Hoare Logic for program analysis

In the 1960s, Floyd and Hoare introduced a funda-
mental technique for deductive verification: a logical
system where judgements are of the form

{ o} P{ Y} read as:

“Fvery model XN that satisfies @, will satisfy
after being modified by the program P

A model is a mathematical structure that abstract
the resources that the program uses. For example,
it could be a set of variables with their content.

{x=n}y<+ factorial(x){y=n!}

A last ingredient are the inference rules. e.g.

{oP{Y } Y Y
{e}tP{v}

stating that judgements retain validity when consid-

v E ¢

(ENT)

ering stronger preconditions () or weaker postcon-
ditions (). ¢ E ¢’ is the logical entailment.

Why Separation Logic?

To analyse large programs it is vital to rea-
son locally on the memory model. We would like:

LY PLY}
LPAXTPLYAX]
but this rule is not valid when considering the stan-
dard heap/RAM memory, containing pointers:

{x—=>1} "x<0{x—=0}
{x—=>1Ay—=>1} "2+ 0{x—=>0Ay—1}

does not hold whenever x and y are in aliasing.
Here, x < 1 holds in memory models such that:

X : (Faddry) (#addrs)
#(deT’Q — |

Separation Logic solves this problem elegantly, with
1ts separating connectives.
This led to numerous tools using Separation Logic:
» Infer (Facebook) » Verifast
» SLAyer (Microsoft) » Scloger

Decision procedures for Separation Logic

Alessio Mansutti
LSV, CNRS, E.N.S. Paris-Saclay, France

under the supervision of Stéphane Demri and Etienne Lozes

Separation Logic

(Propositional) Separation Logic (SL) — by J. Reynolds, P. O'Hearn et al. — reasons about programs with
dynamic data structures. Models of SL are abstractions of the heap/RAM model:

Z
[]

cycle

[]

j—b garbage

infinite set of locations (o)

infinite set of variables
s: variables — locations

h: finite heap (—0)
a model is def. as (s, h).

vVvyVvyyvyy

Separation Logic adds two new spatial connectives to reason modularly about the memory

K

ﬁk

(s,h) = ¢ x* iff the heap h can be partitioned into (s,h) = ¢ — ¢ iff for every h; disjoint from h, if

h; and hy so that (s, h;) = ¢ and (s, hy) = ¥

¥

p * 1P =

(1) Hoare Logic requires to solve satisfiability
and entailment of formulae.

(2) Other crucial robustness properties of
program analysis, like the acyclicity property

“Is every model satisfying @ acyclic?”
and the garbage freedom property

“In every model satisfying @, are all allocated

cells reachable from variables in p?”

reduce to entailment as soon as we consider more
powerful extensions of SL.

Therefore, it is important to:

» study the complexity of satisfiability and
entailment, especially for SLs that can ex-
press robustness properties;
derive calculi for these decision problems.
To do this, an internal axiomatisation
of separation logic can be helpful.

(s,h;) = ¢ then (s,h + h;) = ¢

=k P

Core formulae Technique

We tame the x and — operator by defining core
formulae: a subset of SL formulae where spatial
connectives appear with specific patterns.

Similarly to Gaitman’s Theorem for first-order logic,
we show that Boolean combinations of core formulae
are as expressive as SL. We use this to derive

» expressive power and complexity of SL

» Hilbert-style axiomatisation with

e axioms that eliminate x and —
e axioms for the logic of core formulae.

Complexity results

We add reachability predicates to SL

X y
(s,h) = reach’(x,y) iff -——>— - —

and only one quantified variable name (u)

(s,h) E Ju.piff I st. (sflu< ¢, h) Ep

With the core formulae, in |2| we show that under
syntactical restrictions, this logic is in PSPACE and

» ceneralise all known PSPACE-complete SLs
» can encode acyclicity and garbage freedom:
e © = Vu —reach’(u,u)
e p =Vu ((u—u—=1)=
Vxefv(p) T€ACh (X, 1) V X = u)

» weakening even slightly these restrictions leads
to TOWER-hard logics.

» Full propositional SL + reachability up to

paths of length 3 is already undecidable [1].

Axiomatisation

With the core formulae we define internal calculi for:
» Propositional Separation Logic [4]

» A guarded fragment of first-order SL [4]

» SL with modalities [3]

What’s next?

» Use the axiomatisation to better the encoding
of SL into SAT/SMT solvers.

» Improve the core formulae technique.

References

> J.C. Reynolds. Separation logic: a logic for shared mutable data
structures. In LICS02

> Peter W. O’Hearn, John C. Reynolds, Hongseok Yang. Local Rea-
soning about Programs that Alter Data Structures. In CSL’01

1] S. Demri, E. Lozes, and A. Mansutti. The effects of adding
reachability predicates in propositional separation logic. In

FOSSACS'18

2] A. Mansutti. Extending propositional separation logic for robustness
properties. In FSTTCS’18

3] S. Demri, R. Fervari, and A. Mansutti. Axiomatising logics with
separating conjunction and modalities. In JELIA’19

4] S. Demri, E. Lozes, and A. Mansutti. Internal calculi for Separation
Logics (submitted).

