Rewriting Techniques: TD 6

21-12-2017

A pair (A, <), where < is a binary relation on the set A, is a well quasi-ordering (wqo) if < :
e is a quasi-order, i.e. < is reflexive and transitive;
o is well-founded, i.e. there are no infinite strictly decreasing sequences ag > a; > as > ... in A4;

o does not have infinite antichains, i.e. it does not exists an infinite subset I of A such that for
each a,be I, a £ band b «£ a.

Exercise 1:
Which of the following are wqo?
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. (X%, <jex+) where < is a strict order over a finite alphabet ¥ and its extension <jex+ to X* is
defined as: ag...an <jex* bo...bm iff ag...ay is a prefix of by ... by, or there is i < min(n,m)
such that a; < b; and for all 0 < j < ¢, a; = b;.

8. ({(a,b) € N? | a < b}, <) where (a,b) < (a/,V) iff (a=a' Ab<V)orb<d.

Solution:

(1) Yes, it’s total and well-founded.

(2) No, (—n)nen is strictly decreasing.

(3) For n =1, yes. For n > 2 no, (a"b)pen is an infinite antichain.
(4) No, the set of prime numbers is an infinite antichain.

(5) No, ({n})nen is an infinite antichain.

(6) Yes, since U C V if and only if V =0 or U,V are not empty and min(U) < min(V). So,
two sets will be in the same equivalence class whenever they are both empty or they have the
same minimal element. The domain of equivalence classes is isomorphic to (NU {T}, <) where
VvneNn<T.

(7) For n =1, yes. For n > 2, no, (a™b)en is strictly decreasing.

(8) Yes. It’s trivially reflexive, whereas transitivity can be shown by considering the following
four cases. Let (a,b) < (a/,b') and (a’,b') = (a”,b").

e ifa=a,b<V,d =d" and ¥ < b’ then a = a” and b < V", therefore (a,b) < (a”,0");
e ifa=a,b<V and b’ < d” then b < d”, therefore (a,b) < (a”,b"”);
e ifb<a,d =a” and b <b” then b < a”, therefore (a,b) < (a”,b");

o ifb<a, b <a” and @’ < b by definition, then b < a”, therefore (a,b) < (a”,b");




It follows that < is a quasi-order.

It is also well-founded because for every (a’,’), the set {(a,b) | (a,b) < (a’,b')} is finite. To
show this it is sufficient to write the set as the union {(a,b) € N> |a =a’ Ab <V} U{(a,b) €
N? | a < bAb< a'} and prove the finiteness of its two sets.

Lastly, each antichain is finite. From the definition of <, two elements (a,b) and (a’,’) are
incomparable whenever a # a’, a < b and b < a’. Let ((a;,b;))icr be an antichain. It must
hold that for every 4,j € I, a; = a; implies ¢ = j (since a # a’). Moreover, for each i € I,

a; < by. It follows that I is finite.

Let (A, <) a quasi-ordering. We say that a € A is minimal whenever there are no a’ € A such that
a’ < a. Given a subset U of A, we note 1U the upward-closure of U, ie. {a € A|3a’ € U, o' < a}.

Exercise 2:
Let (A, <) be a quasi-ordering.

1. Show that if < is well-founded, then every element is larger then or equal to a minimal element.

2. Prove that (A, <) is a wqo iff every non-empty subset of A has at least one minimal element
and at most a finite number of minimal element up to equivalence.

3. Prove that if (A,<) is a wqo then any of its upward-closed subsets can be written as
Hai,...,a,} for some ay,...,a, € A.

4. Prove that (A, <) is a wqo if and only if any increasing sequence Uy CU; C--- C U, C ... of
upward-closed subsets of A stabilizes, i.e. there is p € N such that for all i € N, Upy; = U,,.

Solution:

(1) Let ag € A. Assume that there is no a minimal such that a < ag (and therefore in particular
a is not minimal). Since ag is not minimal, there exists a; < ag and there is no ¢ minimal
such that a < a;. We can therefore reason by induction w.r.t. the hypothesis “there is no a
minimal such that a < a;”. Assume that a; < a;_1 < a;j_2 < --- < ag are constructed. By
hypothesis, a; is not minimal, then there is a;11 < a;. By doing so we construct an infinite
strictly decreasing sequence, which contradicts the well-foundness of A.

(2) As a wqo is well-founded, each subset of A is well-founded. If this subset is non-empty then
it has at least a minimal element. Assume now that there is an infinite number of minimal
elements up to equivalence and let (a;);en be an infinite sequence of non-equivalent minimal
elements. As they are minimal and not equal, they are incomparable and therefore (a;);cy is
an infinite antichain.

For the converse,

o suppose A not well-founded. Then there exists a subset of A corresponding to an infinite
strictly decreasing sequence. By definition this set is non-empty and without minimal
elements. From the first hypothesis it follows that < must be well-founded.

e Suppose now that there exists a subset of A corresponding to an infinite antichain. By
definition the subset contains an infinite number of incomparable elements which are
minimal in this subset. From the second hypothesis it follows that < does not have
infinite antichains.

We conclude that (4, <) is a wqo.

(3) Let U be upward-closed. From the previous point, it has a finite number of minimal
elements up to equivalence. Let aq,...,a, be elements representing those equivalence classes.
We will prove that U ={{a1,...,a,}. U 2M{ay,...,a,} holds since all a;, i € [1,n] belongs to
U and U is upward-closed. To prove U Ct{a,...,a,} notice that U is well-founded since A is
well-founded. From the first point of this exercise, every element of U is greater or equal to a
minimal element. Since every minimal element is equivalent to an element in {ay,...,a,}, we
conclude that every element of U is in t{aq,...,an}.
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(4) Suppose A wqo and assume that there is an increasing sequence Uy CU; C--- C U, C ...
that does not stabilize and let U; C U;41 two elements of the sequence. From the previous point,
there are Ay, = {a1,...,a,} and Ay,,, = a},...,a;, such that U; =tAy, and U;41 =1Ay,,, .
Since U; C U;11, Ay, C Ui41 and from the definition of upward-closed set it must hold that
there is o’ € Ay, , which is not in U; and such that

e it is incomparable with every a € Ay,, or

o thereis a € Ay, d’ < a.

If the sequence does not stabilize then, at each step, it is possible to find a new element of A
with such properties. It follows that A must contain an infinite strictly decreasing sequence or
an infinite antichain, which contradicts the hypothesis of A wqo.

For the converse, suppose that any increasing sequence Uy C U; C --- C U, C ... of upward-
closes subsets of A stabilizes and assume A not wqo. Since A is a quasi-ordering, one of the
following must hold:

e there is an infinite strictly decreasing sequence a9 > a; > as > ... in A. Then
consider the increasing sequence (1{a;});en of upward-closed sets. Since the sequence
ag > ai > az > ... is not stabilizing, we have a contradiction and < must be well-founded.

e there is an infinite subset I of A such that for each a,b € I, a £ b and b £ a. Consider
the increasing sequence Uy = 0, U; = U;_1U 1 {a}senv,_, of upward-closed subsets of
A. Since the sequence is not stabilizing, we have a contradiction and < does not have
infinite antichains.

Let (A1,<1), ..., (As, <,) be non-empty quasi-orderings. Their product extension is the quasi

ordering (A1 x -+ X Ay, <y) with (z1,...,2,) <x (Y1,.-.,Yn) whenever for each i € [1,n] z; <; y;.

Exercise 3:

Prove that (A1,<4), ..., (A, <,) are wqo iff their product extension (A1 X --- X A,, <) is a wqo.
Solution:

Reflexivity and transitivity are preserved and therefore (A; X --- X A,, <«) is a quasi-order
whenever the same holds for (41,<y), ..., (A,, <,). For example (ay,...,a,) <x (a1,...,a,)
if and only if for all ¢ € [1,n] a; < a;.

Also well-foundness is preserved. Suppose A; not well-founded. Then there exists an infinite
decreasing sequence b; >; by >; bs >; .... Let a1,...,a,-1,0;41,...,a, be elements of
Ay, ... A1, Ajyq, A, respectively. Then

(al,...,ai_l,bl,ai+1,...,an) <x (al,...,ai_l,bg,ai+1,...,an) < v

is an infinite decreasing sequence and (A7 X --- x A,, <) is not well-founded. The converse
follows with similar arguments: if (A; x -+ x A,, <) is not well-founded then an infinite
decreasing sequence of its elements implies the existence of a decreasing sequence of elements
in at least one domain A;, i € [1,n].

Lastly, also the presence of antichains is preserved. For example, suppose that A; contains an

infinite antichain. Then there exists an infinite subset {by, ba, b, ...} of incomparable elements
of A;. Let ay,...,a;—1,ai+1,...,a, be elements of Ay,..., A;—1, A;j+1, Ay, respectively. Then
{(al, . ,ai,l,bl,aHl, e ,an), (al, e ,ai,l,bg,aHl, . ,an), . }

is an infinite subset of incomparable elements of (A; x -+ x A,,,<4). The converse follows
with similar arguments: (A; X --- X A,, <) contains an infinite antichain then the same holds
true for at least one domain A;, i € [1,n].
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Let (A1,<1), ..., (An, <) be non-empty quasi-orderings. Their lexicographic extension is the
quasi ordering (A; X - -+ X Ap, <jex) with (21, ..., 2,) <x (y1,--.,Yn) whenever there is j € [1,n+1]
such that for each ¢ < j it holds z; =; y; and if j < n then z; <; y;.

Exercise 4:
Prove that (41,<1), ..., (A, <,) are wqo iff their lexicographic extension (A; X --- X A, <jex) is
a wqo.

Solution:

Reflexivity and transitivity are preserved and therefore (A; X - -+ X A, <jex) is a quasi-order
whenever the same holds for (A1, <1), ..., (4,,<,). For example (a1, ...,a,) <jex (a1,...,an)
if and only if for all i € [1,7n] a; < a;.

Moreover, from the definition it is easy to see that <, C<j., and therefore, if <joy is well-
founded then <y is well-founded and from the previous exercise it holds that (A, <;), ...,
(A, <,,) are well-founded. Similarly, if <jex does not have infinite antichain then each (A;, <;),
i € [1,n] does not have any infinite antichain.

We will now prove that if (4 X -+ X A,, <jex) has an infinite antichain then there exists
(A;, <), @ € [1,n], with an infinite antichain. Lets consider the simpler case (A1, <1), (A2, <2)
and (A; X As, <jex). The proof can be easily adapted to the general case. Let I be an infinite
antichain in (A; X Ag, <jex). As such, each pair of elements (a,b), (a/,b’) € I are such that
(a,b) Liex (a', V) and (a’, V') Liex (a,b). From the definition of <ex it therefore holds

(afia' Na' Zia)V(agia ANa' £1an (b b AV £20))

So it must hold that a and o’ are incomparable or they are equal but b and b’ are incomparable.
If I has an infinite number of pairs such that their first component is incomparable, then
(A1, <1) contains an infinite antichain. Otherwise, suppose I has a finite number of pairs such
that their component is incomparable. Then I contains an infinite number of pairs such that
the first component is equal. Consider I’ C I the infinite set of such pairs. It holds that b and
b’ are incomparable for every two pairs (a,b) and (a,b’) in I’. It follows that (A1, <s3) contains
an infinite antichain. A similar proof can be made to show that if (A; x -+ X A,,, <jex) is not
well-founded then there exists a (4;, <;), @ € [1,n], not well-founded.

A quasi-ordering (A4, <) is total if for every z,y € A, x <y ory < z.

A linearization of (A, <), where < is a binary relation on the set A, is a total quasi-ordering
(A, C) such that for all z,y € A, x <y implies z C y and = < y implies = C y.

Exercise 5:

1. Prove that a total quasi-ordering is a wqo if and only if it is well-founded.
2. Prove that every quasi-ordering has a linearization. (hint: use Zorn’s lemma)

3. Prove that a quasi-ordering is a wqo if and only if all its linearization are well-founded.

Solution:
(1) A total quasi-ordering cannot have infinite antichains.

(2) Let (4, <) be a quasi-ordering. Let T' = {(A,C) | C is a quasi-order, <CLC and <CLC}.
I' is non-empty since (A4, <) € I'. Consider the binary relation — s.t. (4,<;) — (A4, <)
whenever <;C<5. — is a partial order such that each of its chain has an upper-bound in I.
By applying Zorn’s lemma, I' has at least one maximal element (A, <). We show that (A, <)
is a linearization of (A, <) by showing that is total. Suppose it is not. So there are x,y in A
such that © A y and y A z. Define <'= (=2 U{(x,y)})*. Then =’ is a quasi-order such that
=<C=’ and therefore <C=’. To have a contradiction, it remains to prove that <C<’. Assume
a < B. It holds that a < 8 and 8 A a. By definition, a <’ 3. Assume 8 <’ a. This means

Page 4



that f <z =X’y < . Thus, y < a < 8 =X z, which is absurd since x Z y and y A z. It follows
that < must be total.

(3) Let (A, <) be a quasi-ordering. Let < be a linearization of <. Assume that it exists an
infinite sequence S: x1 > x5 > .... Suppose that S contains an infinite set of incomparable
elements w.r.t. <. Then it’s an infinite antichain and < is not a wqo. If, instead, the set
of incomparable elements is finite, then there must be an infinite subsequence of S ordered
by > and therefore < cannot be a wqo since it’s not well-founded. For the converse, if every
linearization is well-founded, then < is also well-founded since a strictly decreasing sequence
for < is also a strictly decreasing sequence for any linearization. Assume now that < has an
infinite antichain (z;);en. Let <'= (< U{(z;,z;) | ¢ < j})*. This is a quasi-ordering which
satisfies

c<

IA

o <C<tifzx<yandy £z then z < y. Assume y <’ z then there are 7 < 7 such that
y < z; and z; < x. So z; < x; which is absurd.

It follows that any linearization of <’ is also a linearization of <. But <’ is not well-founded,
and therefore < does not contain any infinite antichain.

A topology on a set X is a set O(X) of (open) subsets of P(X) that is closed by unions and finite
intersections and contains both () and X. A topological space (X, O(X)) is a set with a topology
on it.

Let (X, O(X)) be a topological space. A subset K of X is said to be compact if for every subset
K C O(X) such that K C |JK there is a finite subset F(K) C K such that K C |JF(K). We say
that a topological space (X, O(X)) is Noetherian if and only if every K € O(X) is compact.

Exercise 6 : -
Let (A, <) be a quasi-ordering and let O(A) be the set of all upward-closed subsets of A (this is
known as the Alexandrov’s topology on quasi-ordering).

1. Prove that O(A) is a topology.

—

2. Prove that (A, <) is a wqo if and only if O(A) is Noetherian.

Solution:

(1) The intersection and the union of upward-closed sets is again an upward-closed set. Moreover
O(A) contains both # and A. We conclude that it is a topology.

(2) Suppose (A, <) wqo. Let U be an upward-closed set of A and K be a set of upward-closed
sets such that U C |JK. From the third point of Exercise 2, there are ay,...,a, such that
U ="™ai,...,a,}. It holds that for each i € [1,n] there is U; € K such that a; € U;. As the U;

are upward-closed sets, U C Uie[l,n] U;. For the converse, we prove that if @ is Noetherian
then any increasing sequence U; C Us C Us ... of upward-closed subsets of A stabilize. Then,
the result follows frgn\the fourth point of Exercise 2. Let U; C Uy C Us ... be an increasing
sequence of sets in O(A). Let U = |J, U;, which is an upward-closed set. By hypothesis there
are iy < -+ < ig such that U = Then for all 7 > i, U = U; and the sequence
stabilize.

i€{in,ein} ke

A multi-context C is a term with distinguished variables [y, ...,[J, occurring exactly once.
Replacing them by terms ¢1,...,t, respectively is denoted by C[ty,...,t,].

Let 1 and F3 be two disjoint signatures. A symbol is of color k € {1,2} if it belongs to Fj. A
term ¢ is of color k if it’s not a variable and every symbol in it is of color k. We denote with & the
other possible color of k, i.e. 3 — k.
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Let ¢ be a term with symbols in F; U Fo. We define cap(t) and aliens(t) respectively as

x if t = x is a variable
cap(t) =< C ift = Cl[ty,...,t,] where C is of color k € {1,2} and
t1,...,t, are headed by symbols of color k

] if ¢ is a variable
aliens(t) = ¢ {|t1,...,tn} if ¢t = C[t1,...,t,] where C is of color k € {1,2} and
t1,...,t, are headed by symbols of color k

The rank of a term ¢, denoted with rk(¢), is the maximum number of color layers in ¢, i.e.
k() = 1 + maXgeatiens(r) (tk(a)).

Exercise 7:

Let F; and F» be two disjoint signatures and let Ry, Ro be two TRSs on F; and F» respectively
such that —x, terminates on Ty = T'(F1, V) and —, terminates on T = T'(F2, V'), where V is a
set of variables. Let — be the rewrite relation on T = T'(F; U Fy, V) generated by R1 U Ros.

1. Prove that for each term t,u € T, if t — u then rk(¢) > rk(u).

2. Prove that if Ry and Ry do not have any rules of the form [ — x where x is a variable, then
— terminates.

3. Prove that Ry = {a(0,1,2) — a(z,z,z)} and Re = {m(z,y) — z, m(z,y) — y} are terminat-
ing, whereas Rq U R is not.

Solution:

(1) The proof is by induction on rk(¢). We need to distinguish two cases:

o The reduction that leads to w is in cap(t). If w is a variable, then rk(u) = 1 < rk(¢). If
cap(t) and cap(u) have distinct colors, then w is an alien of ¢ and rk(u) < rk(¢). Otherwise
it must holds that cap(t) =g, cap(u) or cap(t) —x, cap(u) (if cap(t) is of color 1 or 2
respectively) and aliens(u) C aliens(t). Therefore, rk(u) < rk(¢).

o Let t = Clty,...,t,] where C = capt. Suppose now that reduction is in ¢; € alienst,
i € [1,n], and it reduces ¢; to ¢ (therefore, u = Clt1,...,ti—1,t;, tit1,...,tn]). By
induction hypothesis (since rk(¢;) < rk(t)), rk(¢;) < rk(¢;). By definition of rk it holds that
Tk(t) = rk(C[tl, PN ,tifl,ti,tiJrh PN ,tn]) 2 rk(C[tl, NN 7ti,1,t;7ti+1, NN ,tn]) = rk(u)

(2) Let t be a term. The proof is by well-founded induction on (rk(t), cap(t), aliens(t)) w.r.t.
the well-founded order (>, (—>7J%1 U —>7J§2),—>mu1)1ex. Notice that, since —g, and —x, are
terminating, the relation (—>;§1 U —>;§2) C (T(F1,V)UT(Fa,V))? that maps elements of
T(F1,V) to elements of T(F;,V) and elements of T(Fz2, V) to elements of T'(Fa,V) is well-
founded. —, is also well-founded as explained in the last point of the proof. If ¢ is irreducible,

then — terminates on it. Instead, if ¢ — u, then we need to consider the following three cases:

o rk(t) =1, i.e. tisof color k € {1,2}. Then u is of the same color and therefore ¢t =%, u.
We can apply the induction hypothesis (u terminates) and conclude that also ¢ terminates.

o 1k(¢) > 1 and the reduction is in C' = cap(t). Let k be the color of C. Since the rules
are non-collapsing, then cap(u) is of color k and, by well-foundness of —%, we can apply
the induction hypothesis (u terminates) and conclude that, ¢ also terminates.

o Lastly, rk(¢) > 1 and the reduction is in some alien a € aliens(t), that is reduced to a'.
Then, since rk(a) < rk(t), we can apply the induction hypothesis and conclude that a is
terminating. Since the rules are non-collapsing, it holds that cap(t) = cap(u) and, from
aliens(u) = aliens(t) — {|a[} + {|d'[}, all aliens of ¢ and u are terminating. Therefore, it
holds that — 1 is a well-founded strict order when restricted to elements of aliens(t).
Since aliens(t) — ) aliens(u), u terminates and so does ¢.
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(3) For Ry consider the order > where ¢ > s if and only if
{| [ul | £ =wor 3p € Pos(t) t], = f(0,1,u)}} >mu {| [ul | s =w or Ip € Pos(s) s|, = f(0,1,u)}
It’s easy to show that > is a simplification order such that for each terms ¢ — s it holds ¢ > s.

Instead, the termination of R is trivial (consider the size of the term). Lastly, Rq U R2 does
not terminate:

a(m(0,1),m(0,1),m(0,1)) — a(0,m(0,1),m(0,1)) = a(0,1,m(0,1)) — a(m(0,1),m(0, 1),m(0,1))
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