
CMI (BSc II)/BVRao Analysis, Notes 3 2014 Third week

I have not given any references. You can consult any book on set theory
and read the topics we are discussing like Halmos, Naive Set Theory. One of
the best sources is the book Real Analysis by Hewitt and Stromberg. Gener-
ally most of the books contain much more (or much less) than what I intend
to do. That is why I have not given any references so far. But please do
consult any book you like from the library.

Axiom of Choice is abbreviated to AC and last time we introduced four
statements.

The first one is existence of choice set: Given any family of nonempty
sets which are pairwise disjoint, you can make a set which contains exactly
one point from of each of the given sets. you would say ‘is it not obviously
true? why make an axiom?’ You do not think an axiom is necessary at all.
Let us name the second statement as existence of choice function; given a
family of (non-empty) sets there is a function which associates with each set
in the family one point of that set.

The content of the statement is brought out very beautifully by Bertrand
Russel: Given lots of pairs of shoes you can provide an algorithm to select
one shoe from each pair; but given lots of pairs of new socks you have no
algorithm to select one from each pair.

Let us name the fourth statement: every set can be well-ordered as well-
ordering principle. This would in particular imply that the set of real num-
bers can be well ordered. That is, you can prescribe an linear order on R
such that every non-empty subset has a first point. You would probably say
‘Is it not obviously false? why discuss this statement?’. You believe that
this statement is blatantly false. The third statement: partially ordered set
has maximal element if every chain has upper bound; is called Zorn’s lemma
(due, in another form, to Hausdorff and later Kuratowski, but popularised
by Max Zorn).

However all are just the same.

Theorem: (1) existence of choice set (2) existence of choice function (3)
Zorn’s Lemma and (4) Well-ordering principle; are equivalent statements.
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We have seen already an application of Zorn, to show existence of Basis
for any vector space. You have learnt (finite dimensional vector spaces) in
the first semester. Second semester you learnt groups. If you travel a little
more on one of its roads, you will reach the Neilsen-Schreier theorem which
says that every subgroup of a free-group is itself a free-group. This is proved
using AC.

In this third semester you are learning rings. The fact that a non-trivial
unital ring has non-trivial maximal ideals needs AC. Next semester you will
learn fields. You will learn that very field can be put inside a bigger field F
which is algebraically closed. This last phrase means every nontrivial poly-
nomial in one variable x with coefficients coming from F will assume the
value zero for at least one value of x ∈ F . This is achieved with AC.

So much for algebra. There are several applications in Analysis which is
our interest. They will unfold in your later courses. We shall see one or two.
But first few useful things are to be observed.

(1) Countable union of countable sets is countable.

Of course we have already done this rather quietly. For a moment assume
that all the sets are infinite. You see that if (An : n ≥ 1) are the sets, then
by definition of ‘countably infinite’, there exists a bijection between An and
N . But what you need is to pick one bijection for each n (so that you can
produce a map of the union to N). AC allows you this.

(2) For any two sets X and Y , either |X| ≤ |Y | or |Y | ≤ |X|.

In other words there is an injection from X to Y or from Y to X. equiv-
alently, any two sets can be compared. To prove this, let P be the set of all
pairs (S, f) where S ⊂ X and f is an injection on S to Y . This is non-empty
because you can take any x ∈ X and any y ∈ Y ; put S = {x} and f(x) = y.
Then (S, f) ∈ P . Well, if one of them is empty you need not prove any thing
(why?), so assume both are non-empty sets.

Define (S, f) ≤ (T, g) if S ⊂ T and g extends f . The last phrase means
that for x ∈ S we have f(x) = g(x). This is a partial order and so P is
a poset. Every chain has an upper bound. Indeed if {(Sα, fα) : α ∈ ∆} is
a chain then here is upper bound: take S as union of all the sets Sα. For
x ∈ S, put f(x) = fα(x) in case x ∈ Sα. This is a good definition because
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if x is in two of the sets then the fact that we have a chain implies that you
get the same values whichever fα you use.

So by Zorn, get a maximal element (T, g). In case T = X then you got
an injection on X to Y . In case range g is all of Y , then g−1 provides an
injection on Y to X. If neither happens, then you pick x∗ ∈ X − T and
y∗ ∈ Y − range g. Put T1 = T ∪ {x∗}; put g1(x) = g(x) for x ∈ T and
g1(x

∗) = y∗. You see that (T, g) < (T1, g1) contradicting maximality of (T, g).
This completes proof.

(3) Every infinite set contains a copy of N , that is, contains a countably
infinite set.

Fix a choice function f for subsets of X, the given infinite set. This means
for each non-empty subset S ⊂ X we have f(S) ∈ S. Define

x1 = f(X)

x2 = f(X − {x1})

x3 = f(X − {x1, x2})

and in general
xk+1 = f(X − {x1, · · · , xk}).

The set (xi : i ≥ 1) does the job. Carefully note that these are distinct
elements.

(4) If X is an infinite set and F ⊂ X is a finite set, then |X| = |X − F |.
That is, X and X − F have the same cardinality.

Denote your finite set by

F = {x1, · · · xk}.

Fix a choice function as above. Put

xk+1 = f(X − {x1, · · · , xk})

xk+2 = f(X − {x1, · · · , xk, xk+1})

and in general for n ∈ N

xk+n = f(X − {x1, · · · , xk+n−1})
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Here is a bijection on X onto X − F . If x 6∈ (xi : i ≥ 1) put h(x) = x. Put
h(xi) = xi+k for i = 1, 2, · · ·. This does the job.

You only need to note thatX is partitioned into two setsA1 = {x1, x2, · · ·}
and A2 = X − A1. Similarly X − F is partitioned into two sets B1 =
{xk+1, xk+2, · · ·} and B2 = X − A1 (watch out, not X − B1). The map h is
an bijection of Ai and Bi.

(5) If X is an infinite set then |X × {0, 1}| = |X|.

That is, two copies of X has the same potency as one copy of X. Re-
member X × {0, 1} consists of all pairs (x, 0) for x ∈ X and also all pairs
(x, 1) for x ∈ X.

To prove the statement, let P consist of all pairs (S, f) where S ⊂ X and
f is a bijection on S × {0, 1} to S. This is non-empty. Indeed using (3) you
get S which is a copy of N . Since S × {0, 1} is also countably infinite there
is a bijection f of S × {0, 1} to S. This (S, f) is in P .

Define (S, f) ≤ (T, g) if S ⊂ T and g extends f . This makes sense be-
cause S × {0, 1} ⊂ T × {0, 1}. This makes P a poset.

Every chain has an upper bound. If (Sα, fα) is a chain then take S as the
union of these Sα. If (x, i) ∈ S × {0, 1} put h(x, i) = fα(x, i) in case x ∈ Sα.
again the fact that we have a chain tells us there is no conflict in case x is in
two of the sets Sα. It is a bijection too. If you take two distinct points (x, i)
and (y, j) then there is one Sα in which both x and y are present etc.

Let (T, g) be a maximal element, exists by Zorn. Can X − T be infinite?
No because of the following reason. If it were infinite, use (3) and get a copy
of N in X − T , denote it by A. Since A × {0, 1} is a countably infinite set,
fix a bijection ϕ on A× {0, 1} onto A.

Take T1 = T ∪ A. Define g1 on T1 × {0, 1} as follows. If x ∈ T , then
g1(x, i) = g(x, i) and if x ∈ A, then g1(x, i) = ϕ(x, i). Note that ϕ takes you
to A whereas g takes you to T . This helps you to show that g1 is bijection.
But then (T, g) < (T1, g1) contradicting maximality of (T, g).

Thus X − T is finite and hence by (4), T has the same cardinality as X.
Now

X × {0, 1} ∼ T × {0, 1} ∼ T ∼ X.
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(6) If S, T are disjoint infinite sets, |S| < |X| and |T | < |X| then
|S ∪ T | < |X|.

recall |S| < |X| means there is an injection from S to X but there is no
bijection.

In view of (2) either |S| ≤ |T | or |T | ≤ |S|, there is no loss in assuming
that |S| ≤ |T |. So there is an injection f : S → T . Define g from S ∪ T to
T × {0, 1} by g(x) = (f(x), 0) if x ∈ S and g(x) = (x, 1) if x ∈ T . Note that
ranges of S and T under g are disjoint. Easy to see that g is an injection
showing

|S ∪ T | ≤ |T × {0, 1}| = |T | < |X|.

where we used (5) for the equality. The first inequality is witnessed by g and
the last inequality is hypothesis. You only need to note that if |A| = |B| and
|B| < |C| then |A| < |C|.

(7) if X is infinite then X ×X ∼ X.

Let P be the set of all pairs (S, f) where S ⊂ X and f is a bijection on
S×S onto S. This is partially ordered by inclusion. That is (S1, f1) ≤ (S2, f2)
if S1 ⊂ S2 and f2 is an extension of f1. This means f2(x, y) = f1(x, y) for
x, y ∈ S1. This makes P a poset.

P is non-empty because from (3) you can take a countably infinite set
S ⊂ X and use the fact that S×S is also countably infinite to get a bijection
f : S × S → S. Then (S, f) ∈ P .

Every chain has upper bound. Indeed if (Sα, fα) is a chain, here is the
upper bound: S is the union of all the Sα. For x, y ∈ S, if they both belong
to Sα we put f(x, y) = fα(x, y). Since we have a chain, there is one α such
that both x and y are in Sα. Since we have a chain, this definition does not
depend on which α we take. That this is a bijection is routine. if you take
two pairs (x1, y1) and (x2, y2) then there is one Sα in which all these four
points x1, x2, y1, y2 are available and fα is a one-one map on this Sα × Sα so
that the fα values of these two pairs are different, but these are f values as
well. Also given any a ∈ S, get an α such that a ∈ Sα and hence there is an
(x, y) ∈ Sα × Sα such that fα(x, y) = a so that f(x, y) = a.

Take a maximal element (T, g). Since T ⊂ X there are only two possibil-
ities, either |T | = |X| or |T | < |X| — the identity map shows that |T | ≤ |X|.
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If |T | = |X| we are done because

|X ×X| = |T × T | = |T | = |X|.

Assume |T | < |X|. we show contradiction for maximality by producing
(T1, g1) such that (T, g) < (T1, g1).

Towards this end we first note that X − T can not be finite. If it were,
then X and T differ by finitely many points so that (4) tells |X| = |T | which
is not the case now.

Since T × T ∼ T we conclude that T is infinite; we saw that X − T is
infinite. We are assuming that |T | < |X|. If we also have |X−T | < |X| then
(6) leads to contradiction |X| < |X|. Thus we must have X − T ∼ X.

We are now ready to contradict maximality of (T, g). Since X − T and
X are of the same cardinality, pick a subset S ⊂ X − T with |S| = |T |. You
only need to fix a bijection ϕ on X onto X − T and take S = ϕ(T ). Let
T1 = T ∪ S. We shall now define a bijection g1 on T1 × T1 onto T1 which
extends g. Let us make two observations.

Firstly, T1×T1 is disjoint union of the four sets A0 = T ×T ; A1 = T ×S;
A2 = S × T ; A3 = S ×S. And also these four sets have the same cardinality
simply because S and T have the same cardinality. Since T × T ∼ T (Re-
member g) we conclude that all these four sets are equipotent with T and
also with S.

Second observation is the following. We can express S as disjoint union
of three sets S1, S2, S3 all having the same cardinality as S. This is seen as
follows.

We know that T is infinite. So take two points s and t from T and denote
T0 = T − {s, t}. consider the sets A = {s} × T ; B = {t} × T ; C = T0 × T .
You see that A has same power as T ; B has same power as T ; T0 which
differs from T by a finite set has same power as T and hence C has the
same power as T × T which has same power of T (Remember g). Thus we
decomposed T × T into three disjoint sets each of power of T . But T × T
has same power as T (Remember g). so we could decompose T into three
sets of the power of T . But S and T are of the same power so we can decom-
pose S into three sets each of the same power as S. Denote S = B1∪B2∪B3.

To complete the proof define g1 on T1 × T1 as follows. On A0 = T × T
follow g to take you to T ; on the other three sets A1, A2, A3 which makeup
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the remaining part of T1 × T1 use any maps taking you in a bijective way to
B1, B2, B3 respectively.

This completes the proof (by showing an element larger than the alleged
maximal element and thereby establishing that T must have same cardinality
as X and thereby X ×X must have a bijection to X).

(8) Let X be an infinite set. Let seq(X) denote the set of finite sequences
of points from X. That is, things of the form (x1, x2, · · · xk) where k ≥ 1 is
an integer and each xi ∈ X. Then seq(X) ∼ X.

Since T × T is of power T , we conclude, in particular, that a countable
union S = ∪Ti of disjoint sets T1, T2, · · · each of power T has power T . In-
deed T being infinite, get by (3), an injection f : {1, 2, · · ·} → T and for each
i ≥ 1 get a bijection fi : Ti → T . Let now s ∈ S, then there is unique i such
that s ∈ Ti. Put g(s) = (f(i), fi(s)) gives a injection from S to T × T ∼ T .

Now X, X ×X, X ×X ×X · · · all have power of X and the earlier para
tells you that their union is also of power X. But this union is precisely
seq(X).

Sometimes, for technical reasons one includes the empty sequence also in
seq(X). Empty sequence means sequence of length zero. There is only one
such sequence, namely (). Even if you include this one element in the set
Seq(X) its power is still same as that of X.

Of course, some of you may have a psychological objection to include the
empty sequence as a sequence at all. Do not worry, in that case, you do not
have to do this. I only said: if sometime later somebody does some such
thing you need not scratch your head. That is all.

(9) Let X be an infinite set. Seq(Q)× Seq(X) ∼ X.

Proof is already included in the above. for each fixed a ∈ Seq(Q) the set
of points in our set with first coordinate equal to a has power Seq(X) ∼ X
and the number of possible a is countable.

(10) f : X → Y be surjection. Then |Y | ≤ |X|.

Fix a choice function ϕ for non-empty subsets of X. For each y ∈ Y the
set Ay = f−1(y) is non-empty because f is surjection; so it makes sense to
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define g(y) = ϕ(Ay). Then g is a one-one map of Y to X and |Y | ≤ |X|.

Now we shall return to Analysis.

We showed that every vector space has a basis. We made no fuss about
the underlying field. So let us use that freedom. Consider R as a vector
space over Q, the field of rational numbers. Thus we have the following.

(11) The vector space R over the field Q has a basis. That is, there is a
set B ⊂ R such that every x ∈ R can be uniquely expressed as a finite sum
∑

qibi where bi ∈ B are distinct and qi ∈ Q. Here uniqueness is interpreted
as: if there are two such sums representing x the b s with non-zero coeffi-
cients are same in both expressions and those non-zero coefficients also agree.

In other words you can cheat by taking a finite sum and adding to it a
term: (0× b) with b ∈ B which was not already there in the sum.

Such a Basis is called Hamel basis. How large is it?

(12) Any Hamel basis has the same cardinality as that of R.

Define a map f : seq(Q)× seq(B) → R by
f(q1, · · · , qk; b1, b2, · · · , bl) = 0 if k 6= l and =

∑
qibi if k = l.

Since B is a basis, this map is onto R. Thus (10) and (9) imply

|R| ≤ |seq(Q)× seq(B)| = |B|

But obviously |B| ≤ |R| and thus |B| = |R|. In using (9) we implicitly
assumed that B is infinite. In fact, it is uncountable because if it were count-
able then we note that seq(Q) × seq(B) is also countable showing that the
first inequality above itself is a contradiction. Just remember that the set of
real numbers is not countable.

(13) There is a function f : R → R such that f(x+ y) = f(x) + f(y) for
all x, y ∈ R which is not continuous. In other words it is a (additive) group
homomorphism.

You can make the range of f to be any non-trivial Q-subspace of R.
You can make f a bijection, so that it is a group isomorphism.

Fix a Hamel basis B.
Take v ∈ B. Here is f . For any x ∈ R, f(x) is the coefficient of v in the

expression of x as a finite rational linear combination of elements of B.
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That this is a Q-linear map and hence additive is general vector space
result. This is not continuous because it takes only rational values and is not
the zero function. (Pause and think)

Take any Q-subspace of R. Take a basis for the subspace, say, H. Clearly
|H| ≤ |B| and so fix a surjection ϕ : B → H ∪ {0}. if x =

∑
qibi define,

f(x) =
∑

qiϕ(bi). Again the fact that f is additive is a genera vector space
fact. It is not continuous because if v ∈ B with ϕ(v) = 0 then f takes the
value zero on the set of rational multiples of v, that is, on a dense set. Range
is also the given subspace.

To get an additive isomorphism, you only need to take a bijection ϕ of
B to itself and define f on R by: if x =

∑
qibi then f(x) =

∑
qiϕ(bi). Of

course if you take the identity map as your bijection ϕ then f is identity too.
Take four elements from the basis, x1, y1, x2, y2 such that y1/x1 6= y2/x2 and
take a bijection ϕ of B with ϕ(xi) = yi for i = 1, 2. Note that the resulting
f would map xi to yi. It is not continuous because for any continuous map
f(x)/x (?) is a constant.

(14) There is an (additive) group isomorphism from R to R2.

Think of both R and R2 as vector spaces over Q, take Hamel bases,
observe that both have the same cardinality (namely c), set up a bijection
between them and extend by Q-linearity. Exactly like the above.

There are several things you can say using AC. But we stop here. We
shall make some comments about the equivalence of the four statements.

Choice set existence implies choice function existtence. Indeed, given any
family of sets (Aα;α ∈ ∆) put

Bα = {(α, x) : x ∈ Aα}; α ∈ ∆.

These are disjoint because every point in Bα is a pair and its first coordinate
is α. Take a choice set S, thus for each α we have f(α) ∈ Bα. Define f(α)
to be the second coordinate of the unique point in S ∩ Bα.

Choice function implies choice set. If (Aα : α ∈ ∆) are disjoint sets and
f is a choice function, that is, f(α) ∈ Aα for each α then we take S = Range
f . Then S is a choice set for the given family of disjoint sets.
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Zorn implies choice set. In fact let (Aα : α ∈ ∆) be disjoint sets. Let

P = {S ⊂ ∪Aα : |S ∩ Aα| ≤ 1 for each α}.

This is a poset by defining S1 ≤ S2 if S1 ⊂ S2. It is non-empty because if
you take one of the sets and a point x from that set then S consisting of this
single point is in P . Every chain has upper bound, namely, union of sets in
the chain. So let T be a maximal element. If there is an Aα such that S has
no point of Aα, pick one point from this Aα and let T ′ be the set consisting
of points in T along with this extra point. Then T ′ ∈ P and contradicts
maximality of T . Thus for each α, we have |S ∩Aα| = 1 showing that S is a
choice set.

Existence of choice function implies Zorn. Shall only outline but not carry
out the full proof. Take a poset P where every chain has an upper bound.
We need to exhibit a maximal element.

Let us say that a chain C is maximal if there is no element of P larger
than every element of C. That is

¬ ∃p ∈ P ∀x ∈ C (x < p).

The idea is to show that there is a maximal chain. For this several methods
are available. Simplest (not necessarily the best) method is the following.
Fix a choice function for subsets of P . That is a function f which associates
with each non-empty subset of P a point in that set. Consider

S0 = P ; p0 = f(S0);

S1 = {x : p0 < x}quad p1 = f(S1)

S2 = {x : p1 < x}; p2 = f(S2)

and so on
S∞ = {x : pn < x for all n}; p∞ = f(S∞)

S∞+1 = {x : p∞ < x}; p∞+1 = f(S∞+1)

etc. The p s so collected form a chain because at any time we are selecting a
point larger than what we already have. if at some stage the set Sα is empty
then collect all the p got so far. That is a maximal chain. The fact that we
have arrived at empty set signals that there is nothing larger than all the
selected p s. And of course, at some stage you do arrive at empty set.
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Now this maximal chain has a upper bound, let it be a. This is a maximal
element of P . Indeed if there is an element b with a < b we have x ≤ a < b
for every x ∈ C contradicting maximality of the chain.

The above procedure of selecting points can be formalized but needs some
work we shall not undertake. It is not trivial. It is easy to say ‘so on’ but
difficult to explain what is this ‘so on’.

Well-ordering principle implies choice set. Indeed if (Aα) is a disjoint
family of sets then well order their union, and pick the least (in that well
order) lament of Aα for each α. This set of points so selected gives choice
set. That choice set implies well ordering principle is carried out in a fashion
similar to the above construction.

It is in this form of existence of maximal chains that Hausdorff and later,
Kuratowski formulated. However Zorn’s name got stuck because he popu-
larised. Max Zorn himself does not like it to be called Zorn’s lemma! It is
too late to change things now.

There are several other beautiful results in set theory, but we need to
return to Analysis. But before doing so few words on history. I have already
mentioned that all this had origins in problems concerning Fourier series.

Unfortunately even in scientific investigations we have fundamentalism —
after all we are human beings. Just as the famous Mach and other scientists
opposed Boltzman’s ideas; jut as the Church opposed Galileo’s ideas; here
too we have Georg Cantor being opposed from several quarters. the famous
Kronecker and Poincare opposed rather very very vehemently. So did the
Church. After all God is infinite and hence (!) infinity is God. How can the
infinity that represents integers different from the infinity that represents
real numbers? There can not be many Gods, there is only one God! Worse,
you are saying given any God there is a bigger God! Definitely not acceptable.

It was left to Hilbert to say: No one can dislodge us from the Paradise
created by Cantor. Paul Erdos used to say: Keep your brains open.

We shall now return to Analysis. One of our objectives is to construct
the set of real numbers —- this means to show a set with some operations
satisfying whatever we assumed last year. Of course, any construction work
needs using cement, bricks, water and so on and more important, dirtying
our hands.
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After all, you can not construct something out of nothing. So the first
question is what do we have to start with. To simplify life let us ask: how
do you construct real numbers if I give you the set Q of rational numbers. It
is indeed easy. After all we know enough to be able to say

x ∈ R ⇒ sup{q ∈ Q : q ≤ x} = x.

This identifies real numbers as sup of a set of rational numbers. the only
nuisance above is that this set depends on x. We should be able to describe
real numbers using only rationals. There is nothing but set of rationals be-
fore us. You can not pretend that you already have real numbers and you
are only describing them using rationals.

Getting a clue from the above, let us put things differently. Every real
number x, cuts Q into two non-empty parts: those rationals q that are not
above it (q ≤ x) and those rationals that are above it (q > x).

Also every cut determines a real number, namely, sup of the lower part
of the cut.

So what is a cut and how do we construct a complex system of real
numbers starting from Q. Remember you need to prescribe a set; need to
prescribe addition and multiplication and order on your set; and then show
you have a complete Archimedian ordered field.

Of course, you can also ask how do you construct rational numbers? We
do so using the set Z of integers. So how do you construct Z, the set of
integers. We do so using the set of natural numbers N = {1, 2, · · · , } with
the only operation being the successor operation Sn = n+ 1.

This brings us to: who gives you the set N and the operation S on this
set which hopefully tells us ‘adding one’.

You can get either terrified or excited on the attitude you take. But be
assured you need not construct real numbers in the exam. then why are we
doing this? Don’t you want to reassure yourself that real number system
does exist (in flesh and blood) and all the things you learnt in Calculus have
meaning.
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