Hoare Logic for program analysis

In the 1960s, Floyd and Hoare introduced a fundamental technique for deductive verification: a logical system where **judgements** are of the form

 $\{\varphi\} P \{\psi\}; read as:$

"Every model \mathfrak{M} that satisfies φ , will satisfy ψ after being modified by the program P".

A **model** is a mathematical structure that abstract the resources that the program uses. For example, it could be a set of variables with their content.

$$\{ \mathbf{x} = n \} \mathbf{y} \leftarrow \texttt{factorial}(\mathbf{x}) \{ \mathbf{y} = n! \}$$

A last ingredient are the **inference rules**, e.g.

$$\begin{array}{cccc} \varphi \models \varphi' & \left\{ \begin{array}{ccc} \varphi' \end{array}\right\} \operatorname{P} \left\{ \begin{array}{ccc} \psi' \end{array}\right\} & \psi' \models \psi \\ & \left\{ \begin{array}{ccc} \varphi \end{array}\right\} \operatorname{P} \left\{ \begin{array}{ccc} \psi' \end{array}\right\} & \left\{ \begin{array}{ccc} \psi' \end{array}\right\} & \left(\mathsf{ENT} \right) \end{array} \end{array}$$

stating that judgements retain validity when considering stronger preconditions (φ) or weaker postconditions (ψ) . $\varphi \models \varphi'$ is the logical **entailment**.

Why Separation Logic?

To analyse large programs it is vital to rea**son locally** on the memory model. We would like:

$$\frac{\{\varphi\} P \{\psi\}}{\{\varphi \land \boldsymbol{\chi}\} P \{\psi \land \boldsymbol{\chi}\}}$$

but this rule is not valid when considering the standard heap/RAM memory, containing pointers:

$$\frac{\{\mathbf{x} \hookrightarrow 1\} * \mathbf{x} \leftarrow 0 \{\mathbf{x} \hookrightarrow 0\}}{\{\mathbf{x} \hookrightarrow 1 \land \mathbf{y} \hookrightarrow 1\} * \mathbf{x} \leftarrow 0 \{\mathbf{x} \hookrightarrow 0 \land \mathbf{y} \hookrightarrow 1\}}$$

does not hold whenever \mathbf{x} and \mathbf{y} are in aliasing. Here, $\mathbf{x} \hookrightarrow 1$ holds in memory models such that:

> \mathbf{X} : (#addr₁) $(\#addr_2)$ $\#addr_2$

Separation Logic solves this problem elegantly, with its separating connectives.

This led to numerous tools using Separation Logic:

- ► Infer (Facebook) ► Verifast
- ► SLAyer (Microsoft) ► SeLoger

Decision procedures for Separation Logic

Alessio Mansutti

LSV, CNRS, E.N.S. Paris-Saclay, France

under the supervision of Stéphane Demri and Étienne Lozes

(2) Other crucial robustness properties of program analysis, like the **acyclicity** property

"Is every model satisfying φ acyclic?"

and the **garbage freedom** property "In every model satisfying φ , are all allocated cells reachable from variables in φ ?"

reduce to entailment as soon as we consider more powerful extensions of SL.

Therefore, it is important to:

- ► study the **complexity** of satisfiability and entailment, especially for SLs that can express robustness properties;
- ► derive calculi for these decision problems. To do this, an **internal axiomatisation** of separation logic can be helpful.

We tame the * and -* operator by defining **core** formulae: a subset of SL formulae where spatial connectives appear with specific patterns.

Similarly to Gaifman's Theorem for first-order logic, we show that Boolean combinations of core formulae are as expressive as **SL**. We use this to derive

- ▶ s: variables \mapsto locations ▶ h: finite heap $(\square \rightarrow \square)$
- ▶ a model is def. as (\mathbf{s}, \mathbf{h}) .

)	⊨	φ	$\twoheadrightarrow \psi$	iff	for	every	\mathbf{h}_1	disjoint	from	$\mathbf{h},$	i
$\mathbf{l}_1)$	⊨	φ	then	$(\mathbf{s},$	h -	$\vdash \mathbf{h}_1) \models$	$=\psi$,			

$\varphi \twoheadrightarrow \psi$				
	ρ	\Leftrightarrow	ψ	

Core formulae Technique

► expressive power and complexity of SL

► Hilbert-style **axiomatisation** with

- axioms that eliminate * and -*
- axioms for the logic of core formulae.

With the core formulae, in [2] we show that under syntactical restrictions, this logic is in PSPACE and ► generalise all known PSPACE-complete SLs ► can encode acyclicity and garbage freedom:

weakening even slightly these restrictions leads to TOWER-hard logics. \blacktriangleright Full propositional SL + reachability up to paths of length 3 is already undecidable [1].

With the core formulae we define internal calculi for: Propositional Separation Logic [4] ► A guarded fragment of first-order SL [4] SL with modalities [3] What's next?

Use the axiomatisation to better the encoding of SL into SAT/SMT solvers. Improve the core formulae technique.

Complexity results

We add reachability predicates to SL $(\mathbf{s}, \mathbf{h}) \models \mathtt{reach}^+(\mathbf{x}, \mathbf{y}) ext{ iff } \xrightarrow{\mathbf{x}} \cdots \xrightarrow{\mathbf{x}}$ and only one quantified variable name (**u**) $(\mathbf{s}, \mathbf{h}) \models \exists \mathbf{u}. \varphi \text{ iff } \exists \ell \text{ s.t. } (\mathbf{s}[\mathbf{u} \leftarrow \ell], \mathbf{h}) \models \varphi$

•
$$\varphi \models \forall u \neg reach^+(u, u)$$

•
$$\varphi \models \forall u ((u \hookrightarrow u \twoheadrightarrow \bot) \Rightarrow$$

$$_{\mathtt{x}\in \mathsf{fv}(\varphi)}\,\mathtt{reach}^{\scriptscriptstyle +}(\mathtt{x},\mathtt{u})\lor \mathtt{x}=\mathtt{u})$$

Axiomatisation

References

- J.C. Reynolds. Separation logic: a logic for shared mutable data structures. In LICS'02
- Peter W. O'Hearn, John C. Reynolds, Hongseok Yang. Local Reasoning about Programs that Alter Data Structures. In CSL'01
- [1] S. Demri, É. Lozes, and A. Mansutti. The effects of adding reachability predicates in propositional separation logic. In FOSSACS'18
- [2] A. Mansutti. Extending propositional separation logic for robustness properties. In FSTTCS'18
- [3] S. Demri, R. Fervari, and A. Mansutti. Axiomatising logics with separating conjunction and modalities. In JELIA'19
- [4] S. Demri, É. Lozes, and A. Mansutti. Internal calculi for Separation Logics (submitted).