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Exercise 1:

Let A and B be two terminating relations. Show that if AB C BA then AU B terminates using
well-founded induction.

Solution:

We prove that (AU B)* C B*A* by well-founded induction on steps of (A U B)*. The
induction hypothesis is: t(—aup)"t’ = t =% —5 t'. W.lo.g. suppose t —ﬁt}g t’ such that
t =4 t" —p (—aup)" ' for some n € N. Then by hypothesis AB C BA it holds that there
exists " such that t —p t"" — 4 (—aup)" 't'. By inductive hypothesis, since t"'(— aup)"t’,
t"" —75,—% t" and therefore t —5—7% t’. Since A and B are terminating relations, B*A* is a
terminating relation. It follows that A U B is terminating.

Given a strict order > on a set A, we define the corresponding multiset order >,,; on Mult(A)
as follows: M >, N if and only if there exist X, Y € Mult(A) such that

1. 0#£XCM;

2. N=(M\X)UY;

3. VyeY xeXz>y.
Exercise 2:

Prove that M >, N if and only if M # N and for all n € N \ M there exists m € M \ N such
that m > n.

Solution:

(=) Assume M >, N, X and Y as in the definition. M # N follows from irreflexivity of >y
For the second conjunct, suppose y1 € N\ M = (M\ X)UY)\M =(MUY)\X)\ M =
(MUY)\ M)\ X =Y\ X, where the second equality holds because X C M. Hence there is a
y2 € X such that yo > y;. Either yo € X\Y = (M\(M\X))\Y = M\ (M\X)UY) = M\N,
in which case we are done, or y» € X NY (where X NY)(z) = min(X(z),Y (2))), in which
case there is y3 € X such that y3 > ys. Because or multisets are finite and > is a strict order,
there is no infinite ascending chain y; < y2 < ... in X N'Y. This process therefore terminate
with some y, € X \Y = M \ N. Transitivity yields y, > y1.

(<)Let N\M =Y and M\ N = X. Since M # N, it cannot be that M = N = (). Moreover it
holds that X # . Indeed, suppose that M \ N is empty, then for all e M(e) < N(e) and since
M # N it will hold that N # (), which will lead N\ M not empty and therefore (contradiction),
for the existential in the second condition X cannot be empty. Moreover from it’s definition
X C M. Moreover N = (M \ (M \N))U(N\M)andso N =(M\X)UY. From the last
hypothesis it holds that for all n € Y there exists m € X such that m > n. We conclude
M > N.

The lexicographic order > for the Cartesian product x of two domains (A,>4) and (B,>p)
is defined as follows: (a1,b1) >1ex (a2, b2) if and only if a; > as or a; = as and by > by. This order
can be readily extended con Cartesian products of arbitrary length by recursively applying this
definition, i.e by observing that A x B x C = A x (B x C).



In the following, let ¥ be a finite signature, V' a set of variables and T'(X, V') the terms built from
those sets.

Let status(f) € {mul, lex} a status function on ¥ and let > be a strict order on 3. The recursive
path order >,,, on T'(X, V) induced by > is defined as follows. s >.p, ¢ if and only if one of the
following holds:

1. t is a variable appearing in s and s # t, or
let s = f(s1,...,8m) and t = g(t1,...,t,),

2. there exists ¢ € [1,m] such that s; >0 t, or
3. f>gand s>y t; forall j €[1,n], or
4. f =g, forall j € [1,n] it holds s >,p, t; and (s1,.. .,sm)(>rpo)status(f)(t1, cestm).
The lexicographic path order is a recursive path order s.t. for all f € X, status(f) = lex,

whereas the multiset path order is a recursive path order s.t. for all f € ¥, status(f) = mul,
where we define (s1,..., $m)(>rpo)mul(t1, - tm) as { s1,...,8m F(>rpo)muf] t1,. -+, tm [}

Exercise 3:

1. Prove the termination of the Ackermann’s function by well-founded induction.

AckOy = y+1
Ackz 0 Ack (z—1) 1
Ackxy = Ack (x —1) (Ack z (y — 1))

The following rewrite system simulates this function.

2. Consider the well-founded domain (Mult(N X N), (>1ex)mu1). Prove the termination using the
following abstraction:

¢: T({a, s}, X) = Mult(N x N)
t— {| (|u|’ |U|) | t|p€Pos(t) = a(u,v) |}

where [0| =1, |a(z,y)| = |z| + |y| + 1 and |s(z)| = |z| + 1.

3. Prove the termination using a RPO.

Solution:

(1) Induction on (N x N, >}.x). We prove that the calculus of Ack u v terminates by induction
(u,v) ordered lexicographically on integers.

« Base cases: Ack terminates for (0,n), n € N;

e We need to show that Ack terminates for (n,m), n > 0. Induction hypothesis: Ack
terminates for all (j,k) such that j < nor (j = n and k < m). If m = 0 then by
induction hypothesis the function terminates since (n — 1,1) < (n,m). Instead, if m > 0,
by induction hypothesis the function terminates on input (n,m — 1) with output r and
terminates on input (n — 1,r).

(2) Let s — t,

o if s = Cla(0,t')] and t = C[s(t')], then ¢(t) = ¢(s) \ { (1,]¢]) [}. Therefore it holds
¢(S)<>lex)mul¢(t);
'lifl)s |}= Cla(s(t'),0)] and ¢ = Cla(s(t),s(0))], then ¢(t) = o(s) U{| (1#'],2) [} \{ (] +
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e if s = Cla(s(t'),s(t"))] and t = Cla(t',a(s(t'),t"))], then
¢(t) = o(s) UL (1], [+ [¢7] +2), (T + 1171 AL (] + 1,187 + 1) -
(3) Let > be such that a > s and let status(a) = status(s) = lex. It holds:
a(0,1) >upo s(1), since a > s and a(0,t) >ppo £;
a(s(t),0) >1po a(t,s(0)) since a(s(t), 0) > t, a(s(t),0) > s(0) and (s(£),0)(>rpo)iex (£, S(0))k
(t)

a(s(t),s(t")) >wpo a(t,a(s(t),t’)) since

a(s(t),s(t")) >rpo by a(s(t), s(t')) >rpo a(s(t),t'), (s(t), S(t/))(>rp0)leX(tv a(s(t),t))

Exercise 4:

Show that is not possible to prove termination using lexicographic path ordering of the following
term rewrite system:

{ a(a(x)) = s(2), s(s(z)) = a(z) }

Solution:

Suppose a > s. Let s — t with s = C[s(s()] and ¢t = C[a(t')]. Then we need to prove that
s(s(t')) >wpo a(t’), which does not hold. If instead s > a, then from the first rule we get
a(a(t’)) >wpo s(t') which, again, does not hold.

Exercise 5:

Show that the termination of the following rewriting system cannot be proven with lexicographic
path order but can be proven with multiset path order.

O+xz—0 OXor—x
s(z) +y — s(z+y) s(r) Xy — (yxz)+y

Solution:

We need to impose the precedence x > + > s. With this, the lexicographic path order
cannot orient the last rule as it does not hold that (s(z),y) >iex (y,). Instead, it holds
{ s(z),y [} >mu {| v,z [} since s(z) dominates x.

Let > be a strict order on ¥ and w: XUV — R{ be a weight function w : YUV — RJ. The
Knuth-Bendix order (KBO) >y, on T(X,V) induced by > and w is defined as follows: for
s,t € T(X,V) we have s >ypo t if and only if |s|, > |t|, for all z € V and w(s) > w(t). Moreover,
if w(s) = w(t) then one of the following properties must hold:

1. There are a unary function f, # € V and n € N2! st. s = f*(x) and t = , or

2. there exist function symbols f,g s.t. f > g and s = f(s1,...,8m) and t = g(t1,...,tn), OF

3. there exist a function symbol f such that s = f(s1,...,8m), t = f(t1,...,tm) and

(815 8m) (Zkbotex(t1, - - -, tm).

A weight function w : XUV — Ra' is called admissible if and only if it satisfy the following
properties w.r.t. a strict order >:

1. There exists wy € R \{0} s.t. w(z) = wp for all x € V and w(c) > wy for all constants ¢ € X.

2. If f € ¥ is a unary function symbol of weight w(f) = 0 then f is the greatest element in X,
ie. f>gforall geX.

Page 3



Exercise 6:

Using a KBO, prove the termination of:
L{1@)++2) =2+ 00AW) +2), Uz)+ @+ (+w) =z+(z++w)}
2. { r*(1*(x)) — 1¥(x™(x)) }, where n,k > 0 and m > 0.

Solution:

(1) Let 1 > +, w(s) = 0, w(+) = w(zx) > 0 for each variable z. For both rules, it holds that the
weight does not change after the rewrite step. To prove that 1(x)+ (y+2) >kbo + (L(1(y))+2)
we therefore need to prove the third condition, which holds since 1(z) >xho . Similarly, to
prove 1(z) + (y + (z + w)) >kbo = + (2 + (y + w)), it is sufficient to show that 1(x) >ype .
Notice that it does not holds (y + (z + w) >kbo 2z + (y + w) because of the ordering of the
variables.

(2) Let r > 1, w(r) = 0 and w(1l) = 1. It holds that w is admissible. Let s — ¢ with
s = C[r"(1¥(¢'))] and t = C[1*(x™(¢'))]. From the definition of w, it holds that w(s) = w(t)
since the number of occurrences of the function symbol 1 is the same in s and ¢t. By applying
the definition of >4, we get that we need to show r™(1%(t')) >ype 1¥(x™(#')), which holds
since r > 1.

A strict order > on T(X,V) is called a rewrite order if and only iff
1. is compatible: for all s1,s9 € T(X,V), all f € 3, if s1 > s9 then

f(tl,...,Tfi_l,sl,ti+1,...,tn) > f(th---ati—1a32,ti+17~-~7tn)
where n is the arity of f;

2. is closed under substitution: for all s1,s2 € T(X,V) and all substitutions o : V. — T'(X, V), if
s1 > sg then o(s1) > o(s2).

A strict order > on T'(X, V) satisfies the subterm property (and is called simplification order) if
and only if it is a rewrite order such that for all terms ¢ € T'(3, V') and all positions p € Pos(t) \ {e}
it holds t > t|,.

Exercise 7:

In the following, we refer to s, ¢ and w as in the definition of KBO. We will now prove some
properties of this order to make it more clear.

1. Assume that f is of arity 1, w(f) = 0 and that there is g such that f ¥ g. Prove that under
this conditions >yp, does not satisfy the subterm property.

Prove that, if w is admissible for the strict order > then >y, on T(X, V) induced by > and w has
the subterm property. To do so, prove the followings:

2. Assume that w(s) = w(t) and that ¢ is a strict subterm of s. Prove that there exist a unary
function f and a positive integer k such that w(f) = 0 and s = f¥(¢);

3. Prove that >y, is a strict order;

4. Prove that >, is a rewrite order;

5. Conclude that >y, has the subterm property.

Solution:

(1) Let t = g(t1,...,t,) be an arbitrary term with root symbol g, define s = f(t) and let s — ¢.
Since w(f) = 0 we have w(s) = w(t). Obviously, the first and third condition of KBO cannot
hold, so >po holds if and only if the second condition holds. But this cannot happen since

[#g

(2) Proof by induction on the size of s. Since ¢ is a strict subterm of s, there are an n > 1
and an n-ary function symbol f such that s = f(s1,...,8,) and t is a subterm of s; for some
€ [1,n]. First we show that n = 1 and w(f) = 0:
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e Assume n > 1. We have w(s) = w(f) + >_7_; w(s;) and (since w admissible) we
know that for all j, w(s;) > wo > 0. Thus, n > 1 implies w(s) > w(s;) and therefore
w(s) > w(t). This contradicts the hypothesis w(s) = w(t).

o Assume w(f) > 0, then, even for n = 1, w(s) = w(f) + 37_, w(s;) > w(si) > w(?).
This contradicts the hypothesis w(s) = w(t).

This shows that s = f(s") where f is unary, w(f) = 0 and s’ has ¢ as a subterm. For ' =t we
are done. Otherwise we can apply the induction hypothesis since ¢ is a strict subterm of s,
w(s’) = w(s) = w(t) and |s'| < |s].

(3) Assume that >y, is not irreflezive. then s be a term of minimal size such that s >yp, s.
Since w(s) = w(s) and the root symbol is the same, then we obtain s; >p, s; for all i € [1,n]
where n is the arity of the root symbol of s. This contradicts the minimality of s. To show
transitivity assume 17 >ypo § and s >ypo t, We prove r >ypo t by induction on the size of r.

o From r >yp, s and s >yp t we deduce that, for all variables z, |r|, > |s|, and |s|, > |¢].
hold, thus e have |r|, > |t|,. The variables condition is therefore satisfied.

o T >yho Sand s >ypo talso yield w(r) > w(s) and w(s) > w(t), which implies w(r) > w(t).
Moreover if w(r) > w(s) or w(s) > w(t) then w(r) > w(t) and we are done.

We can assume w(r) = w(s) = w(t). Moreover the second point of the definition cannot hold
for r >upo S, since s >ypo t implies that s is not a variable. Therefore r and s have a function
symbol as root, i.e. r = f(r1,...,r) and s = g(s1,...,8m), such that f > g.

1. If s >ypo ¢ satisfies the first condition then ¢t = x for a variable x and |r|, > |¢|, implies
that x occurs in r. Since the root symbol of r is a function symbol we have r # x and
from the previous point we have r >y, t.

2. If instead s >y, t satisfies the second or third condition, then we know that there exists
a function symbol h such that g > h and t = h(ty,...,t,). If f > g or g > h then we
have f > h and by the second condition r >yp, t. Otherwise, assume f = g = h. Then
both r >y, s and s >y, t satisfy the third condition. By induction hypothesis, from
the definition of (>kpo)iex We get 7 >kpo t.

(4) We first show that >y, is compatible. Assume s1 >ypo $2 and f n-ary function symbol.
We must show that the following holds

f(th e 7ti717817ti7 DR 7tn) >kbo f(tla cee 7ti717827ti7 e 7tn)
From $; >ybo S2 we can deduce that |s1|, > |s2|, for all variables 2. This obviously implies
|f(tr, stz 8oty ooy tn)|e > [ f(E1, o tima, 82, -0 tn) |2

Moreover, if w(s;) > w(s2) then

U)(f(tl, .. ati—laslati7 . ,tn)) > w(f(tl, - ,ti_17 Sg,ti, .. 7'Ifn))

and yields our thesis. Assume instead w(s;) = w(sz). This implies that

w(f(t17'"atiflaslvtiw"vtn)) = w(f(th’"7ti713827ti7"'7tn))

and since the root symbols of the two terms are the same, the thesis holds if and only if the third
condition of KBO is satisfied. This is trivial since t; = t1,...,t;_1 = t;_1 and $1 >xpo S2. To
show instead that >y, is closed under substitution, assume s; >xpo sz and let o : V. — T(3, V)
be a substitution. We show o (s1) >xbo 0(s2) by induction on the size of s;. First, consider the
variable condition. Let X be the set of variables appearing in s;. Because of s1 >y, S2 we
know that |s1]; < |sa|. for all variables z. For an arbitrary variable = we have

o (1)l = lo(s2)le = D lo@)la(ls1ly —[s2l,) = 0

yeX
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Thus the variable condition is satisfied. A similar computation can be done for weights:

w(o(s1)) — w(o(s2)) = wis1) = wlsz) + Y (Isily — Isaly) (w(o(y)) — wo)

yeX

For all y € X, it holds |s1]y — |s2|y, > 0 and w(o(y)) — wo > 0. Consequently w(s1) > w(sz)
implies w(o(s1)) > w(o(s2)) which yields o(s1) >kpo 0(S2). Assume instead that w(s;) = w(sz)
and hence w(o(s1)) > w(o(s2)).If w(o(s1)) > w(o(s2)), then o(s1) >kpo o(s2). Otherwise we
consider one subcase for each condition of KBO:

1. If 51 >kpo 52 holds for the first condition, then s; = f¥(z) and s = z for a unary symbol
f of weight 0 a variable x and a positive integer k. We show o(s1) >xbo 0(s2) by induction
on the size of o(z). If o(x) = y is a variable, then the result trivially holds for the first
condition of KBO. Otherwise o(x) = g(t1,...,t,) for a function symbol g of arity n. If
f # g then f > g from the admissibility of w and thus o(s1) = f*(g(t1,.--,tn)) >kbo
g(t1,...,tn) = o(s2) holds from the second condition of KBO. If f = g then the third
condition must apply and we need to prove that f*(t;) >0 t1. By taking a substitution
o’ such that o’(x) = t; then the induction hypothesis (appliable since o’(z) is smaller
than o(x)) yields f¥(t1) = o' (51) >kpo 0'(s2) = t1.

2. If 81 >kpo s2 holds for the second condition, then the root symbol f of s; and the root
symbol g of sy are such that f > g. Obviously o(s1) has root symbol f whereas o(s2) as
root symbol g, and thus o(s1) >kpo o(s2).

3. If s5 >upo s2 holds for the third condition then the root symbols for sy, sa, o(s1)
and o(s2) are the same. Let s1 = f(s1,...,8y,) and so = f(t1,...,tm). It holds that
there exists ¢ € [1,m] such that s; = t1,...,8,-1 = t;—1 and s; >kpo ;- This implies
o(s1) =o0(t1),...,0(si—1) = o(t;—1) and by induction o(s;) >kpo o(t;) (since s; is smaller
than s1). Thus o(s1) > o(s2) holds.

(5) To show the subterm property, recall that s >y, = for all variables x and terms s # x
that contain z. This, together with the fact that >y, is closed under substitutions, obviously
implies the subterm property.
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