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Holder, Minkowski:

Let us first show that the dp example of last time does indeed satisfy the
triangle inequality. In what follows we have two numbers p, q > 0 such that

1

p
+

1

q
= 1. (♠)

Of course this already implies p > 1 and q > 1 and given any p > 1 there is
exactly one q as above.

We start with the simple observation. Let a > 0 and b > 0. Then

ab ≤
ap

p
+

bq

q
.

Since (♠) tells us that the right side is convex combination of ap and bq we
are advised to look for a convex function and use the definition of convexity.

Take numbers x and y such that

exp{x/p} = a; exp{y/q} = b

so that
ex = ap; ey = bq

Now convexity of exponential function completes the proof.

ab = exp

{

1

p
x+

1

q
y

}

≤
1

p
ex +

1

q
ey =

ap

p
+

bq

q
.

This simple inequality leads Holder:

Let a1, · · · , an and b1, · · · , bn be real numbers. Then

|
∑

aibi| ≤
(

∑

|ai|
p
)

1/p (

∑

|bi|
q
)

1/q
.

If any one of the right side quantities is zero then the corresponding a’s or
b’s are zero and hence left side is also zero and so both sides are zero.

So let us assume that the two quantities on right side are non-zero, say,
c and d respectively. Take αi = |ai|/c and βi = |bi|/d to see

∑ |aibi|

cd
≤

∑ |ai|
p

cp
+

∑ |bi|
q

q
=

1

p
+

1

q
= 1.
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gives the stated inequality since |
∑

aibi| ≤
∑

|aibi|.

Holder leads to Minkowski:

(
∑

|ai + bi|
p)1/p ≤ (

∑

|ai|
p)1/p + (

∑

|bi|
p)1/p.

To prove this, assume that a’s and b’s are positive.
∑

(ai + bi)
p =

∑

ai(ai + bi)
p−1 +

∑

bi(ai + bi)
p−1

use Holder note (p− 1)q = p,

∑

(ai + bi)
p ≤ (

∑

api )
1/p

[

∑

(ai + bi)
p
]

1/q

+(
∑

bpi )
1/p

[

∑

(ai + bi)
p
]

1/q

Bring the common factor of right side to the left side to complete the proof
(if that common factor is zero to start with, nothing need to be proved).

If ai, bi not necessarily positive replace by their modulus etc.

This leads to the triangle inequality:

dp(x, z) ≤ dp(x, y) + dp(y, z).

where
dp(α, β) = (

∑

|αi − βi|
p)1/p

You only need to use Minkowski with ai = xi − yi and bi = yi − zi.

limit points:

Next couple of lectures, the agenda is to imitate whatever we did in R
and Rn, namely to define convergence, open sets etc. In what follows (X, d)
is a metric space. Sequences are sequences in X and subsets are subsets of X.

Definition: A sequence xn converges to a point x iff d(xn, x) → 0, equiv-
alently, given ǫ > 0, there is N such that d(xn, x) < ǫ for all n > N .

A point x is a limit point of the sequence (xn) if there are terms of the
sequence that ‘keep coming close’ to x. That is, given ǫ > 0 and N , there is
n > N such that d(xn, x) < ǫ. Equivalently, any ball around x contains xn

for infinitely many values of n.
a point x is a limit point of a set if for every ǫ > 0, the set A ∩B(x, ǫ) is

infinite. That is, every ball around x contains infinitely many points of A.
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You should be careful not to confuse sequences and sets. For example in
R, the sequence

1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, · · · · · · · · ·

has limit points 1,2,3. However if you consider the terms of the sequence, it
is just {1, 2, 3, } and this set has no limit point at all.

We can say x is a limit point of A if every ball around x contains at least
one point of A other than x. Of course, if x is a limit point then the definition
says that in fact there are infinitely many points of A in any ball around x.

Conversely, given that there is at least one point different from x we
can show that there are actually infinitely many points of A as follows. Let
ǫ > 0 be given. Pick x1 in this ball different from x. Note that x1 6= x tells
d(x1, x) > 0, take the ball of radius d(x, x1)/2 around x and pick one point
x2 in this ball different from x. Pick x3 different from x in the ball of radius
d(x, x2)/2 around x. continue to see infinitely many points of A in the given
ball.

We can also say x is a limit point of A iff there is a sequence of distinct
points in A converging to x. That is, there is a sequence (xn), each xn is
in A; xn 6= xm for n 6= m and xn → x. If this happens then the points are
distinct tells that each B(x, ǫ) ∩ A is infinite. Conversely, if x is limit point
of A, then you can choose inductively for n ≥ 1 a point xn ∈ B(x, 1/n) ∩ A
different from previous points. This will do.

We can also say x is a limit point of A iff there is a sequence (xn) of points
in A such that xn 6= x for each n and xn → x. If x is a limit point, then the
previous para gives you a sequence (xn) of distinct points in A converging to
x. Clearly, at most one of them could be x, remove it.

Conversely, if there is a sequence as described above, set y1 = x1. since
all the points of the sequence are different from x, d(x1, x) > 0. Take a point
xn1

of the sequence in the ball of radius d(x, x1)/2 around x. Obviously, this
is different from x1, Name it y2. Now take the ball of radius d(x, y2)/2 and
pick xn2

here with n2 > n1 and continue. This gives a sequence of distinct
points from A converging to x.

open sets, closed sets:
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A subset U is open if x ∈ U implies there is ǫ > 0 such that B(x, ǫ) ⊂ U .
that is, whenever there is a point in the set, a ball around that point is con-
tained in U . A subset C is closed if its complement is open.

If you specialize to real line, as already seen earlier, open ball of radius ǫ
centred at a is just the interval (a− ǫ, a+ ǫ). Thus a set is open if: whenever
there is a point in the set, a small interval around that point is contained in
the set. This is precisely the definition we adapted last year.

Similarly, when X = R2 and d2(x, y) is the Euclidean distance, then ball
of radius ǫ > 0 centered at a point a = (a1, a2), is usual geometric disk and
thus again this above definition coincides with what we adapted in case of
R2 as well. The above definition coincides with the definition we adapted
last year in Rn.

Returning to general metric spaces, we can say C is closed iff it contains
all its limit points. To see this let C be closed, need to show no point outside
C can be a limit point of C. But C being closed, Cc is open, so if you take
a point x ∈ Cc, there is a ball around x contained in Cc and this ball does
not contain any point of C so that x can not be a limit point of C.

Conversely, let C contain all it limit points. Let x ∈ Cc. So it is not a
limit point of C. So there is a ball around it which does not contain any point
of C, except possibly x. But x anyway is not in C. So this ball has no point
from C, in other words, every point of Cc has a ball around it contained in
Cc. Thus Cc is open and hence C is closed.

Connected spaces:

In a metric space (X, d) the sets X and ∅ are always open and they are
also closed. Are there any other sets which are both open and closed? There
may not be.

For example, take X = R and d(x, y) = |x− y|, usual metric. Then there
is no other set which is both open and closed. Indeed, suppose there is such
a set A. Since A 6= ∅, pick x ∈ A; since A 6= R, pick y ∈ Ac. Assume x < y.
Let s = sup{z ∈ A : z < y}. This sup is sensible because the set is not
empty — x is in it; and bounded above — y is a bound. If s ∈ A then, y 6∈ A
tells s < y. Now A is open tells there is a small interval (s − ǫ, s + ǫ) ⊂ A
contradicting s is sup of the set. If s ∈ Ac, then Ac open says an interval as
earlier is contained in Ac. Now, s being sup of our set nothing above s is in
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A and this interval tells us that actually nothing above s − ǫ is in A again
contradicting s is sup of the set.

Similar argument applies if y < x.

On the other hand if we take X = R with the metric d(x, y) to be zero or
one according as x = y or not, you see that every singleton set is open (ball
of radius 1/2 around that point is contained in it!). This shows that every
subset is open. As a consequence every subset is both open and closed.

Definition: A metric space (X, d) is connected if the only subsets which
are both open and closed are ∅ and X. Otherwise, the space is said to be
disconnected.

The plane R2 with usual metric is connected. In fact proceed as above,
pick x and y and concentrate on the line joining x and y and arrive at a
contradiction. Same argument shows that Rn is connected too. We shall
return to connected sets later again.

complete spaces:

One concept we want to imitate is that of a Cauchy sequence. A sequence
(xn) in a metric space (X, d) is Cauchy sequence if given any ǫ > 0, there is
an N such that d(xn, xm) < ǫ for every m,n > N . A metric space is complete
if very Cauchy sequence converges.

Thus a Cauchy sequence is a sequence of points which are coming closer
and closer. After some stage distance between any two points is at most one;
after a later stage distance between any two points is at most 1/2 and so
on. Thus completeness means that any sequence of points which are com-
ing closer and closer are actually coming closer to a point. Every Cauchy
sequence is heading somewhere (not falling out of a hole!).

This property of completeness is very important, it helps us to discover
points in the space which may not be visible to the naked eye. For example
in the real line we found that the sequence of points

1 + 1 +
1

2!
+

1

3!
+ · · ·+

1

n!
; n = 1, 2, 3, 4 · · ·

is a Cauchy sequence and hence converges. it was not any point we knew.
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So we named it e. similarly the sequence of points

1 +
1

2
+

1

3
+ · · ·+

1

n
− log n; n = 1, 2, 3, 4 · · ·

is a Cauchy sequence, and its limit is a number we did not see earlier and
named it γ (Euler’s constant).

Now you have a panorama of metric spaces, you can discover points in
the spaces, that you are not able to see outright. For example we have the
space C[0, 1] with sup metric. You can discover that there are elements in
this space which are nowhere differentiable; that is, there are nowhere differ-
entiable continuous functions. In fact you will see later that such functions
are far more than differentiable functions.

Example: X = R, d(x, y) = |x− y| is a complete metric space.
We knew this last year.

Example: X = (0, 1], d(x, y) = |x− y|. the space is not complete. Indeed
(1/n) is a Cauchy sequence that does not converge to any point in X. Let
us consider on the same space the following metric

d1(x, y) = |x− y|+

∣

∣

∣

∣

∣

1

x
−

1

y

∣

∣

∣

∣

∣

First of all note that, if xn → x in this new metric d1, then in particular,
|xn − x| → 0 so that xn → x in the metric d. Conversely, if xn → x in
the old metric d, then everything being in the space X, we conclude that
(1/xn) → (1/x) so that xn → x in d1.

Thus the notion of convergence is same under both metrics, this implies
(easy to see) that closed sets are same in both and hence open sets are also
same in both.

Interestingly enough the space X is complete with metric d1. In fact if
(xn) is d1-Cauchy then observe that both

|xn − xm| and
∣

∣

∣

∣

1

xn

−
1

xm

∣

∣

∣

∣

converge to zero as n and m become large. In particular, the first one tells
that xn → x in R, and the second one tells that this x can not be zero (then
1/xn becomes unbounded). Thus x 6= 0 and hence 1/xn → 1/x and hence
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d1(xn, x) → 0. In other words every sequence which is cauchy in d1 does
converge in d1.

Thus the space (X, d1) is complete where as (X, d) is not; though both
have the same notion of convergence and same closed sets and same open
sets. What happened is that non-convergent sequences which are Cauchy
in d have been destroyed in d1, they are no longer Cauchy and hence not
obliged to converge.

Here is another example.

X = (0, 1); d(x, y) = |x− y|;

d1(x, y) = |x− y|+

∣

∣

∣

∣

∣

1

x
−

1

y

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

1

1− x
−

1

1− y

∣

∣

∣

∣

∣

Both d and d1 give the same notion of convergence, closed sets etc. But
(X, d) is not complete whereas (X, d1) is complete. Sequences like (1/n) or
{n/(n+ 1)} which are Cauchy in d but not converging are no linger Cauchy
in d1 and hence not obliged to converge.

This discussion should tell you that completeness is something that de-
pends heavily on the metric. This is not surprising because, the notion of
Cauchy sequence depends on the metric. However, the concept of conver-
gence does not heavily depend on the metric; it depends on the collection of
open sets. Of course, at this stage you might say: so what? open sets de-
pend on the metric. In a later course on topology you will see the distinction.

If a metric space is not complete, is there anything that we can do to make
it complete. Of course, one thing we can do is to destroy Cauchy sequences
which are not converging as happened in the examples above and make the
space complete.

Suppose that there are too many Cauchy sequences and we can not de-
stroy all of them. Or imagine that we do not want to change the metric.
Can we do anything to make the space complete? In such a case the only
possibility is to attach new points to the space and declare them to be lim-
its of Cauchy sequences (which had no limits at present). Remember, the
space is not complete due to shortage of points in the set, there are Cauchy
sequences but no points to which they converge.
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Yes, Cantor discovered a method of completing a metric space. I could
give you the general method and then say you can specialise this process to
the set of rational numbers to obtain another construction of the real number
system. However this will lead to some confusion due to a technical problem.
So we shall first execute cantor’s idea to construct R.

Cantor’s construction of R:

Let us once again pretend that we do not have real numbers. However we
do have the set of rationals Q before us. We are constructing R, following
Cantor.

Well, why is Q not a model of real number system? It satisfies all the ax-
ioms except the least upper bound axiom. There are sets which are bounded
above but have no supremum. In Dedikind’s construction, we attached points
to Q so that such sets have supremum.

Following our earlier observations, we could also have said that Q is not
a model of real number system because there are Cauchy sequences which
are not converging. We shall now enlarge the space so that such sequences
converge. Again remember the general philosophy: if certain phenomena are
not taking place, consider all such phenomena.

To make the above statement concrete and bring right perspective, it is
worth recalling some of our past actions. If we could not subtract 4 from 3
we considered pair (3, 4) as a point of our space and, in a sense, this pair
represented 3− 4. Since we felt 3− 4 should be same as 7− 8 we identified
the two pairs (3, 4) and (7, 8). Considered the space of equivalence classes.

If we could not divide 5 by 7 we considered the pair (5, 7) and this repre-
sented 5/7. We felt that this should be same as 10/14 and so identified the
two pairs (5, 7) and (10, 14). We considered the space of equivalence classes.

If the set S of all rational numbers whose square is less than 2 has no
supremum, then we considered this set itself as a ‘point’ and declared this
point as supremum of S.

[Let me add a comment in passing which you may ignore. What we
actually did was a little different, we considered not just the above set S
but actually the set T which consists of all negative rational numbers along
with the set of positive rational numbers whose square is less than 2. This
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set T gives a Dedikind cut but S does not give you a cut. If you want to
know why we did this, the answer is simple: Situation was hopeless and we
brought some order. If you understood the above three paras, and if you are
on imitating spree, then your tendency would be to consider all subsets of Q
which are bounded above. You will identify two sets if they appear to have
same sup and consider the collection of equivalence classes. Yes, but luckily
enough, it so happens that each equivalence class has exactly one cut in it.
Thus though I was looking at the equivalence class, I showed you only the
cut from that class and managed matters. This helped you to consider one
set rather than equivalence class of subsets of Q. Think about it.]

Returning to our present problem, you would have no hesitation consid-
ering all Cauchy sequences. Let R0 be the collection of Cauchy sequences
x = (xn) of rational numbers. We identify

x = (xn) ∼ y = (yn) ↔ d(xn, yn) → 0.

Triangle inequality helps to show that this is an equivalence relation.

Let R be the space of equivalence classes. This is our real number system.
equivalence class containing a sequence x is denoted [x].

We define addition by taking [x]+[y] = [x+y]. Thus to define sum of two
equivalence classes [x] and [y], take one sequence from each class and add
(term by term) those two sequences and the class containing this resulting
sequence is the sum. This is a good definition. Firstly, the sum of two
Cauchy sequences is cauchy. Secondly, it does not depend on which sequence
we choose from the equivalence class. Indeed, let a ∈ [x] and b ∈ y] then we
show a+ b ∈ [x+ y] as follows.

d(an + bn, xn + yn) ≤ d(an, xn) + d(bn, yn) → 0.

The rules [x] + [y] = [y] + [x] as well as [x] + ([y] + [z]) = ([x] + [y]) + [z] are
easy being consequences of similar rules regarding rational numbers.

The zero element is [θ] where θ is the sequence having zero for all its
terms. It is clear [x] + [θ] = [x]. The inverse is also clear, namely, for a given
element [x] we take [−x] where −x is the sequence (−xn).

We shall denote the additive identity by [0].
We define multiplication also in the obvious way. [x][y] = [xy] where x.y

is the term wise multiplication of the sequences. To see that this is a good
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definition, we need to show that xy is a Cauchy sequence and if someone
takes different elements a ∈ [x] and b ∈ [y] then ab ∈ [xy].

First recall that a Cauchy sequence is bounded. Indeed, if (xn) is Cauchy,
pick N so that |xm − xn| < 1 for m,n ≥ N . In other words for n ≥ N we
have

|xn| ≤ |xN |+ |xn − xN | ≤ |xN |+ 1.

Thus maximum of the finitely many quantities,

|x1|, |x2|, · · · |xN−1|, |xN |+ 1

will serve asa bound.

To see (xnyn) is Cauchy, first pick some bound M for the two Cauchy
sequences x and y.

|xnyn − xmym| ≤ |xn||yn − ym|+ ym|xn − xm|

≤ M |yn − ym|+M |xn − xm|.

Given rational r > 0 we can choose N such that |xm−xn| < r and |ym−yn| <
r for all m,n > N . which can be made small for all large m,n.

Finally, let (an) ∼ (xn) and (bn) ∼ (yn). Shall show (anbn) ∼ (xnyn). Fix
a bound M for all these four Cauchy sequences.

|anbn − xnyn| ≤ |an||bn − yn|+ |yn||an − xn|

≤ M |bn − yn|+M |an − xn|

which can be made small.

The rules [x][y] = [y][x] and ([x][y])[z] = [x]([y][z]) re easy. The element
[1], the equivalence class containing the constant sequence one is the identity
element. [1][x] = [x] is clear from definition.

Let [x] 6= [0]. We shall show inverse. We start with an observation. since
[x] 6= 0 we conclude that |xn| 6→ 0. So there is an r > 0 such that for
infinitely many n we have |xn| > r. since (xn) is cauchy, there is N such
that |xn − xm| < r/2 for n,m > N . If you take any n > N then |xn| > r/2.
Indeed, let n > N and pick m > N so that |xm| > r.

|xn| ≥ |xm| − |xn − xm| = r −
r

2
=

r

2
.
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Thus for all n > N we have |xn| > s where s = r/2 > 0.

Let (yn) be the sequence yn = 1 for n ≤ N and yn = 1/xn for n > N .
Since xnyn = 1 for all n > N , we see that [x][y] = [1]. But we need to
convince ourselves that y is a Cauchy sequence. This is immediate because
for m,n > N

|ym − yn| =
xm − xn|

|xm||xn|
≤ |xm − xn|/s

2.

which can be made small.
This completes the proof that [y] ∈ R and is the inverse of [x].

The distributivity [x]([y] + [z]) = [x][y] + [x][z]. is immediate.
S o far it is smooth, We now need to define order on R. The simple

minded definition [x] ≤ [y] if xn ≤ yn is not meaningful, because this order
does not respect the equivalence classes. For example,

(2, 1, 1, 1, , 1 · · ·) (0, 1, 1, 1, 1, 1 · · ·)

are in the same class. In fact if you change only finitely many terms of a
Cauchy sequence then the resulting sequence is equivalent to the original
sequence. Thus we should not make the definition depend on all suffixes.

Suppose we modify to say that [x] < [y] if xn < yn for all large values of
n, then again we run into problems. If xn = 1/n and yn = 2/n then xn < yn
holds for all values of n but they represent the same element [0].

Thus defining order is a little delicate. In stead of defining ≤ we start
defining <. Say [x] < [y] if there is r > 0 and N such that xn + r ≤ yn for
all n > N . We say [x] ≤ [y] iff [x] = [y] or [x] < [y]. This definition satisfies
our requirements.

Let us start showing that this definition respects the equivalence classes.
Let x ∼ a and y ∼ b. Suppose that there is r > 0 and N such that xn+r ≤ yn
for all n > N . We exhibit s > 0 and M such that an + s ≤ bn for all n > M .
Take s = r/2. Take M > N so that

n > M ⇒ |xn − an| < r/4; |yn − bn| < r/4.

If now n > M then

an +
r

2
≤ xn +

r

4
+

r

2
≤ yn − r +

r

4
+

r

2
≤ bn +

r

4
− r +

r

4
+

r

2
.

We need to show that it is a linear order and is friendly with addition
and multiplication.
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