Rewriting Techniques: TD 2

23-11-2017

Exercise 1:

Let A and B be two terminating relations. Show that if $AB \subseteq BA$ then $A \cup B$ terminates using well-founded induction.

Solution:

We prove that $(A \cup B)^* \subseteq B^*A^*$ by well-founded induction on steps of $(A \cup B)^*$. The induction hypothesis is: $t(\rightarrow_{A\cup B})^n t' \Longrightarrow t \rightarrow_A^* \rightarrow_B^* t'$. W.l.o.g. suppose $t \rightarrow_{A\cup B}^{n+1} t'$ such that $t \rightarrow_A t'' \rightarrow_B (\rightarrow_{A\cup B})^{n-1}t'$ for some $n \in \mathbb{N}$. Then by hypothesis $AB \subseteq BA$ it holds that there exists t''' such that $t \rightarrow_B t''' \rightarrow_A (\rightarrow_{A\cup B})^{n-1}t'$. By inductive hypothesis, since $t'''(\rightarrow_{A\cup B})^n t'$, $t''' \rightarrow_B^* \rightarrow_A^* t'$ and therefore $t \rightarrow_B^* \rightarrow_A^* t'$. Since A and B are terminating relations, B^*A^* is a terminating relation. It follows that $A \cup B$ is terminating.

Given a strict order > on a set A, we define the corresponding **multiset order** >_{mul} on Mult(A) as follows: $M >_{mul} N$ if and only if there exist $X, Y \in Mult(A)$ such that

- 1. $\emptyset \neq X \subseteq M;$
- 2. $N = (M \setminus X) \cup Y;$
- 3. $\forall y \in Y \ \exists x \in X \ x > y$.

Exercise 2:

Prove that $M >_{\text{mul}} N$ if and only if $M \neq N$ and for all $n \in N \setminus M$ there exists $m \in M \setminus N$ such that m > n.

Solution:

(⇒) Assume $M >_{\text{mul}} N$, X and Y as in the definition. $M \neq N$ follows from irreflexivity of $>_{\text{mul}}$. For the second conjunct, suppose $y_1 \in N \setminus M = ((M \setminus X) \cup Y) \setminus M = ((M \cup Y) \setminus X) \setminus M = ((M \cup Y) \setminus M) \setminus X = Y \setminus X$, where the second equality holds because $X \subseteq M$. Hence there is a $y_2 \in X$ such that $y_2 > y_1$. Either $y_2 \in X \setminus Y = (M \setminus (M \setminus X)) \setminus Y = M \setminus ((M \setminus X) \cup Y) = M \setminus N$, in which case we are done, or $y_2 \in X \cap Y$ (where $X \cap Y)(x) = \min(X(x), Y(x))$), in which case there is $y_3 \in X$ such that $y_3 > y_2$. Because or multisets are finite and > is a strict order, there is no infinite ascending chain $y_1 < y_2 < \ldots$ in $X \cap Y$. This process therefore terminate with some $y_n \in X \setminus Y = M \setminus N$. Transitivity yields $y_n > y_1$.

(⇐) Let $N \setminus M = Y$ and $M \setminus N = X$. Since $M \neq N$, it cannot be that $M = N = \emptyset$. Moreover it holds that $X \neq \emptyset$. Indeed, suppose that $M \setminus N$ is empty, then for all $e M(e) \leq N(e)$ and since $M \neq N$ it will hold that $N \neq \emptyset$, which will lead $N \setminus M$ not empty and therefore (contradiction), for the existential in the second condition X cannot be empty. Moreover from it's definition $X \subseteq M$. Moreover $N = (M \setminus (M \setminus N)) \cup (N \setminus M)$ and so $N = (M \setminus X) \cup Y$. From the last hypothesis it holds that for all $n \in Y$ there exists $m \in X$ such that m > n. We conclude $M >_{\text{mul}} N$.

The **lexicographic order** $>_{\text{lex}}$ for the Cartesian product \times of two domains $(A, >_A)$ and $(B, >_B)$ is defined as follows: $(a_1, b_1) >_{\text{lex}} (a_2, b_2)$ if and only if $a_1 > a_2$ or $a_1 = a_2$ and $b_1 > b_2$. This order can be readily extended con Cartesian products of arbitrary length by recursively applying this definition, i.e by observing that $A \times B \times C = A \times (B \times C)$.

In the following, let Σ be a finite signature, V a set of variables and $T(\Sigma, V)$ the terms built from those sets.

Let $\operatorname{status}(f) \in \{\operatorname{mul}, \operatorname{lex}\}\ a \ status \ function \ on \ \Sigma \ and \ \operatorname{let} > \operatorname{be}\ a \ strict \ order \ on \ \Sigma.$ The **recursive path order** $>_{\operatorname{rpo}}$ on $T(\Sigma, V)$ induced by > is defined as follows. $s >_{\operatorname{rpo}} t$ if and only if one of the following holds:

1. t is a variable appearing in s and $s \neq t$, or

let $s = f(s_1, ..., s_m)$ and $t = g(t_1, ..., t_n)$,

- 2. there exists $i \in [1, m]$ such that $s_i \geq_{rpo} t$, or
- 3. f > g and $s >_{\text{rpo}} t_j$ for all $j \in [1, n]$, or
- 4. f = g, for all $j \in [1, n]$ it holds $s >_{\text{rpo}} t_j$ and $(s_1, \ldots, s_m)(>_{\text{rpo}})_{\text{status}(f)}(t_1, \ldots, t_m)$.

The lexicographic path order is a recursive path order s.t. for all $f \in \Sigma$, status(f) = lex, whereas the **multiset path order** is a recursive path order s.t. for all $f \in \Sigma$, status(f) = mul, where we define $(s_1, \ldots, s_m)(>_{rpo})_{mul}(t_1, \ldots, t_m)$ as $\{ s_1, \ldots, s_m \} (>_{rpo})_{mul} \{ t_1, \ldots, t_m \}$.

Exercise 3:

1. Prove the termination of the Ackermann's function by well-founded induction.

Ack 0
$$y = y + 1$$

Ack $x 0 =$ Ack $(x - 1) 1$
Ack $x y =$ Ack $(x - 1) ($ Ack $x (y - 1))$

The following rewrite system simulates this function.

$$\begin{split} \mathbf{a}(0,y) &\to \mathbf{s}(y) \\ \mathbf{a}(\mathbf{s}(x),0) &\to \mathbf{a}(x,\mathbf{s}(0)) \\ \mathbf{a}(\mathbf{s}(x),\mathbf{s}(y)) &\to \mathbf{a}(x,\mathbf{a}(\mathbf{s}(x),y)) \end{split}$$

2. Consider the well-founded domain $(Mult(\mathbb{N} \times \mathbb{N}), (>_{lex})_{mul})$. Prove the termination using the following abstraction:

$$\begin{split} \phi: \ T(\{\mathtt{a},\mathtt{s}\},X) &\to \mathtt{Mult}(\mathbb{N} \times \mathbb{N}) \\ t &\to \{ \mid (|u|,|v|) \mid t|_{p \in \mathrm{Pos}(t)} = \mathtt{a}(u,v) \mid \} \end{split}$$

where $|\mathbf{0}| = 1$, $|\mathbf{a}(x, y)| = |x| + |y| + 1$ and $|\mathbf{s}(x)| = |x| + 1$.

3. Prove the termination using a RPO.

Solution:

(1) Induction on $(\mathbb{N} \times \mathbb{N}, >_{\text{lex}})$. We prove that the calculus of Ack u v terminates by induction (u, v) ordered lexicographically on integers.

- Base cases: Ack terminates for $(0, n), n \in \mathbb{N}$;
- We need to show that Ack terminates for (n, m), n > 0. Induction hypothesis: Ack terminates for all (j, k) such that j < n or (j = n and k < m). If m = 0 then by induction hypothesis the function terminates since (n 1, 1) < (n, m). Instead, if m > 0, by induction hypothesis the function terminates on input (n, m 1) with output r and terminates on input (n 1, r).

(2) Let $s \to t$,

- if $s = C[\mathbf{a}(0, t')]$ and $t = C[\mathbf{s}(t')]$, then $\phi(t) = \phi(s) \setminus \{|(1, |t'|)|\}$. Therefore it holds $\phi(s)(>_{\text{lex}})_{\text{mul}}\phi(t)$;
- if $s = C[\mathbf{a}(\mathbf{s}(t'), 0)]$ and $t = C[\mathbf{a}(\mathbf{s}(t'), \mathbf{s}(0))]$, then $\phi(t) = \phi(s) \cup \{ | (|t'|, 2) | \} \setminus \{ | (|t'| + 1, 1) | \};$

• if
$$s = C[\mathbf{a}(\mathbf{s}(t'), \mathbf{s}(t''))]$$
 and $t = C[\mathbf{a}(t', \mathbf{a}(\mathbf{s}(t'), t''))]$, then

$$\phi(t) = \phi(s) \cup \{ | (|t'|, |t'| + |t''| + 2), (|t'| + 1, |t''|) |\} \setminus \{ | (|t'| + 1, |t''| + 1) |\}.$$

(3) Let > be such that a > s and let status(a) = status(s) = lex. It holds:

- $\mathbf{a}(0,t) >_{\text{rpo}} \mathbf{s}(t)$, since $\mathbf{a} > \mathbf{s}$ and $\mathbf{a}(0,t) >_{\text{rpo}} t$;
- $a(s(t), 0) >_{rpo} a(t, s(0))$ since a(s(t), 0) > t, a(s(t), 0) > s(0) and $(s(t), 0)(>_{rpo})_{lex}(t, s(0))$
- $a(s(t), s(t')) >_{rpo} a(t, a(s(t), t'))$ since
 - $\mathsf{a}(\mathsf{s}(t),\mathsf{s}(t')) >_{\mathrm{rpo}} t, \ \mathsf{a}(\mathsf{s}(t),\mathsf{s}(t')) >_{\mathrm{rpo}} \mathsf{a}(\mathsf{s}(t),t'), \ (\mathsf{s}(t),\mathsf{s}(t'))(>_{\mathrm{rpo}})_{\mathrm{lex}}(t,\mathsf{a}(\mathsf{s}(t),t'))$

Exercise 4:

Show that is not possible to prove termination using lexicographic path ordering of the following term rewrite system:

$$\{ \mathbf{a}(\mathbf{a}(x)) \to \mathbf{s}(x), \mathbf{s}(\mathbf{s}(x)) \to \mathbf{a}(x) \}$$

Solution:

Suppose $\mathbf{a} > \mathbf{s}$. Let $s \to t$ with $s = C[\mathbf{s}(\mathbf{s}(t')] \text{ and } t = C[\mathbf{a}(t')]$. Then we need to prove that $\mathbf{s}(\mathbf{s}(t')) >_{\text{rpo}} \mathbf{a}(t')$, which does not hold. If instead $\mathbf{s} > \mathbf{a}$, then from the first rule we get $\mathbf{a}(\mathbf{a}(t')) >_{\text{rpo}} \mathbf{s}(t')$ which, again, does not hold.

Exercise 5:

Show that the termination of the following rewriting system cannot be proven with lexicographic path order but can be proven with multiset path order.

 $\begin{array}{ll} \mathbf{0} + x \to \mathbf{0} & & \mathbf{0} \times x \to x \\ \mathbf{s}(x) + y \to \mathbf{s}(x+y) & & \mathbf{s}(x) \times y \to (y \times x) + y \end{array}$

Solution:

We need to impose the precedence $\times > + > \mathbf{s}$. With this, the lexicographic path order cannot orient the last rule as it does not hold that $(\mathbf{s}(x), y) >_{\text{lex}} (y, x)$. Instead, it holds $\{ | \mathbf{s}(x), y | \} >_{\text{mul}} \{ | y, x | \}$ since $\mathbf{s}(x)$ dominates x.

Let > be a strict order on Σ and $w : \Sigma \cup V \to \mathbb{R}_0^+$ be a weight function $w : \Sigma \cup V \to \mathbb{R}_0^+$. The **Knuth-Bendix order** (KBO) >_{kbo} on $T(\Sigma, V)$ induced by > and w is defined as follows: for $s, t \in T(\Sigma, V)$ we have $s >_{kbo} t$ if and only if $|s|_x \ge |t|_x$ for all $x \in V$ and $w(s) \ge w(t)$. Moreover, if w(s) = w(t) then one of the following properties must hold:

- 1. There are a unary function $f, x \in V$ and $n \in \mathbb{N}^{\geq 1}$ s.t. $s = f^n(x)$ and t = x, or
- 2. there exist function symbols f, g s.t. f > g and $s = f(s_1, \ldots, s_m)$ and $t = g(t_1, \ldots, t_n)$, or
- 3. there exist a function symbol f such that $s = f(s_1, \ldots, s_m), t = f(t_1, \ldots, t_m)$ and

$$(s_1,\ldots,s_m)(>_{\mathrm{kbo}})_{\mathrm{lex}}(t_1,\ldots,t_m).$$

A weight function $w : \Sigma \cup V \to \mathbb{R}_0^+$ is called **admissible** if and only if it satisfy the following properties w.r.t. a strict order >:

- 1. There exists $w_0 \in \mathbb{R}^+ \setminus \{0\}$ s.t. $w(x) = w_0$ for all $x \in V$ and $w(c) \ge w_0$ for all constants $c \in \Sigma$.
- 2. If $f \in \Sigma$ is a unary function symbol of weight w(f) = 0 then f is the greatest element in Σ , i.e. $f \ge g$ for all $g \in \Sigma$.

Exercise 6:

Using a KBO, prove the termination of:

1. $\{l(x) + (y+z) \to x + (l(l(y)) + z), l(x) + (y + (z+w)) \to x + (z + (y+w)) \}$ 2. $\{r^n(l^k(x)) \to l^k(r^m(x))\}$, where n, k > 0 and $m \ge 0$.

Solution:

(1) Let 1 > +, w(s) = 0, w(+) = w(x) > 0 for each variable x. For both rules, it holds that the weight does not change after the rewrite step. To prove that $1(x) + (y+z) >_{\text{kbo}} x + (1(1(y)) + z)$ we therefore need to prove the third condition, which holds since $1(x) >_{\text{kbo}} x$. Similarly, to prove $1(x) + (y + (z + w)) >_{\text{kbo}} x + (z + (y + w))$, it is sufficient to show that $1(x) >_{\text{kbo}} x$. Notice that it does not holds $(y + (z + w) >_{\text{kbo}} z + (y + w))$ because of the ordering of the variables.

(2) Let $\mathbf{r} > \mathbf{1}$, $w(\mathbf{r}) = 0$ and $w(\mathbf{1}) = 1$. It holds that w is admissible. Let $s \to t$ with $s = C[\mathbf{r}^n(\mathbf{1}^k(t'))]$ and $t = C[\mathbf{1}^k(\mathbf{r}^m(t'))]$. From the definition of w, it holds that w(s) = w(t) since the number of occurrences of the function symbol $\mathbf{1}$ is the same in s and t. By applying the definition of $>_{\text{kbo}}$, we get that we need to show $\mathbf{r}^n(\mathbf{1}^k(t')) >_{\text{kbo}} \mathbf{1}^k(\mathbf{r}^m(t'))$, which holds since $\mathbf{r} > \mathbf{1}$.

A strict order > on $T(\Sigma, V)$ is called a **rewrite order** if and only iff

1. is compatible: for all $s_1, s_2 \in T(\Sigma, V)$, all $f \in \Sigma$, if $s_1 > s_2$ then

$$f(t_1,\ldots,t_{i-1},s_1,t_{i+1},\ldots,t_n) > f(t_1,\ldots,t_{i-1},s_2,t_{i+1},\ldots,t_n)$$

where n is the arity of f;

2. is closed under substitution: for all $s_1, s_2 \in T(\Sigma, V)$ and all substitutions $\sigma : V \to T(\Sigma, V)$, if $s_1 > s_2$ then $\sigma(s_1) > \sigma(s_2)$.

A strict order > on $T(\Sigma, V)$ satisfies the **subterm property** (and is called *simplification order*) if and only if it is a rewrite order such that for all terms $t \in T(\Sigma, V)$ and all positions $p \in \text{Pos}(t) \setminus \{\epsilon\}$ it holds $t > t|_p$.

Exercise 7:

In the following, we refer to s, t and w as in the definition of KBO. We will now prove some properties of this order to make it more clear.

1. Assume that f is of arity 1, w(f) = 0 and that there is g such that $f \neq g$. Prove that under this conditions $>_{\text{kbo}}$ does not satisfy the subterm property.

Prove that, if w is admissible for the strict order > then >_{kbo} on $T(\Sigma, V)$ induced by > and w has the subterm property. To do so, prove the followings:

- 2. Assume that w(s) = w(t) and that t is a strict subterm of s. Prove that there exist a unary function f and a positive integer k such that w(f) = 0 and $s = f^k(t)$;
- 3. Prove that $>_{kbo}$ is a strict order;
- 4. Prove that $>_{\rm kbo}$ is a rewrite order;
- 5. Conclude that $>_{\text{kbo}}$ has the subterm property.

Solution:

(1) Let $t = g(t_1, \ldots, t_n)$ be an arbitrary term with root symbol g, define s = f(t) and let $s \to t$. Since w(f) = 0 we have w(s) = w(t). Obviously, the first and third condition of KBO cannot hold, so $>_{\text{kbo}}$ holds if and only if the second condition holds. But this cannot happen since $f \neq g$.

(2) Proof by induction on the size of s. Since t is a strict subterm of s, there are an $n \ge 1$ and an n-ary function symbol f such that $s = f(s_1, \ldots, s_n)$ and t is a subterm of s_i for some $i \in [1, n]$. First we show that n = 1 and w(f) = 0:

- Assume n > 1. We have $w(s) = w(f) + \sum_{j=1}^{n} w(s_j)$ and (since w admissible) we know that for all $j, w(s_j) \ge w_0 > 0$. Thus, n > 1 implies $w(s) > w(s_i)$ and therefore w(s) > w(t). This contradicts the hypothesis w(s) = w(t).
- Assume w(f) > 0, then, even for n = 1, $w(s) = w(f) + \sum_{j=1}^{n} w(s_j) > w(s_i) \ge w(t)$. This contradicts the hypothesis w(s) = w(t).

This shows that s = f(s') where f is unary, w(f) = 0 and s' has t as a subterm. For s' = t we are done. Otherwise we can apply the induction hypothesis since t is a strict subterm of s', w(s') = w(s) = w(t) and |s'| < |s|.

(3) Assume that $>_{\text{kbo}}$ is not *irreflexive*. then s be a term of minimal size such that $s >_{\text{kbo}} s$. Since w(s) = w(s) and the root symbol is the same, then we obtain $s_i >_{\text{kbo}} s_i$ for all $i \in [1, n]$ where n is the arity of the root symbol of s. This contradicts the minimality of s. To show transitivity assume $r >_{\text{kbo}} s$ and $s >_{\text{kbo}} t$, we prove $r >_{\text{kbo}} t$ by induction on the size of r.

- From $r >_{\text{kbo}} s$ and $s >_{\text{kbo}} t$ we deduce that, for all variables x, $|r|_x \ge |s|_x$ and $|s|_x \ge |t|_x$ hold, thus e have $|r|_x \ge |t|_x$. The variables condition is therefore satisfied.
- $r >_{\text{kbo}} s$ and $s >_{\text{kbo}} t$ also yield $w(r) \ge w(s)$ and $w(s) \ge w(t)$, which implies $w(r) \ge w(t)$. Moreover if w(r) > w(s) or w(s) > w(t) then w(r) > w(t) and we are done.

We can assume w(r) = w(s) = w(t). Moreover the second point of the definition cannot hold for $r >_{\text{kbo}} s$, since $s >_{\text{kbo}} t$ implies that s is not a variable. Therefore r and s have a function symbol as root, i.e. $r = f(r_1, \ldots, r_l)$ and $s = g(s_1, \ldots, s_m)$, such that $f \ge g$.

- 1. If $s >_{\text{kbo}} t$ satisfies the first condition then t = x for a variable x and $|r|_x \ge |t|_x$ implies that x occurs in r. Since the root symbol of r is a function symbol we have $r \ne x$ and from the previous point we have $r >_{\text{kbo}} t$.
- 2. If instead $s >_{\text{kbo}} t$ satisfies the second or third condition, then we know that there exists a function symbol h such that $g \ge h$ and $t = h(t_1, \ldots, t_n)$. If f > g or g > h then we have f > h and by the second condition $r >_{\text{kbo}} t$. Otherwise, assume f = g = h. Then both $r >_{\text{kbo}} s$ and $s >_{\text{kbo}} t$ satisfy the third condition. By induction hypothesis, from the definition of $(>_{\text{kbo}})_{\text{lex}}$ we get $r >_{\text{kbo}} t$.

(4) We first show that $>_{\text{kbo}}$ is compatible. Assume $s_1 >_{\text{kbo}} s_2$ and f *n*-ary function symbol. We must show that the following holds

 $f(t_1, \ldots, t_{i-1}, s_1, t_i, \ldots, t_n) >_{\text{kbo}} f(t_1, \ldots, t_{i-1}, s_2, t_i, \ldots, t_n)$

From $s_1 >_{\text{kbo}} s_2$ we can deduce that $|s_1|_x \ge |s_2|_x$ for all variables x. This obviously implies

 $|f(t_1,\ldots,t_{i-1},s_1,t_i,\ldots,t_n)|_x \ge |f(t_1,\ldots,t_{i-1},s_2,t_i,\ldots,t_n)|_x$

Moreover, if $w(s_1) > w(s_2)$ then

 $w(f(t_1,\ldots,t_{i-1},s_1,t_i,\ldots,t_n)) > w(f(t_1,\ldots,t_{i-1},s_2,t_i,\ldots,t_n))$

and yields our thesis. Assume instead $w(s_1) = w(s_2)$. This implies that

 $w(f(t_1,\ldots,t_{i-1},s_1,t_i,\ldots,t_n)) = w(f(t_1,\ldots,t_{i-1},s_2,t_i,\ldots,t_n))$

and since the root symbols of the two terms are the same, the thesis holds if and only if the third condition of KBO is satisfied. This is trivial since $t_1 = t_1, \ldots, t_{i-1} = t_{i-1}$ and $s_1 >_{\text{kbo}} s_2$. To show instead that $>_{\text{kbo}}$ is closed under substitution, assume $s_1 >_{\text{kbo}} s_2$ and let $\sigma : V \to T(\Sigma, V)$ be a substitution. We show $\sigma(s_1) >_{\text{kbo}} \sigma(s_2)$ by induction on the size of s_1 . First, consider the variable condition. Let X be the set of variables appearing in s_1 . Because of $s_1 >_{\text{kbo}} s_2$ we know that $|s_1|_x \leq |s_2|_x$ for all variables x. For an arbitrary variable x we have

$$|\sigma(s_1)|_x - |\sigma(s_2)|_x = \sum_{y \in X} |\sigma(y)|_x (|s_1|_y - |s_2|_y) \ge 0$$

Thus the variable condition is satisfied. A similar computation can be done for weights:

$$w(\sigma(s_1)) - w(\sigma(s_2)) = w(s_1) - w(s_2) + \sum_{y \in X} (|s_1|_y - |s_2|_y)(w(\sigma(y)) - w_0)$$

For all $y \in X$, it holds $|s_1|_y - |s_2|_y \ge 0$ and $w(\sigma(y)) - w_0 \ge 0$. Consequently $w(s_1) > w(s_2)$ implies $w(\sigma(s_1)) > w(\sigma(s_2))$ which yields $\sigma(s_1) >_{\text{kbo}} \sigma(s_2)$. Assume instead that $w(s_1) = w(s_2)$ and hence $w(\sigma(s_1)) \ge w(\sigma(s_2))$. If $w(\sigma(s_1)) > w(\sigma(s_2))$, then $\sigma(s_1) >_{\text{kbo}} \sigma(s_2)$. Otherwise we consider one subcase for each condition of KBO:

- 1. If $s_1 >_{\text{kbo}} s_2$ holds for the first condition, then $s_1 = f^k(x)$ and $s_2 = x$ for a unary symbol f of weight 0 a variable x and a positive integer k. We show $\sigma(s_1) >_{\text{kbo}} \sigma(s_2)$ by induction on the size of $\sigma(x)$. If $\sigma(x) = y$ is a variable, then the result trivially holds for the first condition of KBO. Otherwise $\sigma(x) = g(t_1, \ldots, t_n)$ for a function symbol g of arity n. If $f \neq g$ then f > g from the admissibility of w and thus $\sigma(s_1) = f^k(g(t_1, \ldots, t_n)) >_{\text{kbo}} g(t_1, \ldots, t_n) = \sigma(s_2)$ holds from the second condition of KBO. If f = g then the third condition must apply and we need to prove that $f^k(t_1) >_{\text{kbo}} t_1$. By taking a substitution σ' such that $\sigma'(x) = t_1$ then the induction hypothesis (appliable since $\sigma'(x)$ is smaller than $\sigma(x)$) yields $f^k(t_1) = \sigma'(s_1) >_{\text{kbo}} \sigma'(s_2) = t_1$.
- 2. If $s_1 >_{\text{kbo}} s_2$ holds for the second condition, then the root symbol f of s_1 and the root symbol g of s_2 are such that f > g. Obviously $\sigma(s_1)$ has root symbol f whereas $\sigma(s_2)$ as root symbol g, and thus $\sigma(s_1) >_{\text{kbo}} \sigma(s_2)$.
- 3. If $s_2 >_{\text{kbo}} s_2$ holds for the third condition then the root symbols for $s_1, s_2, \sigma(s_1)$ and $\sigma(s_2)$ are the same. Let $s_1 = f(s_1, \ldots, s_m)$ and $s_2 = f(t_1, \ldots, t_m)$. It holds that there exists $i \in [1, m]$ such that $s_1 = t_1, \ldots, s_{i-1} = t_{i-1}$ and $s_i >_{\text{kbo}} t_i$. This implies $\sigma(s_1) = \sigma(t_1), \ldots, \sigma(s_{i-1}) = \sigma(t_{i-1})$ and by induction $\sigma(s_i) >_{\text{kbo}} \sigma(t_i)$ (since s_i is smaller than s_1). Thus $\sigma(s_1) > \sigma(s_2)$ holds.

(5) To show the subterm property, recall that $s >_{\text{kbo}} x$ for all variables x and terms $s \neq x$ that contain x. This, together with the fact that $>_{\text{kbo}}$ is closed under substitutions, obviously implies the subterm property.