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Exercise 1 :

Let 𝐴 and 𝐵 be two terminating relations. Show that if 𝐴𝐵 ⊆ 𝐵𝐴 then 𝐴 ∪ 𝐵 terminates using
well-founded induction.

Solution:

We prove that (𝐴 ∪ 𝐵)* ⊆ 𝐵*𝐴* by well-founded induction on steps of (𝐴 ∪ 𝐵)*. The
induction hypothesis is: 𝑡(→𝐴∪𝐵)𝑛𝑡′ =⇒ 𝑡 →*

𝐴→*
𝐵 𝑡′. W.l.o.g. suppose 𝑡 →𝑛+1

𝐴∪𝐵 𝑡′ such that
𝑡 →𝐴 𝑡′′ →𝐵 (→𝐴∪𝐵)𝑛−1𝑡′ for some 𝑛 ∈ N. Then by hypothesis 𝐴𝐵 ⊆ 𝐵𝐴 it holds that there
exists 𝑡′′′ such that 𝑡 →𝐵 𝑡′′′ →𝐴 (→𝐴∪𝐵)𝑛−1𝑡′. By inductive hypothesis, since 𝑡′′′(→𝐴∪𝐵)𝑛𝑡′,
𝑡′′′ →*

𝐵→*
𝐴 𝑡′ and therefore 𝑡 →*

𝐵→*
𝐴 𝑡′. Since 𝐴 and 𝐵 are terminating relations, 𝐵*𝐴* is a

terminating relation. It follows that 𝐴 ∪ 𝐵 is terminating.

Given a strict order > on a set 𝐴, we define the corresponding multiset order >mul on Mult(𝐴)
as follows: 𝑀 >mul 𝑁 if and only if there exist 𝑋, 𝑌 ∈ Mult(𝐴) such that

1. ∅ ≠ 𝑋 ⊆ 𝑀 ;
2. 𝑁 = (𝑀 ∖ 𝑋) ∪ 𝑌 ;
3. ∀𝑦 ∈ 𝑌 ∃𝑥 ∈ 𝑋 𝑥 > 𝑦.

Exercise 2 :

Prove that 𝑀 >mul 𝑁 if and only if 𝑀 ̸= 𝑁 and for all 𝑛 ∈ 𝑁 ∖ 𝑀 there exists 𝑚 ∈ 𝑀 ∖ 𝑁 such
that 𝑚 > 𝑛.

Solution:

(⇒) Assume 𝑀 >mul 𝑁 , 𝑋 and 𝑌 as in the definition. 𝑀 ̸= 𝑁 follows from irreflexivity of >mul.
For the second conjunct, suppose 𝑦1 ∈ 𝑁 ∖ 𝑀 = ((𝑀 ∖ 𝑋) ∪ 𝑌 ) ∖ 𝑀 = ((𝑀 ∪ 𝑌 ) ∖ 𝑋) ∖ 𝑀 =
((𝑀 ∪ 𝑌 ) ∖ 𝑀) ∖ 𝑋 = 𝑌 ∖ 𝑋, where the second equality holds because 𝑋 ⊆ 𝑀 . Hence there is a
𝑦2 ∈ 𝑋 such that 𝑦2 > 𝑦1. Either 𝑦2 ∈ 𝑋 ∖𝑌 = (𝑀 ∖(𝑀 ∖𝑋))∖𝑌 = 𝑀 ∖((𝑀 ∖𝑋)∪𝑌 ) = 𝑀 ∖𝑁 ,
in which case we are done, or 𝑦2 ∈ 𝑋 ∩ 𝑌 (where 𝑋 ∩ 𝑌 )(𝑥) = min(𝑋(𝑥), 𝑌 (𝑥))), in which
case there is 𝑦3 ∈ 𝑋 such that 𝑦3 > 𝑦2. Because or multisets are finite and > is a strict order,
there is no infinite ascending chain 𝑦1 < 𝑦2 < . . . in 𝑋 ∩ 𝑌 . This process therefore terminate
with some 𝑦𝑛 ∈ 𝑋 ∖ 𝑌 = 𝑀 ∖ 𝑁 . Transitivity yields 𝑦𝑛 > 𝑦1.
(⇐) Let 𝑁 ∖𝑀 = 𝑌 and 𝑀 ∖𝑁 = 𝑋. Since 𝑀 ̸= 𝑁 , it cannot be that 𝑀 = 𝑁 = ∅. Moreover it
holds that 𝑋 ̸= ∅. Indeed, suppose that 𝑀 ∖ 𝑁 is empty, then for all 𝑒 𝑀(𝑒) ≤ 𝑁(𝑒) and since
𝑀 ̸= 𝑁 it will hold that 𝑁 ̸= ∅, which will lead 𝑁 ∖ 𝑀 not empty and therefore (contradiction),
for the existential in the second condition 𝑋 cannot be empty. Moreover from it’s definition
𝑋 ⊆ 𝑀 . Moreover 𝑁 = (𝑀 ∖ (𝑀 ∖ 𝑁)) ∪ (𝑁 ∖ 𝑀) and so 𝑁 = (𝑀 ∖ 𝑋) ∪ 𝑌 . From the last
hypothesis it holds that for all 𝑛 ∈ 𝑌 there exists 𝑚 ∈ 𝑋 such that 𝑚 > 𝑛. We conclude
𝑀 >mul 𝑁 .

The lexicographic order >lex for the Cartesian product × of two domains (𝐴, >𝐴) and (𝐵, >𝐵)
is defined as follows: (𝑎1, 𝑏1) >lex (𝑎2, 𝑏2) if and only if 𝑎1 > 𝑎2 or 𝑎1 = 𝑎2 and 𝑏1 > 𝑏2. This order
can be readily extended con Cartesian products of arbitrary length by recursively applying this
definition, i.e by observing that 𝐴 × 𝐵 × 𝐶 = 𝐴 × (𝐵 × 𝐶).
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In the following, let Σ be a finite signature, 𝑉 a set of variables and 𝑇 (Σ, 𝑉 ) the terms built from
those sets.

Let status(𝑓) ∈ {mul, lex} a status function on Σ and let > be a strict order on Σ. The recursive

path order >rpo on 𝑇 (Σ, 𝑉 ) induced by > is defined as follows. 𝑠 >rpo 𝑡 if and only if one of the
following holds:

1. 𝑡 is a variable appearing in 𝑠 and 𝑠 ̸= 𝑡, or

let 𝑠 = 𝑓(𝑠1, . . . , 𝑠𝑚) and 𝑡 = 𝑔(𝑡1, . . . , 𝑡𝑛),

2. there exists 𝑖 ∈ [1, 𝑚] such that 𝑠𝑖 ≥rpo 𝑡, or
3. 𝑓 > 𝑔 and 𝑠 >rpo 𝑡𝑗 for all 𝑗 ∈ [1, 𝑛], or
4. 𝑓 = 𝑔, for all 𝑗 ∈ [1, 𝑛] it holds 𝑠 >rpo 𝑡𝑗 and (𝑠1, . . . , 𝑠𝑚)(>rpo)status(𝑓)(𝑡1, . . . , 𝑡𝑚).

The lexicographic path order is a recursive path order s.t. for all 𝑓 ∈ Σ, status(𝑓) = lex,
whereas the multiset path order is a recursive path order s.t. for all 𝑓 ∈ Σ, status(𝑓) = mul,
where we define (𝑠1, . . . , 𝑠𝑚)(>rpo)mul(𝑡1, . . . , 𝑡𝑚) as {| 𝑠1, . . . , 𝑠𝑚 |}(>rpo)mul{| 𝑡1, . . . , 𝑡𝑚 |}.

Exercise 3 :

1. Prove the termination of the Ackermann’s function by well-founded induction.

Ack 0 𝑦 = 𝑦 + 1
Ack 𝑥 0 = Ack (𝑥 − 1) 1
Ack 𝑥 𝑦 = Ack (𝑥 − 1) (Ack 𝑥 (𝑦 − 1))

The following rewrite system simulates this function.

a(0, 𝑦) → s(𝑦)
a(s(𝑥), 0) → a(𝑥, s(0))

a(s(𝑥), s(𝑦)) → a(𝑥, a(s(𝑥), 𝑦))

2. Consider the well-founded domain (Mult(N × N), (>lex)mul). Prove the termination using the
following abstraction:

𝜑 : 𝑇 ({a, s}, 𝑋) → Mult(N × N)
𝑡 → {| (|𝑢|, |𝑣|) | 𝑡|𝑝∈Pos(𝑡) = a(𝑢, 𝑣) |}

where |0| = 1, |a(𝑥, 𝑦)| = |𝑥| + |𝑦| + 1 and |s(𝑥)| = |𝑥| + 1.
3. Prove the termination using a RPO.

Solution:

(1) Induction on (N × N, >lex). We prove that the calculus of Ack 𝑢 𝑣 terminates by induction
(𝑢, 𝑣) ordered lexicographically on integers.

• Base cases: Ack terminates for (0, 𝑛), 𝑛 ∈ N;

• We need to show that Ack terminates for (𝑛, 𝑚), 𝑛 > 0. Induction hypothesis: Ack
terminates for all (𝑗, 𝑘) such that 𝑗 < 𝑛 or (𝑗 = 𝑛 and 𝑘 < 𝑚). If 𝑚 = 0 then by
induction hypothesis the function terminates since (𝑛 − 1, 1) < (𝑛, 𝑚). Instead, if 𝑚 > 0,
by induction hypothesis the function terminates on input (𝑛, 𝑚 − 1) with output 𝑟 and
terminates on input (𝑛 − 1, 𝑟).

(2) Let 𝑠 → 𝑡,

• if 𝑠 = 𝐶[a(0, 𝑡′)] and 𝑡 = 𝐶[s(𝑡′)], then 𝜑(𝑡) = 𝜑(𝑠) ∖ {| (1, |𝑡′|) |}. Therefore it holds
𝜑(𝑠)(>lex)mul𝜑(𝑡);

• if 𝑠 = 𝐶[a(s(𝑡′), 0)] and 𝑡 = 𝐶[a(s(𝑡′), s(0))], then 𝜑(𝑡) = 𝜑(𝑠) ∪ {| (|𝑡′|, 2) |} ∖ {| (|𝑡′| +
1, 1) |};
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• if 𝑠 = 𝐶[a(s(𝑡′), s(𝑡′′))] and 𝑡 = 𝐶[a(𝑡′, a(s(𝑡′), 𝑡′′))], then

𝜑(𝑡) = 𝜑(𝑠) ∪ {| (|𝑡′|, |𝑡′| + |𝑡′′| + 2), (|𝑡′| + 1, |𝑡′′|) |} ∖ {| (|𝑡′| + 1, |𝑡′′| + 1) |}.

(3) Let > be such that a > s and let status(a) = status(s) = lex. It holds:

• a(0, 𝑡) >rpo s(𝑡), since a > s and a(0, 𝑡) >rpo 𝑡;

• a(s(𝑡), 0) >rpo a(𝑡, s(0)) since a(s(𝑡), 0) > 𝑡, a(s(𝑡), 0) > s(0) and (s(𝑡), 0)(>rpo)lex(𝑡, s(0));

• a(s(𝑡), s(𝑡′)) >rpo a(𝑡, a(s(𝑡), 𝑡′)) since

a(s(𝑡), s(𝑡′)) >rpo 𝑡, a(s(𝑡), s(𝑡′)) >rpo a(s(𝑡), 𝑡′), (s(𝑡), s(𝑡′))(>rpo)lex(𝑡, a(s(𝑡), 𝑡′))

Exercise 4 :

Show that is not possible to prove termination using lexicographic path ordering of the following
term rewrite system:

{ a(a(𝑥)) → s(𝑥), s(s(𝑥)) → a(𝑥) }

Solution:

Suppose a > s. Let 𝑠 → 𝑡 with 𝑠 = 𝐶[s(s(𝑡′)] and 𝑡 = 𝐶[a(𝑡′)]. Then we need to prove that
s(s(𝑡′)) >rpo a(𝑡′), which does not hold. If instead s > a, then from the first rule we get
a(a(𝑡′)) >rpo s(𝑡′) which, again, does not hold.

Exercise 5 :

Show that the termination of the following rewriting system cannot be proven with lexicographic
path order but can be proven with multiset path order.

0 + 𝑥 → 0 0 × 𝑥 → 𝑥

s(𝑥) + 𝑦 → s(𝑥 + 𝑦) s(𝑥) × 𝑦 → (𝑦 × 𝑥) + 𝑦

Solution:

We need to impose the precedence × > + > s. With this, the lexicographic path order
cannot orient the last rule as it does not hold that (s(𝑥), 𝑦) >lex (𝑦, 𝑥). Instead, it holds
{| s(𝑥), 𝑦 |} >mul {| 𝑦, 𝑥 |} since s(𝑥) dominates 𝑥.

Let > be a strict order on Σ and 𝑤 : Σ ∪ 𝑉 → R+
0 be a weight function 𝑤 : Σ ∪ 𝑉 → R+

0 . The
Knuth-Bendix order (KBO) >kbo on 𝑇 (Σ, 𝑉 ) induced by > and 𝑤 is defined as follows: for
𝑠, 𝑡 ∈ 𝑇 (Σ, 𝑉 ) we have 𝑠 >kbo 𝑡 if and only if |𝑠|𝑥 ≥ |𝑡|𝑥 for all 𝑥 ∈ 𝑉 and 𝑤(𝑠) ≥ 𝑤(𝑡). Moreover,
if 𝑤(𝑠) = 𝑤(𝑡) then one of the following properties must hold:

1. There are a unary function 𝑓 , 𝑥 ∈ 𝑉 and 𝑛 ∈ N≥1 s.t. 𝑠 = 𝑓𝑛(𝑥) and 𝑡 = 𝑥, or
2. there exist function symbols 𝑓, 𝑔 s.t. 𝑓 > 𝑔 and 𝑠 = 𝑓(𝑠1, . . . , 𝑠𝑚) and 𝑡 = 𝑔(𝑡1, . . . , 𝑡𝑛), or
3. there exist a function symbol 𝑓 such that 𝑠 = 𝑓(𝑠1, . . . , 𝑠𝑚), 𝑡 = 𝑓(𝑡1, . . . , 𝑡𝑚) and

(𝑠1, . . . , 𝑠𝑚)(>kbo)lex(𝑡1, . . . , 𝑡𝑚).

A weight function 𝑤 : Σ ∪ 𝑉 → R+
0 is called admissible if and only if it satisfy the following

properties w.r.t. a strict order >:

1. There exists 𝑤0 ∈ R+
0 ∖{0} s.t. 𝑤(𝑥) = 𝑤0 for all 𝑥 ∈ 𝑉 and 𝑤(𝑐) ≥ 𝑤0 for all constants 𝑐 ∈ Σ.

2. If 𝑓 ∈ Σ is a unary function symbol of weight 𝑤(𝑓) = 0 then 𝑓 is the greatest element in Σ,
i.e. 𝑓 ≥ 𝑔 for all 𝑔 ∈ Σ.
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Exercise 6 :

Using a KBO, prove the termination of:

1. {l(𝑥) + (𝑦 + 𝑧) → 𝑥 + (l(l(𝑦)) + 𝑧), l(𝑥) + (𝑦 + (𝑧 + 𝑤)) → 𝑥 + (𝑧 + (𝑦 + 𝑤)) }
2. { r𝑛(l𝑘(𝑥)) → l𝑘(r𝑚(𝑥)) }, where 𝑛, 𝑘 > 0 and 𝑚 ≥ 0.

Solution:

(1) Let l > +, 𝑤(𝑠) = 0, 𝑤(+) = 𝑤(𝑥) > 0 for each variable 𝑥. For both rules, it holds that the
weight does not change after the rewrite step. To prove that l(𝑥)+(𝑦+𝑧) >kbo 𝑥+(l(l(𝑦))+𝑧)
we therefore need to prove the third condition, which holds since l(𝑥) >kbo 𝑥. Similarly, to
prove l(𝑥) + (𝑦 + (𝑧 + 𝑤)) >kbo 𝑥 + (𝑧 + (𝑦 + 𝑤)), it is sufficient to show that l(𝑥) >kbo 𝑥.
Notice that it does not holds (𝑦 + (𝑧 + 𝑤) >kbo 𝑧 + (𝑦 + 𝑤) because of the ordering of the
variables.
(2) Let r > l, 𝑤(r) = 0 and 𝑤(l) = 1. It holds that 𝑤 is admissible. Let 𝑠 → 𝑡 with
𝑠 = 𝐶[r𝑛(l𝑘(𝑡′))] and 𝑡 = 𝐶[l𝑘(r𝑚(𝑡′))]. From the definition of 𝑤, it holds that 𝑤(𝑠) = 𝑤(𝑡)
since the number of occurrences of the function symbol l is the same in 𝑠 and 𝑡. By applying
the definition of >kbo, we get that we need to show r𝑛(l𝑘(𝑡′)) >kbo l𝑘(r𝑚(𝑡′)), which holds
since r > l.

A strict order > on 𝑇 (Σ, 𝑉 ) is called a rewrite order if and only iff

1. is compatible: for all 𝑠1, 𝑠2 ∈ 𝑇 (Σ, 𝑉 ), all 𝑓 ∈ Σ, if 𝑠1 > 𝑠2 then

𝑓(𝑡1, . . . , 𝑡𝑖−1, 𝑠1, 𝑡𝑖+1, . . . , 𝑡𝑛) > 𝑓(𝑡1, . . . , 𝑡𝑖−1, 𝑠2, 𝑡𝑖+1, . . . , 𝑡𝑛)

where 𝑛 is the arity of 𝑓 ;
2. is closed under substitution: for all 𝑠1, 𝑠2 ∈ 𝑇 (Σ, 𝑉 ) and all substitutions 𝜎 : 𝑉 → 𝑇 (Σ, 𝑉 ), if

𝑠1 > 𝑠2 then 𝜎(𝑠1) > 𝜎(𝑠2).

A strict order > on 𝑇 (Σ, 𝑉 ) satisfies the subterm property (and is called simplification order) if
and only if it is a rewrite order such that for all terms 𝑡 ∈ 𝑇 (Σ, 𝑉 ) and all positions 𝑝 ∈ Pos(𝑡) ∖ {𝜖}
it holds 𝑡 > 𝑡|𝑝.

Exercise 7 :

In the following, we refer to 𝑠, 𝑡 and 𝑤 as in the definition of KBO. We will now prove some
properties of this order to make it more clear.

1. Assume that 𝑓 is of arity 1, 𝑤(𝑓) = 0 and that there is 𝑔 such that 𝑓 ̸> 𝑔. Prove that under
this conditions >kbo does not satisfy the subterm property.

Prove that, if 𝑤 is admissible for the strict order > then >kbo on 𝑇 (Σ, 𝑉 ) induced by > and 𝑤 has
the subterm property. To do so, prove the followings:

2. Assume that 𝑤(𝑠) = 𝑤(𝑡) and that 𝑡 is a strict subterm of 𝑠. Prove that there exist a unary
function 𝑓 and a positive integer 𝑘 such that 𝑤(𝑓) = 0 and 𝑠 = 𝑓𝑘(𝑡);

3. Prove that >kbo is a strict order;
4. Prove that >kbo is a rewrite order;
5. Conclude that >kbo has the subterm property.

Solution:

(1) Let 𝑡 = 𝑔(𝑡1, . . . , 𝑡𝑛) be an arbitrary term with root symbol 𝑔, define 𝑠 = 𝑓(𝑡) and let 𝑠 → 𝑡.
Since 𝑤(𝑓) = 0 we have 𝑤(𝑠) = 𝑤(𝑡). Obviously, the first and third condition of KBO cannot
hold, so >kbo holds if and only if the second condition holds. But this cannot happen since
𝑓 ̸> 𝑔.
(2) Proof by induction on the size of 𝑠. Since 𝑡 is a strict subterm of 𝑠, there are an 𝑛 ≥ 1
and an 𝑛-ary function symbol 𝑓 such that 𝑠 = 𝑓(𝑠1, . . . , 𝑠𝑛) and 𝑡 is a subterm of 𝑠𝑖 for some
𝑖 ∈ [1, 𝑛]. First we show that 𝑛 = 1 and 𝑤(𝑓) = 0:
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• Assume 𝑛 > 1. We have 𝑤(𝑠) = 𝑤(𝑓) +
∑︀𝑛

𝑗=1 𝑤(𝑠𝑗) and (since 𝑤 admissible) we
know that for all 𝑗, 𝑤(𝑠𝑗) ≥ 𝑤0 > 0. Thus, 𝑛 > 1 implies 𝑤(𝑠) > 𝑤(𝑠𝑖) and therefore
𝑤(𝑠) > 𝑤(𝑡). This contradicts the hypothesis 𝑤(𝑠) = 𝑤(𝑡).

• Assume 𝑤(𝑓) > 0, then, even for 𝑛 = 1, 𝑤(𝑠) = 𝑤(𝑓) +
∑︀𝑛

𝑗=1 𝑤(𝑠𝑗) > 𝑤(𝑠𝑖) ≥ 𝑤(𝑡).
This contradicts the hypothesis 𝑤(𝑠) = 𝑤(𝑡).

This shows that 𝑠 = 𝑓(𝑠′) where 𝑓 is unary, 𝑤(𝑓) = 0 and 𝑠′ has 𝑡 as a subterm. For 𝑠′ = 𝑡 we
are done. Otherwise we can apply the induction hypothesis since 𝑡 is a strict subterm of 𝑠′,
𝑤(𝑠′) = 𝑤(𝑠) = 𝑤(𝑡) and |𝑠′| < |𝑠|.
(3) Assume that >kbo is not irreflexive. then 𝑠 be a term of minimal size such that 𝑠 >kbo 𝑠.
Since 𝑤(𝑠) = 𝑤(𝑠) and the root symbol is the same, then we obtain 𝑠𝑖 >kbo 𝑠𝑖 for all 𝑖 ∈ [1, 𝑛]
where 𝑛 is the arity of the root symbol of 𝑠. This contradicts the minimality of 𝑠. To show
transitivity assume 𝑟 >kbo 𝑠 and 𝑠 >kbo 𝑡, we prove 𝑟 >kbo 𝑡 by induction on the size of 𝑟.

• From 𝑟 >kbo 𝑠 and 𝑠 >kbo 𝑡 we deduce that, for all variables 𝑥, |𝑟|𝑥 ≥ |𝑠|𝑥 and |𝑠|𝑥 ≥ |𝑡|𝑥
hold, thus e have |𝑟|𝑥 ≥ |𝑡|𝑥. The variables condition is therefore satisfied.

• 𝑟 >kbo 𝑠 and 𝑠 >kbo 𝑡 also yield 𝑤(𝑟) ≥ 𝑤(𝑠) and 𝑤(𝑠) ≥ 𝑤(𝑡), which implies 𝑤(𝑟) ≥ 𝑤(𝑡).
Moreover if 𝑤(𝑟) > 𝑤(𝑠) or 𝑤(𝑠) > 𝑤(𝑡) then 𝑤(𝑟) > 𝑤(𝑡) and we are done.

We can assume 𝑤(𝑟) = 𝑤(𝑠) = 𝑤(𝑡). Moreover the second point of the definition cannot hold
for 𝑟 >kbo 𝑠, since 𝑠 >kbo 𝑡 implies that 𝑠 is not a variable. Therefore 𝑟 and 𝑠 have a function
symbol as root, i.e. 𝑟 = 𝑓(𝑟1, . . . , 𝑟𝑙) and 𝑠 = 𝑔(𝑠1, . . . , 𝑠𝑚), such that 𝑓 ≥ 𝑔.

1. If 𝑠 >kbo 𝑡 satisfies the first condition then 𝑡 = 𝑥 for a variable 𝑥 and |𝑟|𝑥 ≥ |𝑡|𝑥 implies
that 𝑥 occurs in 𝑟. Since the root symbol of 𝑟 is a function symbol we have 𝑟 ̸= 𝑥 and
from the previous point we have 𝑟 >kbo 𝑡.

2. If instead 𝑠 >kbo 𝑡 satisfies the second or third condition, then we know that there exists
a function symbol ℎ such that 𝑔 ≥ ℎ and 𝑡 = ℎ(𝑡1, . . . , 𝑡𝑛). If 𝑓 > 𝑔 or 𝑔 > ℎ then we
have 𝑓 > ℎ and by the second condition 𝑟 >kbo 𝑡. Otherwise, assume 𝑓 = 𝑔 = ℎ. Then
both 𝑟 >kbo 𝑠 and 𝑠 >kbo 𝑡 satisfy the third condition. By induction hypothesis, from
the definition of (>kbo)lex we get 𝑟 >kbo 𝑡.

(4) We first show that >kbo is compatible. Assume 𝑠1 >kbo 𝑠2 and 𝑓 𝑛-ary function symbol.
We must show that the following holds

𝑓(𝑡1, . . . , 𝑡𝑖−1, 𝑠1, 𝑡𝑖, . . . , 𝑡𝑛) >kbo 𝑓(𝑡1, . . . , 𝑡𝑖−1, 𝑠2, 𝑡𝑖, . . . , 𝑡𝑛)

From 𝑠1 >kbo 𝑠2 we can deduce that |𝑠1|𝑥 ≥ |𝑠2|𝑥 for all variables 𝑥. This obviously implies

|𝑓(𝑡1, . . . , 𝑡𝑖−1, 𝑠1, 𝑡𝑖, . . . , 𝑡𝑛)|𝑥 ≥ |𝑓(𝑡1, . . . , 𝑡𝑖−1, 𝑠2, 𝑡𝑖, . . . , 𝑡𝑛)|𝑥

Moreover, if 𝑤(𝑠1) > 𝑤(𝑠2) then

𝑤(𝑓(𝑡1, . . . , 𝑡𝑖−1, 𝑠1, 𝑡𝑖, . . . , 𝑡𝑛)) > 𝑤(𝑓(𝑡1, . . . , 𝑡𝑖−1, 𝑠2, 𝑡𝑖, . . . , 𝑡𝑛))

and yields our thesis. Assume instead 𝑤(𝑠1) = 𝑤(𝑠2). This implies that

𝑤(𝑓(𝑡1, . . . , 𝑡𝑖−1, 𝑠1, 𝑡𝑖, . . . , 𝑡𝑛)) = 𝑤(𝑓(𝑡1, . . . , 𝑡𝑖−1, 𝑠2, 𝑡𝑖, . . . , 𝑡𝑛))

and since the root symbols of the two terms are the same, the thesis holds if and only if the third
condition of KBO is satisfied. This is trivial since 𝑡1 = 𝑡1,. . . ,𝑡𝑖−1 = 𝑡𝑖−1 and 𝑠1 >kbo 𝑠2. To
show instead that >kbo is closed under substitution, assume 𝑠1 >kbo 𝑠2 and let 𝜎 : 𝑉 → 𝑇 (Σ, 𝑉 )
be a substitution. We show 𝜎(𝑠1) >kbo 𝜎(𝑠2) by induction on the size of 𝑠1. First, consider the
variable condition. Let 𝑋 be the set of variables appearing in 𝑠1. Because of 𝑠1 >kbo 𝑠2 we
know that |𝑠1|𝑥 ≤ |𝑠2|𝑥 for all variables 𝑥. For an arbitrary variable 𝑥 we have

|𝜎(𝑠1)|𝑥 − |𝜎(𝑠2)|𝑥 =
∑︁
𝑦∈𝑋

|𝜎(𝑦)|𝑥(|𝑠1|𝑦 − |𝑠2|𝑦) ≥ 0
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Thus the variable condition is satisfied. A similar computation can be done for weights:

𝑤(𝜎(𝑠1)) − 𝑤(𝜎(𝑠2)) = 𝑤(𝑠1) − 𝑤(𝑠2) +
∑︁
𝑦∈𝑋

(|𝑠1|𝑦 − |𝑠2|𝑦)(𝑤(𝜎(𝑦)) − 𝑤0)

For all 𝑦 ∈ 𝑋, it holds |𝑠1|𝑦 − |𝑠2|𝑦 ≥ 0 and 𝑤(𝜎(𝑦)) − 𝑤0 ≥ 0. Consequently 𝑤(𝑠1) > 𝑤(𝑠2)
implies 𝑤(𝜎(𝑠1)) > 𝑤(𝜎(𝑠2)) which yields 𝜎(𝑠1) >kbo 𝜎(𝑠2). Assume instead that 𝑤(𝑠1) = 𝑤(𝑠2)
and hence 𝑤(𝜎(𝑠1)) ≥ 𝑤(𝜎(𝑠2)).If 𝑤(𝜎(𝑠1)) > 𝑤(𝜎(𝑠2)), then 𝜎(𝑠1) >kbo 𝜎(𝑠2). Otherwise we
consider one subcase for each condition of KBO:

1. If 𝑠1 >kbo 𝑠2 holds for the first condition, then 𝑠1 = 𝑓𝑘(𝑥) and 𝑠2 = 𝑥 for a unary symbol
𝑓 of weight 0 a variable 𝑥 and a positive integer 𝑘. We show 𝜎(𝑠1) >kbo 𝜎(𝑠2) by induction
on the size of 𝜎(𝑥). If 𝜎(𝑥) = 𝑦 is a variable, then the result trivially holds for the first
condition of KBO. Otherwise 𝜎(𝑥) = 𝑔(𝑡1, . . . , 𝑡𝑛) for a function symbol 𝑔 of arity 𝑛. If
𝑓 ̸= 𝑔 then 𝑓 > 𝑔 from the admissibility of 𝑤 and thus 𝜎(𝑠1) = 𝑓𝑘(𝑔(𝑡1, . . . , 𝑡𝑛)) >kbo
𝑔(𝑡1, . . . , 𝑡𝑛) = 𝜎(𝑠2) holds from the second condition of KBO. If 𝑓 = 𝑔 then the third
condition must apply and we need to prove that 𝑓𝑘(𝑡1) >kbo 𝑡1. By taking a substitution
𝜎′ such that 𝜎′(𝑥) = 𝑡1 then the induction hypothesis (appliable since 𝜎′(𝑥) is smaller
than 𝜎(𝑥)) yields 𝑓𝑘(𝑡1) = 𝜎′(𝑠1) >kbo 𝜎′(𝑠2) = 𝑡1.

2. If 𝑠1 >kbo 𝑠2 holds for the second condition, then the root symbol 𝑓 of 𝑠1 and the root
symbol 𝑔 of 𝑠2 are such that 𝑓 > 𝑔. Obviously 𝜎(𝑠1) has root symbol 𝑓 whereas 𝜎(𝑠2) as
root symbol 𝑔, and thus 𝜎(𝑠1) >kbo 𝜎(𝑠2).

3. If 𝑠2 >kbo 𝑠2 holds for the third condition then the root symbols for 𝑠1, 𝑠2, 𝜎(𝑠1)
and 𝜎(𝑠2) are the same. Let 𝑠1 = 𝑓(𝑠1, . . . , 𝑠𝑚) and 𝑠2 = 𝑓(𝑡1, . . . , 𝑡𝑚). It holds that
there exists 𝑖 ∈ [1, 𝑚] such that 𝑠1 = 𝑡1,. . . ,𝑠𝑖−1 = 𝑡𝑖−1 and 𝑠𝑖 >kbo 𝑡𝑖. This implies
𝜎(𝑠1) = 𝜎(𝑡1),. . . ,𝜎(𝑠𝑖−1) = 𝜎(𝑡𝑖−1) and by induction 𝜎(𝑠𝑖) >kbo 𝜎(𝑡𝑖) (since 𝑠𝑖 is smaller
than 𝑠1). Thus 𝜎(𝑠1) > 𝜎(𝑠2) holds.

(5) To show the subterm property, recall that 𝑠 >kbo 𝑥 for all variables 𝑥 and terms 𝑠 ̸= 𝑥
that contain 𝑥. This, together with the fact that >kbo is closed under substitutions, obviously
implies the subterm property.
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