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A pair (𝐴, ≤), where ≤ is a binary relation on the set 𝐴, is a well quasi-ordering (wqo) if ≤ :

• is a quasi-order, i.e. ≤ is reflexive and transitive;

• is well-founded, i.e. there are no infinite strictly decreasing sequences 𝑎0 > 𝑎1 > 𝑎2 > . . . in 𝐴;

• does not have infinite antichains, i.e. it does not exists an infinite subset 𝐼 of 𝐴 such that for

each 𝑎, 𝑏 ∈ 𝐼, 𝑎 ̸≤ 𝑏 and 𝑏 ̸≤ 𝑎.

Exercise 1 :

Which of the following are wqo?

1. (N, ≤)

2. (Z, ≤)

3. (Σ*, ≤) where ≤ is the prefix order over a finite alphabet Σ

4. (N, |) where 𝑛|𝑚 iff 𝑛 divides 𝑚

5. (𝒫(N), ⊆)

6. (𝒫(N), ⊑) where 𝑈 ⊑ 𝑉 iff for all 𝑚 ∈ 𝑉 there is 𝑛 ∈ 𝑈 such that 𝑛 ≤ 𝑚

7. (Σ*, ≤lex*) where ≤ is a strict order over a finite alphabet Σ and its extension ≤lex* to Σ* is

defined as: 𝑎0 . . . 𝑎𝑛 ≤lex* 𝑏0 . . . 𝑏𝑚 iff 𝑎0 . . . 𝑎𝑛 is a prefix of 𝑏0 . . . 𝑏𝑚 or there is 𝑖 ≤ min(𝑛, 𝑚)

such that 𝑎𝑖 < 𝑏𝑖 and for all 0 ≤ 𝑗 < 𝑖, 𝑎𝑗 = 𝑏𝑗 .

8. ({(𝑎, 𝑏) ∈ N2 | 𝑎 < 𝑏}, ⪯) where (𝑎, 𝑏) ⪯ (𝑎′, 𝑏′) iff (𝑎 = 𝑎′ ∧ 𝑏 ≤ 𝑏′) or 𝑏 < 𝑎′.

Solution:

(1) Yes, it’s total and well-founded.

(2) No, (−𝑛)𝑛∈N is strictly decreasing.

(3) For 𝑛 = 1, yes. For 𝑛 ≥ 2 no, (𝑎𝑛𝑏)𝑏∈N is an infinite antichain.

(4) No, the set of prime numbers is an infinite antichain.

(5) No, ({𝑛})𝑛∈N is an infinite antichain.

(6) Yes, since 𝑈 ⊑ 𝑉 if and only if 𝑉 = ∅ or 𝑈, 𝑉 are not empty and min(𝑈) ≤ min(𝑉 ). So,

two sets will be in the same equivalence class whenever they are both empty or they have the

same minimal element. The domain of equivalence classes is isomorphic to (N ∪ {⊤}, ≤) where

∀𝑛 ∈ N 𝑛 < ⊤.

(7) For 𝑛 = 1, yes. For 𝑛 ≥ 2, no, (𝑎𝑛𝑏)𝑛∈N is strictly decreasing.

(8) Yes. It’s trivially reflexive, whereas transitivity can be shown by considering the following

four cases. Let (𝑎, 𝑏) ⪯ (𝑎′, 𝑏′) and (𝑎′, 𝑏′) ⪯ (𝑎′′, 𝑏′′).

• if 𝑎 = 𝑎′, 𝑏 ≤ 𝑏′, 𝑎′ = 𝑎′′ and 𝑏′ ≤ 𝑏′′ then 𝑎 = 𝑎′′ and 𝑏 ≤ 𝑏′′, therefore (𝑎, 𝑏) ⪯ (𝑎′′, 𝑏′′);

• if 𝑎 = 𝑎′, 𝑏 ≤ 𝑏′ and 𝑏′ < 𝑎′′ then 𝑏 < 𝑎′′, therefore (𝑎, 𝑏) ⪯ (𝑎′′, 𝑏′′);

• if 𝑏 < 𝑎′, 𝑎′ = 𝑎′′ and 𝑏′ ≤ 𝑏′′ then 𝑏 < 𝑎′′, therefore (𝑎, 𝑏) ⪯ (𝑎′′, 𝑏′′);

• if 𝑏 < 𝑎′, 𝑏′ < 𝑎′′ and 𝑎′ < 𝑏′ by definition, then 𝑏 < 𝑎′′, therefore (𝑎, 𝑏) ⪯ (𝑎′′, 𝑏′′);
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It follows that ⪯ is a quasi-order.

It is also well-founded because for every (𝑎′, 𝑏′), the set {(𝑎, 𝑏) | (𝑎, 𝑏) ⪯ (𝑎′, 𝑏′)} is finite. To

show this it is sufficient to write the set as the union {(𝑎, 𝑏) ∈ N2 | 𝑎 = 𝑎′ ∧ 𝑏 ≤ 𝑏′} ∪ {(𝑎, 𝑏) ∈
N2 | 𝑎 < 𝑏 ∧ 𝑏 < 𝑎′} and prove the finiteness of its two sets.

Lastly, each antichain is finite. From the definition of ⪯, two elements (𝑎, 𝑏) and (𝑎′, 𝑏′) are

incomparable whenever 𝑎 ̸= 𝑎′, 𝑎 ≤ 𝑏′ and 𝑏 ≤ 𝑎′. Let ((𝑎𝑖, 𝑏𝑖))𝑖∈𝐼 be an antichain. It must

hold that for every 𝑖, 𝑗 ∈ 𝐼, 𝑎𝑖 = 𝑎𝑗 implies 𝑖 = 𝑗 (since 𝑎 ̸= 𝑎′). Moreover, for each 𝑖 ∈ 𝐼,
𝑎𝑖 ≤ 𝑏1. It follows that 𝐼 is finite.

Let (𝐴, ≤) a quasi-ordering. We say that 𝑎 ∈ 𝐴 is minimal whenever there are no 𝑎′ ∈ 𝐴 such that

𝑎′ < 𝑎. Given a subset 𝑈 of 𝐴, we note ↑𝑈 the upward-closure of 𝑈 , i.e. {𝑎 ∈ 𝐴 | ∃𝑎′ ∈ 𝑈, 𝑎′ ≤ 𝑎}.

Exercise 2 :

Let (𝐴, ≤) be a quasi-ordering.

1. Show that if ≤ is well-founded, then every element is larger then or equal to a minimal element.

2. Prove that (𝐴, ≤) is a wqo iff every non-empty subset of 𝐴 has at least one minimal element

and at most a finite number of minimal element up to equivalence.

3. Prove that if (𝐴, ≤) is a wqo then any of its upward-closed subsets can be written as

↑{𝑎1, . . . , 𝑎𝑛} for some 𝑎1, . . . , 𝑎𝑛 ∈ 𝐴.

4. Prove that (𝐴, ≤) is a wqo if and only if any increasing sequence 𝑈0 ⊆ 𝑈1 ⊆ · · · ⊆ 𝑈𝑘 ⊆ . . . of

upward-closed subsets of 𝐴 stabilizes, i.e. there is 𝑝 ∈ N such that for all 𝑖 ∈ N, 𝑈𝑝+𝑖 = 𝑈𝑝.

Solution:

(1) Let 𝑎0 ∈ 𝐴. Assume that there is no 𝑎 minimal such that 𝑎 ≤ 𝑎0 (and therefore in particular

𝑎 is not minimal). Since 𝑎0 is not minimal, there exists 𝑎1 < 𝑎0 and there is no 𝑎 minimal

such that 𝑎 ≤ 𝑎1. We can therefore reason by induction w.r.t. the hypothesis “there is no 𝑎
minimal such that 𝑎 ≤ 𝑎𝑖”. Assume that 𝑎𝑖 < 𝑎𝑖−1 < 𝑎𝑖−2 < · · · < 𝑎0 are constructed. By

hypothesis, 𝑎𝑖 is not minimal, then there is 𝑎𝑖+1 < 𝑎𝑖. By doing so we construct an infinite

strictly decreasing sequence, which contradicts the well-foundness of 𝐴.

(2) As a wqo is well-founded, each subset of 𝐴 is well-founded. If this subset is non-empty then

it has at least a minimal element. Assume now that there is an infinite number of minimal

elements up to equivalence and let (𝑎𝑖)𝑖∈N be an infinite sequence of non-equivalent minimal

elements. As they are minimal and not equal, they are incomparable and therefore (𝑎𝑖)𝑖∈N is

an infinite antichain.

For the converse,

• suppose 𝐴 not well-founded. Then there exists a subset of 𝐴 corresponding to an infinite

strictly decreasing sequence. By definition this set is non-empty and without minimal

elements. From the first hypothesis it follows that ≤ must be well-founded.

• Suppose now that there exists a subset of 𝐴 corresponding to an infinite antichain. By

definition the subset contains an infinite number of incomparable elements which are

minimal in this subset. From the second hypothesis it follows that ≤ does not have

infinite antichains.

We conclude that (𝐴, ≤) is a wqo.

(3) Let 𝑈 be upward-closed. From the previous point, it has a finite number of minimal

elements up to equivalence. Let 𝑎1, . . . , 𝑎𝑛 be elements representing those equivalence classes.

We will prove that 𝑈 =↑{𝑎1, . . . , 𝑎𝑛}. 𝑈 ⊇↑{𝑎1, . . . , 𝑎𝑛} holds since all 𝑎𝑖, 𝑖 ∈ [1, 𝑛] belongs to

𝑈 and 𝑈 is upward-closed. To prove 𝑈 ⊆↑{𝑎1, . . . , 𝑎𝑛} notice that 𝑈 is well-founded since 𝐴 is

well-founded. From the first point of this exercise, every element of 𝑈 is greater or equal to a

minimal element. Since every minimal element is equivalent to an element in {𝑎1, . . . , 𝑎𝑛}, we
conclude that every element of 𝑈 is in ↑{𝑎1, . . . , 𝑎𝑛}.
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(4) Suppose 𝐴 wqo and assume that there is an increasing sequence 𝑈0 ⊆ 𝑈1 ⊆ · · · ⊆ 𝑈𝑘 ⊆ . . .
that does not stabilize and let 𝑈𝑖 ⊂ 𝑈𝑖+1 two elements of the sequence. From the previous point,

there are 𝐴𝑈𝑖 = {𝑎1, . . . , 𝑎𝑛} and 𝐴𝑈𝑖+1 = 𝑎′
1, . . . , 𝑎′

𝑚 such that 𝑈𝑖 =↑𝐴𝑈𝑖 and 𝑈𝑖+1 =↑𝐴𝑈𝑖+1 .

Since 𝑈𝑖 ⊂ 𝑈𝑖+1, 𝐴𝑈𝑖 ⊂ 𝑈𝑖+1 and from the definition of upward-closed set it must hold that

there is 𝑎′ ∈ 𝐴𝑈𝑖+1 which is not in 𝑈𝑖 and such that

• it is incomparable with every 𝑎 ∈ 𝐴𝑈𝑖
, or

• there is 𝑎 ∈ 𝐴𝑈𝑖 𝑎′ < 𝑎.

If the sequence does not stabilize then, at each step, it is possible to find a new element of 𝐴
with such properties. It follows that 𝐴 must contain an infinite strictly decreasing sequence or

an infinite antichain, which contradicts the hypothesis of 𝐴 wqo.

For the converse, suppose that any increasing sequence 𝑈0 ⊆ 𝑈1 ⊆ · · · ⊆ 𝑈𝑘 ⊆ . . . of upward-

closes subsets of 𝐴 stabilizes and assume 𝐴 not wqo. Since 𝐴 is a quasi-ordering, one of the

following must hold:

• there is an infinite strictly decreasing sequence 𝑎0 > 𝑎1 > 𝑎2 > . . . in 𝐴. Then

consider the increasing sequence (↑{𝑎𝑖})𝑖∈N of upward-closed sets. Since the sequence

𝑎0 > 𝑎1 > 𝑎2 > . . . is not stabilizing, we have a contradiction and ≤ must be well-founded.

• there is an infinite subset 𝐼 of 𝐴 such that for each 𝑎, 𝑏 ∈ 𝐼, 𝑎 ̸≤ 𝑏 and 𝑏 ̸≤ 𝑎. Consider
the increasing sequence 𝑈0 = ∅, 𝑈𝑖 = 𝑈𝑖−1∪ ↑ {𝑎}𝑎∈𝐼∖𝑈𝑖−1 of upward-closed subsets of

𝐴. Since the sequence is not stabilizing, we have a contradiction and ≤ does not have

infinite antichains.

Let (𝐴1, ≤1), . . . , (𝐴𝑛, ≤𝑛) be non-empty quasi-orderings. Their product extension is the quasi

ordering (𝐴1 × · · · × 𝐴𝑛, ≤×) with (𝑥1, . . . , 𝑥𝑛) ≤× (𝑦1, . . . , 𝑦𝑛) whenever for each 𝑖 ∈ [1, 𝑛] 𝑥𝑖 ≤𝑖 𝑦𝑖.

Exercise 3 :

Prove that (𝐴1, ≤1), . . . , (𝐴𝑛, ≤𝑛) are wqo iff their product extension (𝐴1 × · · · × 𝐴𝑛, ≤×) is a wqo.

Solution:

Reflexivity and transitivity are preserved and therefore (𝐴1 × · · · × 𝐴𝑛, ≤×) is a quasi-order

whenever the same holds for (𝐴1, ≤1), . . . , (𝐴𝑛, ≤𝑛). For example (𝑎1, . . . , 𝑎𝑛) ≤× (𝑎1, . . . , 𝑎𝑛)

if and only if for all 𝑖 ∈ [1, 𝑛] 𝑎𝑖 ≤ 𝑎𝑖.

Also well-foundness is preserved. Suppose 𝐴𝑖 not well-founded. Then there exists an infinite

decreasing sequence 𝑏1 >𝑖 𝑏2 >𝑖 𝑏3 >𝑖 . . . . Let 𝑎1, . . . , 𝑎𝑖−1, 𝑎𝑖+1, . . . , 𝑎𝑛 be elements of

𝐴1, . . . , 𝐴𝑖−1, 𝐴𝑖+1, 𝐴𝑛 respectively. Then

(𝑎1, . . . , 𝑎𝑖−1, 𝑏1, 𝑎𝑖+1, . . . , 𝑎𝑛) <× (𝑎1, . . . , 𝑎𝑖−1, 𝑏2, 𝑎𝑖+1, . . . , 𝑎𝑛) <× . . .

is an infinite decreasing sequence and (𝐴1 × · · · × 𝐴𝑛, ≤×) is not well-founded. The converse

follows with similar arguments: if (𝐴1 × · · · × 𝐴𝑛, ≤×) is not well-founded then an infinite

decreasing sequence of its elements implies the existence of a decreasing sequence of elements

in at least one domain 𝐴𝑖, 𝑖 ∈ [1, 𝑛].

Lastly, also the presence of antichains is preserved. For example, suppose that 𝐴𝑖 contains an

infinite antichain. Then there exists an infinite subset {𝑏1, 𝑏2, 𝑏3, . . . } of incomparable elements

of 𝐴𝑖. Let 𝑎1, . . . , 𝑎𝑖−1, 𝑎𝑖+1, . . . , 𝑎𝑛 be elements of 𝐴1, . . . , 𝐴𝑖−1, 𝐴𝑖+1, 𝐴𝑛 respectively. Then

{(𝑎1, . . . , 𝑎𝑖−1, 𝑏1, 𝑎𝑖+1, . . . , 𝑎𝑛), (𝑎1, . . . , 𝑎𝑖−1, 𝑏2, 𝑎𝑖+1, . . . , 𝑎𝑛), . . . }

is an infinite subset of incomparable elements of (𝐴1 × · · · × 𝐴𝑛, ≤×). The converse follows

with similar arguments: (𝐴1 × · · · × 𝐴𝑛, ≤×) contains an infinite antichain then the same holds

true for at least one domain 𝐴𝑖, 𝑖 ∈ [1, 𝑛].
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Let (𝐴1, ≤1), . . . , (𝐴𝑛, ≤𝑛) be non-empty quasi-orderings. Their lexicographic extension is the

quasi ordering (𝐴1 ×· · ·×𝐴𝑛, ≤lex) with (𝑥1, . . . , 𝑥𝑛) ≤× (𝑦1, . . . , 𝑦𝑛) whenever there is 𝑗 ∈ [1, 𝑛+1]

such that for each 𝑖 < 𝑗 it holds 𝑥𝑖 =𝑖 𝑦𝑖 and if 𝑗 ≤ 𝑛 then 𝑥𝑗 <𝑗 𝑦𝑗 .

Exercise 4 :

Prove that (𝐴1, ≤1), . . . , (𝐴𝑛, ≤𝑛) are wqo iff their lexicographic extension (𝐴1 × · · · × 𝐴𝑛, ≤lex) is

a wqo.

Solution:

Reflexivity and transitivity are preserved and therefore (𝐴1 × · · · × 𝐴𝑛, ≤lex) is a quasi-order

whenever the same holds for (𝐴1, ≤1), . . . , (𝐴𝑛, ≤𝑛). For example (𝑎1, . . . , 𝑎𝑛) ≤lex (𝑎1, . . . , 𝑎𝑛)

if and only if for all 𝑖 ∈ [1, 𝑛] 𝑎𝑖 ≤ 𝑎𝑖.

Moreover, from the definition it is easy to see that ≤×⊆≤lex and therefore, if ≤lex is well-

founded then ≤× is well-founded and from the previous exercise it holds that (𝐴1, ≤1), . . . ,
(𝐴𝑛, ≤𝑛) are well-founded. Similarly, if ≤lex does not have infinite antichain then each (𝐴𝑖, ≤𝑖),

𝑖 ∈ [1, 𝑛] does not have any infinite antichain.

We will now prove that if (𝐴1 × · · · × 𝐴𝑛, ≤lex) has an infinite antichain then there exists

(𝐴𝑖, ≤𝑖), 𝑖 ∈ [1, 𝑛], with an infinite antichain. Lets consider the simpler case (𝐴1, ≤1), (𝐴2, ≤2)

and (𝐴1 × 𝐴2, ≤lex). The proof can be easily adapted to the general case. Let 𝐼 be an infinite

antichain in (𝐴1 × 𝐴2, ≤lex). As such, each pair of elements (𝑎, 𝑏), (𝑎′, 𝑏′) ∈ 𝐼 are such that

(𝑎, 𝑏) ̸≤lex (𝑎′, 𝑏′) and (𝑎′, 𝑏′) ̸≤lex (𝑎, 𝑏). From the definition of ≤lex it therefore holds

(𝑎 ̸≤1 𝑎′ ∧ 𝑎′ ̸≤1 𝑎) ∨ (𝑎 ̸<1 𝑎′ ∧ 𝑎′ ̸<1 𝑎 ∧ (𝑏 ̸≤2 𝑏′ ∧ 𝑏′ ̸≤2 𝑏))

So it must hold that 𝑎 and 𝑎′ are incomparable or they are equal but 𝑏 and 𝑏′ are incomparable.

If 𝐼 has an infinite number of pairs such that their first component is incomparable, then

(𝐴1, ≤1) contains an infinite antichain. Otherwise, suppose 𝐼 has a finite number of pairs such

that their component is incomparable. Then 𝐼 contains an infinite number of pairs such that

the first component is equal. Consider 𝐼 ′ ⊆ 𝐼 the infinite set of such pairs. It holds that 𝑏 and

𝑏′ are incomparable for every two pairs (𝑎, 𝑏) and (𝑎, 𝑏′) in 𝐼 ′. It follows that (𝐴1, ≤2) contains

an infinite antichain. A similar proof can be made to show that if (𝐴1 × · · · × 𝐴𝑛, ≤lex) is not

well-founded then there exists a (𝐴𝑖, ≤𝑖), 𝑖 ∈ [1, 𝑛], not well-founded.

A quasi-ordering (𝐴, ≤) is total if for every 𝑥, 𝑦 ∈ 𝐴, 𝑥 ≤ 𝑦 or 𝑦 ≤ 𝑥.

A linearization of (𝐴, ≤), where ≤ is a binary relation on the set 𝐴, is a total quasi-ordering

(𝐴, ⊑) such that for all 𝑥, 𝑦 ∈ 𝐴, 𝑥 ≤ 𝑦 implies 𝑥 ⊑ 𝑦 and 𝑥 < 𝑦 implies 𝑥 @ 𝑦.

Exercise 5 :

1. Prove that a total quasi-ordering is a wqo if and only if it is well-founded.

2. Prove that every quasi-ordering has a linearization. (hint: use Zorn’s lemma)
3. Prove that a quasi-ordering is a wqo if and only if all its linearization are well-founded.

Solution:

(1) A total quasi-ordering cannot have infinite antichains.

(2) Let (𝐴, ≤) be a quasi-ordering. Let Γ = {(𝐴, ⊑) | ⊑ is a quasi-order, ≤⊆⊑ and <⊆@}.
Γ is non-empty since (𝐴, ≤) ∈ Γ. Consider the binary relation → s.t. (𝐴, ≤1) → (𝐴, ≤2)

whenever ≤1⊆≤2. → is a partial order such that each of its chain has an upper-bound in Γ.

By applying Zorn’s lemma, Γ has at least one maximal element (𝐴, ⪯). We show that (𝐴, ⪯)

is a linearization of (𝐴, ≤) by showing that is total. Suppose it is not. So there are 𝑥, 𝑦 in 𝐴
such that 𝑥 ̸⪯ 𝑦 and 𝑦 ̸⪯ 𝑥. Define ⪯′= (⪯ ∪{(𝑥, 𝑦)})*. Then ⪯′ is a quasi-order such that

⪯⊆⪯′ and therefore ≤⊆⪯′. To have a contradiction, it remains to prove that ≺⊆≺′. Assume

𝛼 ≺ 𝛽. It holds that 𝛼 ⪯ 𝛽 and 𝛽 ̸⪯ 𝛼. By definition, 𝛼 ⪯′ 𝛽. Assume 𝛽 ⪯′ 𝛼. This means

Page 4



that 𝛽 ⪯ 𝑥 ⪯′ 𝑦 ⪯ 𝛼. Thus, 𝑦 ⪯ 𝛼 ⪯ 𝛽 ⪯ 𝑥, which is absurd since 𝑥 ̸⪯ 𝑦 and 𝑦 ̸⪯ 𝑥. It follows
that ⪯ must be total.

(3) Let (𝐴, ≤) be a quasi-ordering. Let ⪯ be a linearization of ≤. Assume that it exists an

infinite sequence 𝑆: 𝑥1 ≻ 𝑥2 ≻ . . . . Suppose that 𝑆 contains an infinite set of incomparable

elements w.r.t. ≤. Then it’s an infinite antichain and ≤ is not a wqo. If, instead, the set

of incomparable elements is finite, then there must be an infinite subsequence of 𝑆 ordered

by > and therefore ≤ cannot be a wqo since it’s not well-founded. For the converse, if every

linearization is well-founded, then ≤ is also well-founded since a strictly decreasing sequence

for ≤ is also a strictly decreasing sequence for any linearization. Assume now that ≤ has an

infinite antichain (𝑥𝑖)𝑖∈N. Let ≤′= (≤ ∪{(𝑥𝑗 , 𝑥𝑖) | 𝑖 < 𝑗})*. This is a quasi-ordering which

satisfies

• ≤⊆≤′;

• <⊆<′: if 𝑥 ≤ 𝑦 and 𝑦 ̸≤ 𝑥 then 𝑥 ≤′ 𝑦. Assume 𝑦 ≤′ 𝑥 then there are 𝑖 < 𝑗 such that

𝑦 ≤ 𝑥𝑗 and 𝑥𝑖 ≤ 𝑥. So 𝑥𝑖 ≤ 𝑥𝑗 which is absurd.

It follows that any linearization of ≤′ is also a linearization of ≤. But ≤′ is not well-founded,

and therefore ≤ does not contain any infinite antichain.

A topology on a set 𝑋 is a set 𝒪(𝑋) of (open) subsets of 𝒫(𝑋) that is closed by unions and finite

intersections and contains both ∅ and 𝑋. A topological space (𝑋, 𝒪(𝑋)) is a set with a topology

on it.

Let (𝑋, 𝒪(𝑋)) be a topological space. A subset 𝐾 of 𝑋 is said to be compact if for every subset

𝒦 ⊆ 𝒪(𝑋) such that 𝐾 ⊆
⋃︀

𝒦 there is a finite subset ℱ(𝒦) ⊆ 𝒦 such that 𝐾 ⊆
⋃︀

ℱ(𝒦). We say

that a topological space (𝑋, 𝒪(𝑋)) is Noetherian if and only if every 𝐾 ∈ 𝒪(𝑋) is compact.

Exercise 6 :

Let (𝐴, ≤) be a quasi-ordering and let 𝒪(𝐴) be the set of all upward-closed subsets of 𝐴 (this is

known as the Alexandrov’s topology on quasi-ordering).

1. Prove that 𝒪(𝐴) is a topology.

2. Prove that (𝐴, ≤) is a wqo if and only if 𝒪(𝐴) is Noetherian.

Solution:

(1) The intersection and the union of upward-closed sets is again an upward-closed set. Moreover

𝒪(𝐴) contains both ∅ and 𝐴. We conclude that it is a topology.

(2) Suppose (𝐴, ≤) wqo. Let 𝑈 be an upward-closed set of 𝐴 and 𝒦 be a set of upward-closed

sets such that 𝑈 ⊆
⋃︀

𝒦. From the third point of Exercise 2, there are 𝑎1, . . . , 𝑎𝑛 such that

𝑈 = ↑{𝑎1, . . . , 𝑎𝑛}. It holds that for each 𝑖 ∈ [1, 𝑛] there is 𝑈𝑖 ∈ 𝒦 such that 𝑎𝑖 ∈ 𝑈𝑖. As the 𝑈𝑖

are upward-closed sets, 𝑈 ⊆
⋃︀

𝑖∈[1,𝑛] 𝑈𝑖. For the converse, we prove that if 𝒪(𝐴) is Noetherian

then any increasing sequence 𝑈1 ⊆ 𝑈2 ⊆ 𝑈3 . . . of upward-closed subsets of 𝐴 stabilize. Then,

the result follows from the fourth point of Exercise 2. Let 𝑈1 ⊆ 𝑈2 ⊆ 𝑈3 . . . be an increasing

sequence of sets in 𝒪(𝐴). Let 𝑈 =
⋃︀

𝑖 𝑈𝑖, which is an upward-closed set. By hypothesis there

are 𝑖1 < · · · < 𝑖𝑘 such that 𝑈 =
⋃︀

𝑖∈{𝑖1,...,𝑖𝑘} 𝑈𝑖𝑘
. Then for all 𝑖 ≥ 𝑖𝑘, 𝑈 = 𝑈𝑖 and the sequence

stabilize.

A multi-context 𝐶 is a term with distinguished variables �1, . . . ,�𝑛 occurring exactly once.

Replacing them by terms 𝑡1, . . . , 𝑡𝑛 respectively is denoted by 𝐶[𝑡1, . . . , 𝑡𝑛].

Let ℱ1 and ℱ2 be two disjoint signatures. A symbol is of color 𝑘 ∈ {1, 2} if it belongs to ℱ𝑘. A

term 𝑡 is of color 𝑘 if it’s not a variable and every symbol in it is of color 𝑘. We denote with 𝑘 the

other possible color of 𝑘, i.e. 3 − 𝑘.
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Let 𝑡 be a term with symbols in ℱ1 ∪ ℱ2. We define cap(𝑡) and aliens(𝑡) respectively as

cap(𝑡) =

⎧⎪⎨⎪⎩
𝑥 if 𝑡 = 𝑥 is a variable

𝐶 if 𝑡 = 𝐶[𝑡1, . . . , 𝑡𝑛] where 𝐶 is of color 𝑘 ∈ {1, 2} and

𝑡1, . . . , 𝑡𝑛 are headed by symbols of color 𝑘

aliens(𝑡) =

⎧⎪⎨⎪⎩
∅ if 𝑡 is a variable

{|𝑡1, . . . , 𝑡𝑛|} if 𝑡 = 𝐶[𝑡1, . . . , 𝑡𝑛] where 𝐶 is of color 𝑘 ∈ {1, 2} and

𝑡1, . . . , 𝑡𝑛 are headed by symbols of color 𝑘

The rank of a term 𝑡, denoted with rk(𝑡), is the maximum number of color layers in 𝑡, i.e.

rk(𝑡) = 1 + max𝑎∈aliens(𝑡)(rk(𝑎)).

Exercise 7 :

Let ℱ1 and ℱ2 be two disjoint signatures and let ℛ1, ℛ2 be two TRSs on ℱ1 and ℱ2 respectively

such that →ℛ1 terminates on 𝑇1 = 𝑇 (ℱ1, 𝑉 ) and →ℛ2 terminates on 𝑇2 = 𝑇 (ℱ2, 𝑉 ), where 𝑉 is a

set of variables. Let → be the rewrite relation on 𝑇 = 𝑇 (ℱ1 ∪ ℱ2, 𝑉 ) generated by ℛ1 ∪ ℛ2.

1. Prove that for each term 𝑡, 𝑢 ∈ 𝑇 , if 𝑡 → 𝑢 then rk(𝑡) ≥ 𝑟𝑘(𝑢).

2. Prove that if ℛ1 and ℛ2 do not have any rules of the form 𝑙 → 𝑥 where 𝑥 is a variable, then

→ terminates.

3. Prove that ℛ1 = {a(0, 1, 𝑥) → a(𝑥, 𝑥, 𝑥)} and ℛ2 = {m(𝑥, 𝑦) → 𝑥, m(𝑥, 𝑦) → 𝑦} are terminat-

ing, whereas ℛ1 ∪ ℛ2 is not.

Solution:

(1) The proof is by induction on rk(𝑡). We need to distinguish two cases:

• The reduction that leads to 𝑢 is in cap(𝑡). If 𝑢 is a variable, then rk(𝑢) = 1 ≤ rk(𝑡). If
cap(𝑡) and cap(𝑢) have distinct colors, then 𝑢 is an alien of 𝑡 and rk(𝑢) < rk(𝑡). Otherwise

it must holds that cap(𝑡) →ℛ1 cap(𝑢) or cap(𝑡) →ℛ2 cap(𝑢) (if cap(𝑡) is of color 1 or 2

respectively) and aliens(𝑢) ⊆ aliens(𝑡). Therefore, rk(𝑢) ≤ rk(𝑡).

• Let 𝑡 = 𝐶[𝑡1, . . . , 𝑡𝑛] where 𝐶 = cap𝑡. Suppose now that reduction is in 𝑡𝑖 ∈ aliens𝑡,
𝑖 ∈ [1, 𝑛], and it reduces 𝑡𝑖 to 𝑡′

𝑖 (therefore, 𝑢 = 𝐶[𝑡1, . . . , 𝑡𝑖−1, 𝑡′
𝑖, 𝑡𝑖+1, . . . , 𝑡𝑛]). By

induction hypothesis (since rk(𝑡𝑖) < rk(𝑡)), rk(𝑡′
𝑖) ≤ rk(𝑡𝑖). By definition of rk it holds that

rk(𝑡) = rk(𝐶[𝑡1, . . . , 𝑡𝑖−1, 𝑡𝑖, 𝑡𝑖+1, . . . , 𝑡𝑛]) ≥ rk(𝐶[𝑡1, . . . , 𝑡𝑖−1, 𝑡′
𝑖, 𝑡𝑖+1, . . . , 𝑡𝑛]) = rk(𝑢).

(2) Let 𝑡 be a term. The proof is by well-founded induction on (rk(𝑡), cap(𝑡), aliens(𝑡)) w.r.t.

the well-founded order (>, (→+
ℛ1

∪ →+
ℛ2

), →mul)lex. Notice that, since →ℛ1 and →ℛ2 are

terminating, the relation (→+
ℛ1

∪ →+
ℛ2

) ⊆ (𝑇 (ℱ1, 𝑉 ) ∪ 𝑇 (ℱ2, 𝑉 ))2 that maps elements of

𝑇 (ℱ1, 𝑉 ) to elements of 𝑇 (ℱ1, 𝑉 ) and elements of 𝑇 (ℱ2, 𝑉 ) to elements of 𝑇 (ℱ2, 𝑉 ) is well-

founded. →mul is also well-founded as explained in the last point of the proof. If 𝑡 is irreducible,
then → terminates on it. Instead, if 𝑡 → 𝑢, then we need to consider the following three cases:

• rk(𝑡) = 1, i.e. 𝑡 is of color 𝑘 ∈ {1, 2}. Then 𝑢 is of the same color and therefore 𝑡 →ℛ𝑘
𝑢.

We can apply the induction hypothesis (𝑢 terminates) and conclude that also 𝑡 terminates.

• rk(𝑡) > 1 and the reduction is in 𝐶 = cap(𝑡). Let 𝑘 be the color of 𝐶. Since the rules

are non-collapsing, then cap(𝑢) is of color 𝑘 and, by well-foundness of →ℛ𝑘
we can apply

the induction hypothesis (𝑢 terminates) and conclude that, 𝑡 also terminates.

• Lastly, rk(𝑡) > 1 and the reduction is in some alien 𝑎 ∈ aliens(𝑡), that is reduced to 𝑎′.

Then, since rk(𝑎) < rk(𝑡), we can apply the induction hypothesis and conclude that 𝑎 is

terminating. Since the rules are non-collapsing, it holds that cap(𝑡) = cap(𝑢) and, from

aliens(𝑢) = aliens(𝑡) − {|𝑎|} + {|𝑎′|}, all aliens of 𝑡 and 𝑢 are terminating. Therefore, it

holds that →mul is a well-founded strict order when restricted to elements of aliens(𝑡).
Since aliens(𝑡) →mul aliens(𝑢), 𝑢 terminates and so does 𝑡.
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(3) For ℛ1 consider the order > where 𝑡 > 𝑠 if and only if

{| |𝑢| | 𝑡 = 𝑢 or ∃𝑝 ∈ Pos(𝑡) 𝑡|𝑝 = 𝑓(0, 1, 𝑢)|} >mul {| |𝑢| | 𝑠 = 𝑢 or ∃𝑝 ∈ Pos(𝑠) 𝑠|𝑝 = 𝑓(0, 1, 𝑢)|}

It’s easy to show that > is a simplification order such that for each terms 𝑡 → 𝑠 it holds 𝑡 > 𝑠.
Instead, the termination of ℛ2 is trivial (consider the size of the term). Lastly, ℛ1 ∪ ℛ2 does

not terminate:

a(m(0, 1), m(0, 1), m(0, 1)) → a(0, m(0, 1), m(0, 1)) → a(0, 1, m(0, 1)) → a(m(0, 1), m(0, 1), m(0, 1))
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