
Decision procedures for Separation Logic
Alessio Mansutti

LSV, CNRS, E.N.S. Paris-Saclay, France
under the supervision of Stéphane Demri and Étienne Lozes

Hoare Logic for program analysis

In the 1960s, Floyd and Hoare introduced a funda-
mental technique for deductive verification: a logical
system where judgements are of the form

{ ϕ } P { ψ }; read as:

“Every model M that satisfies ϕ, will satisfy ψ
after being modified by the program P”.

A model is a mathematical structure that abstract
the resources that the program uses. For example,
it could be a set of variables with their content.

{ x = n } y← factorial(x) { y = n! }

A last ingredient are the inference rules, e.g.
ϕ |= ϕ′ { ϕ′ } P { ψ′ } ψ′ |= ψ

{ ϕ } P { ψ }
(ENT)

stating that judgements retain validity when consid-
ering stronger preconditions (ϕ) or weaker postcon-
ditions (ψ). ϕ |= ϕ′ is the logical entailment.

Why Separation Logic?

To analyse large programs it is vital to rea-
son locally on the memory model. We would like:

{ ϕ } P { ψ }
{ ϕ ∧ χ } P { ψ ∧ χ }

but this rule is not valid when considering the stan-
dard heap/RAM memory, containing pointers:

{ x ↪→ 1 } ∗x← 0 { x ↪→ 0 }
{ x ↪→ 1 ∧ y ↪→ 1 } ∗x← 0 { x ↪→ 0 ∧ y ↪→ 1 }

does not hold whenever x and y are in aliasing.
Here, x ↪→ 1 holds in memory models such that:

#addr2

x : (#addr1)

1
(#addr2)

Separation Logic solves this problem elegantly, with
its separating connectives.
This led to numerous tools using Separation Logic:
I Infer (Facebook)
I SLAyer (Microsoft)

I Verifast
I SeLoger

Separation Logic

(Propositional) Separation Logic (SL) – by J. Reynolds, P. O’Hearn et al. – reasons about programs with
dynamic data structures. Models of SL are abstractions of the heap/RAM model:

z

x y.

v w

garbagecycle

I infinite set of locations ()
I infinite set of variables
I s: variables 7→ locations
I h: finite heap ()
I a model is def. as (s,h).

Separation Logic adds two new spatial connectives to reason modularly about the memory

∗
(s,h) |= ϕ ∗ψ iff the heap h can be partitioned into
h1 and h2 so that (s,h1) |= ϕ and (s,h2) |= ψ

ϕ ∗ ψ ⇔
ϕ

ψ

−∗
(s,h) |= ϕ −∗ ψ iff for every h1 disjoint from h, if
(s,h1) |= ϕ then (s,h + h1) |= ψ

ψ⇔
ϕ−∗ ψ

ϕ

Decision Procedures

(1) Hoare Logic requires to solve satisfiability
and entailment of formulae.

(2) Other crucial robustness properties of
program analysis, like the acyclicity property

“Is every model satisfying ϕ acyclic?”
and the garbage freedom property
“In every model satisfying ϕ, are all allocated

cells reachable from variables in ϕ?”
reduce to entailment as soon as we consider more
powerful extensions of SL.

Therefore, it is important to:
I study the complexity of satisfiability and

entailment, especially for SLs that can ex-
press robustness properties;

I derive calculi for these decision problems.
To do this, an internal axiomatisation
of separation logic can be helpful.

Core formulae Technique

We tame the ∗ and −∗ operator by defining core
formulae: a subset of SL formulae where spatial
connectives appear with specific patterns.

Core formulae

SL

Similarly to Gaifman’s Theorem for first-order logic,
we show that Boolean combinations of core formulae
are as expressive as SL. We use this to derive

I expressive power and complexity of SL
I Hilbert-style axiomatisation with
• axioms that eliminate ∗ and −∗
• axioms for the logic of core formulae.

Complexity results

We add reachability predicates to SL

(s,h) |= reach+(x, y) iff
x

. . .
y

and only one quantified variable name (u)

(s,h) |= ∃u.ϕ iff ∃` s.t. (s[u← `],h) |= ϕ

With the core formulae, in [2] we show that under
syntactical restrictions, this logic is in PSpace and
I generalise all known PSpace-complete SLs
I can encode acyclicity and garbage freedom:
• ϕ |= ∀u ¬reach+(u, u)
• ϕ |= ∀u ((u ↪→ u−∗ ⊥)⇒∨

x∈fv(ϕ) reach+(x, u) ∨ x = u)
I weakening even slightly these restrictions leads

to Tower-hard logics.
I Full propositional SL + reachability up to

paths of length 3 is already undecidable [1].

Axiomatisation

With the core formulae we define internal calculi for:
I Propositional Separation Logic [4]
I A guarded fragment of first-order SL [4]
I SL with modalities [3]

What’s next?

I Use the axiomatisation to better the encoding
of SL into SAT/SMT solvers.

I Improve the core formulae technique.

References

I J.C. Reynolds. Separation logic: a logic for shared mutable data
structures. In LICS’02

I Peter W. O’Hearn, John C. Reynolds, Hongseok Yang. Local Rea-
soning about Programs that Alter Data Structures. In CSL’01

[1] S. Demri, É. Lozes, and A. Mansutti. The effects of adding
reachability predicates in propositional separation logic. In
FOSSACS’18

[2] A. Mansutti. Extending propositional separation logic for robustness
properties. In FSTTCS’18

[3] S. Demri, R. Fervari, and A. Mansutti. Axiomatising logics with
separating conjunction and modalities. In JELIA’19

[4] S. Demri, É. Lozes, and A. Mansutti. Internal calculi for Separation
Logics (submitted).

