is $p \in \mathbb{N}$ such that for all $i \in \mathbb{N}$, $U_{p+i} = U_p$.

Solution:

(1) Let $a_0 \in A$. Assume that there is no *a* minimal such that $a \leq a_0$ (and therefore in particular *a* is not minimal). Since a_0 is not minimal, there exists $a_1 < a_0$ and there is no *a* minimal such that $a \leq a_1$. We can therefore reason by induction w.r.t. the hypothesis "there is no *a* minimal such that $a \leq a_i$ ". Assume that $a_i < a_{i-1} < a_{i-2} < \cdots < a_0$ are constructed. By hypothesis, a_i is not minimal, then there is $a_{i+1} < a_i$. By doing so we construct an infinite strictly decreasing sequence, which contradicts the well-foundness of *A*.

(2) As a wqo is well-founded, each subset of A is well-founded. If this subset is non-empty then it has at least a minimal element. Assume now that there is an infinite number of minimal elements up to equivalence and let $(a_i)_{i \in \mathbb{N}}$ be an infinite sequence of non-equivalent minimal elements. As they are minimal and not equal, they are incomparable and therefore $(a_i)_{i \in \mathbb{N}}$ is an infinite antichain.

For the converse,

- suppose A not well-founded. Then there exists a subset of A corresponding to an infinite strictly decreasing sequence. By definition this set is non-empty and without minimal elements. From the first hypothesis it follows that \leq must be well-founded.
- Suppose now that there exists a subset of A corresponding to an infinite antichain. By definition the subset contains an infinite number of incomparable elements which are minimal in this subset. From the second hypothesis it follows that \leq does not have infinite antichains.

We conclude that (A, \leq) is a wqo.

(3) Let U be upward-closed. From the previous point, it has a finite number of minimal elements up to equivalence. Let a_1, \ldots, a_n be elements representing those equivalence classes. We will prove that $U = \uparrow \{a_1, \ldots, a_n\}$. $U \supseteq \uparrow \{a_1, \ldots, a_n\}$ holds since all $a_i, i \in [1, n]$ belongs to U and U is upward-closed. To prove $U \subseteq \uparrow \{a_1, \ldots, a_n\}$ notice that U is well-founded since A is well-founded. From the first point of this exercise, every element of U is greater or equal to a minimal element. Since every minimal element is equivalent to an element in $\{a_1, \ldots, a_n\}$, we conclude that every element of U is in $\uparrow \{a_1, \ldots, a_n\}$.

(4) Suppose A word and assume that there is an increasing sequence $U_0 \subseteq U_1 \subseteq \cdots \subseteq U_k \subseteq \cdots$ that does not stabilize and let $U_i \subset U_{i+1}$ two elements of the sequence. From the previous point, there are $A_{U_i} = \{a_1, \ldots, a_n\}$ and $A_{U_{i+1}} = a'_1, \ldots, a'_m$ such that $U_i = \uparrow A_{U_i}$ and $U_{i+1} = \uparrow A_{U_{i+1}}$. Since $U_i \subset U_{i+1}, A_{U_i} \subset U_{i+1}$ and from the definition of upward-closed set it must hold that there is $a' \in A_{U_{i+1}}$ which is not in U_i and such that

- it is incomparable with every $a \in A_{U_i}$, or
- there is $a \in A_{U_i}$ a' < a.

If the sequence does not stabilize then, at each step, it is possible to find a new element of A with such properties. It follows that A must contain an infinite strictly decreasing sequence or an infinite antichain, which contradicts the hypothesis of A wgo.

For the converse, suppose that any increasing sequence $U_0 \subseteq U_1 \subseteq \cdots \subseteq U_k \subseteq \ldots$ of upwardcloses subsets of A stabilizes and assume A not wqo. Since A is a quasi-ordering, one of the following must hold:

- there is an infinite strictly decreasing sequence $a_0 > a_1 > a_2 > \ldots$ in A. Then consider the increasing sequence $(\uparrow\{a_i\})_{i\in\mathbb{N}}$ of upward-closed sets. Since the sequence $a_0 > a_1 > a_2 > \ldots$ is not stabilizing, we have a contradiction and \leq must be well-founded.
- there is an infinite subset I of A such that for each $a, b \in I$, $a \not\leq b$ and $b \not\leq a$. Consider the increasing sequence $U_0 = \emptyset$, $U_i = U_{i-1} \cup \uparrow \{a\}_{a \in I \setminus U_{i-1}}$ of upward-closed subsets of A. Since the sequence is not stabilizing, we have a contradiction and \leq does not have infinite antichains.

Let $(A_1, \leq_1), \ldots, (A_n, \leq_n)$ be non-empty quasi-orderings. Their **product extension** is the quasi-ordering $(A_1 \times \cdots \times A_n, \leq_{\times})$ with $(x_1, \ldots, x_n) \leq_{\times} (y_1, \ldots, y_n)$ whenever for each $i \in [1, n]$ $x_i \leq_i y_i$.

Exercise 3:

Prove that $(A_1, \leq_1), \ldots, (A_n, \leq_n)$ are word iff their product extension $(A_1 \times \cdots \times A_n, \leq_{\times})$ is a word.

Solution:

Reflexivity and transitivity are preserved and therefore $(A_1 \times \cdots \times A_n, \leq_{\times})$ is a quasi-order whenever the same holds for $(A_1, \leq_1), \ldots, (A_n, \leq_n)$. For example $(a_1, \ldots, a_n) \leq_{\times} (a_1, \ldots, a_n)$ if and only if for all $i \in [1, n]$ $a_i \leq a_i$.

Also well-foundness is preserved. Suppose A_i not well-founded. Then there exists an infinite decreasing sequence $b_1 >_i b_2 >_i b_3 >_i \ldots$ Let $a_1, \ldots, a_{i-1}, a_{i+1}, \ldots, a_n$ be elements of $A_1, \ldots, A_{i-1}, A_{i+1}, A_n$ respectively. Then

$$(a_1, \ldots, a_{i-1}, b_1, a_{i+1}, \ldots, a_n) <_{\times} (a_1, \ldots, a_{i-1}, b_2, a_{i+1}, \ldots, a_n) <_{\times} \ldots$$

is an infinite decreasing sequence and $(A_1 \times \cdots \times A_n, \leq_{\times})$ is not well-founded. The converse follows with similar arguments: if $(A_1 \times \cdots \times A_n, \leq_{\times})$ is not well-founded then an infinite decreasing sequence of its elements implies the existence of a decreasing sequence of elements in at least one domain A_i , $i \in [1, n]$.

Lastly, also the presence of antichains is preserved. For example, suppose that A_i contains an infinite antichain. Then there exists an infinite subset $\{b_1, b_2, b_3, ...\}$ of incomparable elements of A_i . Let $a_1, \ldots, a_{i-1}, a_{i+1}, \ldots, a_n$ be elements of $A_1, \ldots, A_{i-1}, A_{i+1}, A_n$ respectively. Then

$$\{(a_1,\ldots,a_{i-1},b_1,a_{i+1},\ldots,a_n),(a_1,\ldots,a_{i-1},b_2,a_{i+1},\ldots,a_n),\ldots\}$$

is an infinite subset of incomparable elements of $(A_1 \times \cdots \times A_n, \leq_{\times})$. The converse follows with similar arguments: $(A_1 \times \cdots \times A_n, \leq_{\times})$ contains an infinite antichain then the same holds true for at least one domain A_i , $i \in [1, n]$.

Let $(A_1, \leq_1), \ldots, (A_n, \leq_n)$ be non-empty quasi-orderings. Their **lexicographic extension** is the quasi ordering $(A_1 \times \cdots \times A_n, \leq_{\text{lex}})$ with $(x_1, \ldots, x_n) \leq_{\times} (y_1, \ldots, y_n)$ whenever there is $j \in [1, n+1]$ such that for each i < j it holds $x_i =_i y_i$ and if $j \leq n$ then $x_j <_j y_j$.

Exercise 4:

Prove that $(A_1, \leq_1), \ldots, (A_n, \leq_n)$ are working their lexicographic extension $(A_1 \times \cdots \times A_n, \leq_{\text{lex}})$ is a work.

Solution:

Reflexivity and transitivity are preserved and therefore $(A_1 \times \cdots \times A_n, \leq_{\text{lex}})$ is a quasi-order whenever the same holds for $(A_1, \leq_1), \ldots, (A_n, \leq_n)$. For example $(a_1, \ldots, a_n) \leq_{\text{lex}} (a_1, \ldots, a_n)$ if and only if for all $i \in [1, n]$ $a_i \leq a_i$.

Moreover, from the definition it is easy to see that $\leq_{\times} \subseteq \leq_{\text{lex}}$ and therefore, if \leq_{lex} is well-founded then \leq_{\times} is well-founded and from the previous exercise it holds that $(A_1, \leq_1), \ldots, (A_n, \leq_n)$ are well-founded. Similarly, if \leq_{lex} does not have infinite antichain then each (A_i, \leq_i) , $i \in [1, n]$ does not have any infinite antichain.

We will now prove that if $(A_1 \times \cdots \times A_n, \leq_{\text{lex}})$ has an infinite antichain then there exists $(A_i, \leq_i), i \in [1, n]$, with an infinite antichain. Lets consider the simpler case $(A_1, \leq_1), (A_2, \leq_2)$ and $(A_1 \times A_2, \leq_{\text{lex}})$. The proof can be easily adapted to the general case. Let I be an infinite antichain in $(A_1 \times A_2, \leq_{\text{lex}})$. As such, each pair of elements $(a, b), (a', b') \in I$ are such that $(a, b) \not\leq_{\text{lex}} (a', b')$ and $(a', b') \not\leq_{\text{lex}} (a, b)$. From the definition of \leq_{lex} it therefore holds

$$(a \not\leq_1 a' \land a' \not\leq_1 a) \lor (a \not<_1 a' \land a' \not<_1 a \land (b \not\leq_2 b' \land b' \not\leq_2 b))$$

So it must hold that a and a' are incomparable or they are equal but b and b' are incomparable. If I has an infinite number of pairs such that their first component is incomparable, then (A_1, \leq_1) contains an infinite antichain. Otherwise, suppose I has a finite number of pairs such that their component is incomparable. Then I contains an infinite number of pairs such that the first component is equal. Consider $I' \subseteq I$ the infinite set of such pairs. It holds that b and b' are incomparable for every two pairs (a, b) and (a, b') in I'. It follows that (A_1, \leq_2) contains an infinite antichain. A similar proof can be made to show that if $(A_1 \times \cdots \times A_n, \leq_{\text{lex}})$ is not well-founded then there exists a $(A_i, \leq_i), i \in [1, n]$, not well-founded.

A quasi-ordering (A, \leq) is **total** if for every $x, y \in A, x \leq y$ or $y \leq x$.

A linearization of (A, \leq) , where \leq is a binary relation on the set A, is a total quasi-ordering (A, \sqsubseteq) such that for all $x, y \in A$, $x \leq y$ implies $x \sqsubseteq y$ and x < y implies $x \sqsubset y$.

Exercise 5:

- 1. Prove that a total quasi-ordering is a wqo if and only if it is well-founded.
- 2. Prove that every quasi-ordering has a linearization. (hint: use Zorn's lemma)
- 3. Prove that a quasi-ordering is a wqo if and only if all its linearization are well-founded.

Solution:

(1) A total quasi-ordering cannot have infinite antichains.

(2) Let (A, \leq) be a quasi-ordering. Let $\Gamma = \{(A, \sqsubseteq) \mid \sqsubseteq$ is a quasi-order, $\leq \subseteq \sqsubseteq$ and $\leq \subseteq \sqsubset\}$. Γ is non-empty since $(A, \leq) \in \Gamma$. Consider the binary relation \rightarrow s.t. $(A, \leq_1) \rightarrow (A, \leq_2)$ whenever $\leq_1 \subseteq \leq_2$. \rightarrow is a partial order such that each of its chain has an upper-bound in Γ . By applying Zorn's lemma, Γ has at least one maximal element (A, \preceq) . We show that (A, \preceq) is a linearization of (A, \leq) by showing that is total. Suppose it is not. So there are x, y in A such that $x \not\preceq y$ and $y \not\preceq x$. Define $\preceq' = (\preceq \cup \{(x, y)\})^*$. Then \preceq' is a quasi-order such that $\preceq \subseteq \preceq'$. Assume $\alpha \prec \beta$. It holds that $\alpha \preceq \beta$ and $\beta \not\preceq \alpha$. By definition, $\alpha \preceq' \beta$. Assume $\beta \preceq' \alpha$. This means that $\beta \preceq x \preceq' y \preceq \alpha$. Thus, $y \preceq \alpha \preceq \beta \preceq x$, which is absurd since $x \not\preceq y$ and $y \not\preceq x$. It follows that \preceq must be total.

(3) Let (A, \leq) be a quasi-ordering. Let \leq be a linearization of \leq . Assume that it exists an infinite sequence $S: x_1 \succ x_2 \succ \ldots$. Suppose that S contains an infinite set of incomparable elements w.r.t. \leq . Then it's an infinite antichain and \leq is not a wqo. If, instead, the set of incomparable elements is finite, then there must be an infinite subsequence of S ordered by > and therefore \leq cannot be a wqo since it's not well-founded. For the converse, if every linearization is well-founded, then \leq is also well-founded since a strictly decreasing sequence for \leq is also a strictly decreasing sequence for any linearization. Assume now that \leq has an infinite antichain $(x_i)_{i\in\mathbb{N}}$. Let $\leq' = (\leq \cup \{(x_j, x_i) \mid i < j\})^*$. This is a quasi-ordering which satisfies

- $\leq \subseteq \leq';$
- $<\subseteq <':$ if $x \leq y$ and $y \not\leq x$ then $x \leq 'y$. Assume $y \leq 'x$ then there are i < j such that $y \leq x_j$ and $x_i \leq x$. So $x_i \leq x_j$ which is absurd.

It follows that any linearization of \leq' is also a linearization of \leq . But \leq' is not well-founded, and therefore \leq does not contain any infinite antichain.

A **topology** on a set X is a set $\mathcal{O}(X)$ of (open) subsets of $\mathcal{P}(X)$ that is closed by unions and finite intersections and contains both \emptyset and X. A **topological space** $(X, \mathcal{O}(X))$ is a set with a topology on it.

Let $(X, \mathcal{O}(X))$ be a topological space. A subset K of X is said to be **compact** if for every subset $\mathcal{K} \subseteq \mathcal{O}(X)$ such that $K \subseteq \bigcup \mathcal{K}$ there is a finite subset $\mathcal{F}(\mathcal{K}) \subseteq \mathcal{K}$ such that $K \subseteq \bigcup \mathcal{F}(\mathcal{K})$. We say that a topological space $(X, \mathcal{O}(X))$ is **Noetherian** if and only if every $K \in \mathcal{O}(X)$ is compact.

Exercise 6:

Let (A, \leq) be a quasi-ordering and let $\widehat{\mathcal{O}(A)}$ be the set of all upward-closed subsets of A (this is known as the Alexandrov's topology on quasi-ordering).

- 1. Prove that $\widehat{\mathcal{O}(A)}$ is a topology.
- 2. Prove that (A, \leq) is a wqo if and only if $\widehat{\mathcal{O}(A)}$ is Noetherian.

Solution:

(1) The intersection and the union of upward-closed sets is again an upward-closed set. Moreover $\widehat{\mathcal{O}(A)}$ contains both \emptyset and A. We conclude that it is a topology.

(2) Suppose (A, \leq) words. Let U be an upward-closed set of A and \mathcal{K} be a set of upward-closed sets such that $U \subseteq \bigcup \mathcal{K}$. From the third point of Exercise 2, there are a_1, \ldots, a_n such that $U = \uparrow \{a_1, \ldots, a_n\}$. It holds that for each $i \in [1, n]$ there is $U_i \in \mathcal{K}$ such that $a_i \in U_i$. As the U_i are upward-closed sets, $U \subseteq \bigcup_{i \in [1,n]} U_i$. For the converse, we prove that if $\widehat{\mathcal{O}}(A)$ is Noetherian then any increasing sequence $U_1 \subseteq U_2 \subseteq U_3 \ldots$ of upward-closed subsets of A stabilize. Then, the result follows from the fourth point of Exercise 2. Let $U_1 \subseteq U_2 \subseteq U_3 \ldots$ be an increasing sequence of sets in $\widehat{\mathcal{O}}(A)$. Let $U = \bigcup_i U_i$, which is an upward-closed set. By hypothesis there are $i_1 < \cdots < i_k$ such that $U = \bigcup_{i \in \{i_1, \ldots, i_k\}} U_{i_k}$. Then for all $i \geq i_k$, $U = U_i$ and the sequence stabilize.

A multi-context C is a term with distinguished variables \Box_1, \ldots, \Box_n occurring exactly once. Replacing them by terms t_1, \ldots, t_n respectively is denoted by $C[t_1, \ldots, t_n]$.

Let \mathcal{F}_1 and \mathcal{F}_2 be two disjoint signatures. A symbol is of **color** $k \in \{1, 2\}$ if it belongs to \mathcal{F}_k . A term t is of color k if it's not a variable and every symbol in it is of color k. We denote with \overline{k} the other possible color of k, i.e. 3 - k.

Let t be a term with symbols in $\mathcal{F}_1 \cup \mathcal{F}_2$. We define $\operatorname{cap}(t)$ and $\operatorname{aliens}(t)$ respectively as

$$\operatorname{cap}(t) = \begin{cases} x & \text{if } t = x \text{ is a variable} \\ C & \text{if } t = C[t_1, \dots, t_n] \text{ where } C \text{ is of color } k \in \{1, 2\} \text{ and} \\ t_1, \dots, t_n \text{ are headed by symbols of color } \overline{k} \end{cases}$$
$$\operatorname{aliens}(t) = \begin{cases} \emptyset & \text{if } t \text{ is a variable} \\ \{|t_1, \dots, t_n|\} & \text{if } t = C[t_1, \dots, t_n] \text{ where } C \text{ is of color } k \in \{1, 2\} \text{ and} \\ t_1, \dots, t_n \text{ are headed by symbols of color } \overline{k} \end{cases}$$

The **rank** of a term t, denoted with rk(t), is the maximum number of color layers in t, i.e. $rk(t) = 1 + \max_{a \in aliens(t)}(rk(a))$.

Exercise 7:

Let \mathcal{F}_1 and \mathcal{F}_2 be two disjoint signatures and let \mathcal{R}_1 , \mathcal{R}_2 be two TRSs on \mathcal{F}_1 and \mathcal{F}_2 respectively such that $\rightarrow_{\mathcal{R}_1}$ terminates on $T_1 = T(\mathcal{F}_1, V)$ and $\rightarrow_{\mathcal{R}_2}$ terminates on $T_2 = T(\mathcal{F}_2, V)$, where V is a set of variables. Let \rightarrow be the rewrite relation on $T = T(\mathcal{F}_1 \cup \mathcal{F}_2, V)$ generated by $\mathcal{R}_1 \cup \mathcal{R}_2$.

- 1. Prove that for each term $t, u \in T$, if $t \to u$ then $\operatorname{rk}(t) \ge rk(u)$.
- 2. Prove that if \mathcal{R}_1 and \mathcal{R}_2 do not have any rules of the form $l \to x$ where x is a variable, then \to terminates.
- 3. Prove that $\mathcal{R}_1 = \{ a(0, 1, x) \to a(x, x, x) \}$ and $\mathcal{R}_2 = \{ m(x, y) \to x, m(x, y) \to y \}$ are terminating, whereas $\mathcal{R}_1 \cup \mathcal{R}_2$ is not.

Solution:

(1) The proof is by induction on rk(t). We need to distinguish two cases:

- The reduction that leads to u is in cap(t). If u is a variable, then $\operatorname{rk}(u) = 1 \leq \operatorname{rk}(t)$. If cap(t) and cap(u) have distinct colors, then u is an alien of t and $\operatorname{rk}(u) < \operatorname{rk}(t)$. Otherwise it must holds that cap(t) $\rightarrow_{\mathcal{R}_1} \operatorname{cap}(u)$ or cap(t) $\rightarrow_{\mathcal{R}_2} \operatorname{cap}(u)$ (if cap(t) is of color 1 or 2 respectively) and aliens(u) \subseteq aliens(t). Therefore, $\operatorname{rk}(u) \leq \operatorname{rk}(t)$.
- Let $t = C[t_1, \ldots, t_n]$ where C = capt. Suppose now that reduction is in $t_i \in \text{alienst}$, $i \in [1, n]$, and it reduces t_i to t'_i (therefore, $u = C[t_1, \ldots, t_{i-1}, t'_i, t_{i+1}, \ldots, t_n]$). By induction hypothesis (since $\operatorname{rk}(t_i) < \operatorname{rk}(t)$), $\operatorname{rk}(t'_i) \leq \operatorname{rk}(t_i)$. By definition of rk it holds that $\operatorname{rk}(t) = \operatorname{rk}(C[t_1, \ldots, t_{i-1}, t_i, t_{i+1}, \ldots, t_n]) \geq \operatorname{rk}(C[t_1, \ldots, t_{i-1}, t'_i, t_{i+1}, \ldots, t_n]) = \operatorname{rk}(u)$.

(2) Let t be a term. The proof is by well-founded induction on $(\operatorname{rk}(t), \operatorname{cap}(t), \operatorname{aliens}(t))$ w.r.t. the well-founded order $(>, (\rightarrow_{\mathcal{R}_1}^+ \cup \rightarrow_{\mathcal{R}_2}^+), \rightarrow_{\operatorname{mul}})_{\operatorname{lex}}$. Notice that, since $\rightarrow_{\mathcal{R}_1}$ and $\rightarrow_{\mathcal{R}_2}$ are terminating, the relation $(\rightarrow_{\mathcal{R}_1}^+ \cup \rightarrow_{\mathcal{R}_2}^+) \subseteq (T(\mathcal{F}_1, V) \cup T(\mathcal{F}_2, V))^2$ that maps elements of $T(\mathcal{F}_1, V)$ to elements of $T(\mathcal{F}_1, V)$ and elements of $T(\mathcal{F}_2, V)$ to elements of $T(\mathcal{F}_2, V)$ is wellfounded. $\rightarrow_{\operatorname{mul}}$ is also well-founded as explained in the last point of the proof. If t is irreducible, then \rightarrow terminates on it. Instead, if $t \rightarrow u$, then we need to consider the following three cases:

- $\operatorname{rk}(t) = 1$, i.e. t is of color $k \in \{1, 2\}$. Then u is of the same color and therefore $t \to_{\mathcal{R}_k} u$. We can apply the induction hypothesis (u terminates) and conclude that also t terminates.
- $\operatorname{rk}(t) > 1$ and the reduction is in $C = \operatorname{cap}(t)$. Let k be the color of C. Since the rules are non-collapsing, then $\operatorname{cap}(u)$ is of color k and, by well-foundness of $\to_{\mathcal{R}_k}$ we can apply the induction hypothesis (u terminates) and conclude that, t also terminates.
- Lastly, $\operatorname{rk}(t) > 1$ and the reduction is in some alien $a \in \operatorname{aliens}(t)$, that is reduced to a'. Then, since $\operatorname{rk}(a) < \operatorname{rk}(t)$, we can apply the induction hypothesis and conclude that a is terminating. Since the rules are non-collapsing, it holds that $\operatorname{cap}(t) = \operatorname{cap}(u)$ and, from $\operatorname{aliens}(u) = \operatorname{aliens}(t) - \{|a|\} + \{|a'|\}$, all aliens of t and u are terminating. Therefore, it holds that $\rightarrow_{\mathrm{mul}}$ is a well-founded strict order when restricted to elements of $\operatorname{aliens}(t)$. Since $\operatorname{aliens}(t) \rightarrow_{\mathrm{mul}} \operatorname{aliens}(u)$, u terminates and so does t.

(3) For \mathcal{R}_1 consider the order > where t > s if and only if

 $\{ |u| \mid t = u \text{ or } \exists p \in \operatorname{Pos}(t) \ t|_p = f(\mathbf{0}, \mathbf{1}, u) \} >_{\text{mul}} \{ |u| \mid s = u \text{ or } \exists p \in \operatorname{Pos}(s) \ s|_p = f(\mathbf{0}, \mathbf{1}, u) \}$

It's easy to show that > is a simplification order such that for each terms $t \to s$ it holds t > s. Instead, the termination of \mathcal{R}_2 is trivial (consider the size of the term). Lastly, $\mathcal{R}_1 \cup \mathcal{R}_2$ does not terminate:

 $\mathtt{a}(\mathtt{m}(0,1),\mathtt{m}(0,1),\mathtt{m}(0,1))\to \mathtt{a}(0,\mathtt{m}(0,1),\mathtt{m}(0,1))\to \mathtt{a}(0,1,\mathtt{m}(0,1))\to \mathtt{a}(\mathtt{m}(0,1),\mathtt{m}(0,1),\mathtt{m}(0,1))$