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what next:

We completed our discussion of metric spaces. We have done some basic
results and applications. There are two possibilities for the remaining period
— we can discuss either power series with complex coefficients or Fourier
series.

We discussed real power series
∑

anx
n and discussed radius or interval

of convergence in our first course. we found a number R ≥ 0 such that the
power series converges (actually, converges absolutely) for every real number
x with |x| < R; does not converge for any real number x with |x| > R; and
for x = ±R, it may or may not converge depending on the particular series.

The same analysis can be done even if you have power series
∑

anz
n with

complex coefficients. There is a real number R ≥ 0 such that whenever you
take a complex number z with |z| < R the series converges (converges abso-
lutely). Whenever you take a complex number z with z| > R the series does
not converge. Exactly the same proof that we did for real series goes through.

However we shall not continue this line of thought. Mainly because, in-
troducing the theory with the statement that the same proof as the real case
goes through, is perhaps the worst way of introducing the splendour of com-
plex analysis. You can tell your complex analysis teacher to carry out the
details concerning power series.

Of course, we did discuss complex valued functions of complex variable
and their derivatives. This was when we were discussing functions from R2

to R2. We derived the Cauchy-Riemann equations; some of its interesting
consequences; related the complex derivative to the derivative matrix when
you regard the function as a map of R2 to R2 instead of from C to C. We
shall discuss some relevant aspects of complex analysis as we go along.

We shall now discuss Fourier series. We would first review what we know
about Cn, the complex n dimensional space.

complex n-dimensional vector space:
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You studied the n-dimensional complex vector space and inner product.
Let us recall. Cn is the set of all n tuples z = (z1, z2, · · · , zn) of complex
numbers. We define inner product

〈z, w〉 =
∑

k

zkwk; 〈z, z〉 = ||z||2 =
∑

|zk|2.

d(z, w) =
√
〈z − w, z − w〉 =

√∑
|zk − wk|2.

Here w is the complex conjugate of w. Recall if w = a + ib where a, b are
real then its conjugate is a− ib.

This space has an orthonormal basis consisting of n vectors. Thus there
are n vectors e1, e2, · · · , en such that

〈ek, el〉 = 1 if k = l; and = 0 if k 6= l.

Any vector v can be uniquely written as

v =
n∑

1

〈v, ek〉ek =
∑

v̂kek.

It follows from properties of inner product that

||v||2 =
n∑

1

|v̂k|2.

interesting point, trivial but should be noted, is that this is true whatever
orthonormal basis you take Let us take an integer 1 ≤ m < n and consider
only the partial sum

v∗ =
m∑

1

v̂kek.

Then clearly v∗ is in the subspace spanned by the first m-basis vectors, that
is,

v∗ ∈ span {e1, e2, · · · , em} = S; say.

The vector v − v∗ is orthogonal to every vector in S. This is because

〈v − v∗;
m∑

1

akek〉 = 〈v;
m∑

1

akek〉 − 〈v∗;
m∑

1

akek〉

=
m∑

1

ak〈v, ek〉 −
m∑

1

ak〈v∗, ek〉 = 0;
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because, 〈∑m
l=1 v̂lel, ek〉 = v̂k = 〈v, ek〉.

Since v = (v − v∗) + v∗ and v − v∗ ⊥ v∗ we see

||v||2 = ||v − v∗||2 + ||v∗||2.

Thus ||v∗||2 ≤ ||v||2. We could have got it by direct computation because

||v∗||2 =
m∑

1

|v̂k|2 ≤
n∑

1

|v̂k|2 = ||v||2.

There is a subtle point in this so called ‘direct computation’. It is that, we
assume that v itself is a linear combination of the basis vectors. You might
think, what else can it be; it has to be a linear combination; every vector is
and so on. However you will realize the subtlety later.

In a sense v∗ captures the entire part of v in S (whatever it may mean) so
that what remains is orthogonal to S. Not only this, v∗ is the vector closest
to v in the subspace S. That is

d(v, v∗) ≤ d(v, w) ∀ w ∈ S.

This is seen as follows.

v − w = (v − v∗) + (v∗ − w)

and the two terms on the right are orthogonal we see

||v − w||2 = ||v − v∗||2 + ||v∗ − w||2 ≥ ||v − v∗|2

Fourier series:

The plan is to understand the statement of Fourier:

Every wave is a superposition of sine and cosine waves.

Let us consider the interval [0, 1]. Let f be a function on this space with
f(0) = f(1). We can extend it as a periodic function of period one on the
real line, in a unique way, namely, define f(x+1) = f(x) for all x ∈ R. More
precisely it is defined by f ∗(x) is the given f(x) on [0, 1); f ∗(x) = f(x − 1)
on [1, 2] and f ∗(x) = f(x− 2) on [2, 3] etc. Similarly on the negative side. It
is much easier for you to think of its graph. First imagine on [0, 1] and then
extend the curve to all of R.
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Conversely given any function f ∗ on R which is periodic of period one
its restriction to [0, 1] gives us a function f on [0, 1] with the property
f(0) = f(1). Moreover in this process, f is continuous iff f ∗ is continu-
ous.

Such functions on R have a wavy graph they are called waves. Actually
you can define what are waves using certain differential equations but let
us not go too far now. The simplest waves we know from high school are
s(x) = sin(2πx) and c(x) = cos(2πx). Of course any multiple of these func-
tions is also a wave. The functions sin(4πx), cos(4πx) are also such functions.
More generally sin(2kπx) and (cos(2kπx) are such functions.

By superposition we mean sum. Thus the function f + g is superposition
of f and g. Generally, you do not use this term. This originates in music,
where a sound is superposition of some basic sounds; you may call ‘notes’
and so on. This phrase originates again in differential equations where if you
have two solutions f and g of an equation like f ′′ + f = 0, then their sum
is also a solution — just as if you have two vectors which are solutions of a
homogeneous matrix equation Av = 0, then so is their sum. For the differen-
tial equation written above you see ‘basic’ solutions are sin x and cos x and
other solutions are just linear combinations of these two. This is irrelevant
for us now. I am only trying to explain the word ‘superposition’.

Thus the statement of Fourier amounts to saying that any periodic func-
tion of period one is a sum of linear combinations of the functions: sin 2πkx
and cos 2πkx. Thus mathematically, the statement amounts to saying that
given periodic function of period one, there are numbers (an) and (bn) such
that

f(x) = a0 + (a1 sin 2πx+ b1 cos 2πx) + (a2 sin 4πx+ b2 cos 4πx) + · · ·

+(ak sin 2kπx+ bk cos 2kπx) + · · · .
Such a series is called Fourier series.

I am carrying the baggage 2πk instead of k because I am wanting pe-
riod one. If you want period 2π then you just look at sin kx and cos kx.
It is a matter of standardization. If you want to take the interval [0, 37]
then we consider the functions sin(2πkx/37) and cos(2πkx/37). Of course
k = 0, 1, 2, 3, · · · ..
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There are several problems. What is the meaning of the series? How
should we understand it? In what sense is the equality to be understood? Is
such a thing true? If not every function; which functions are like this? So on.

Prior to Fourier problems concerning series of sines and cosines did arise
in understanding waves and sounds. Fourier was studying, in a systematic
manner, conduction of heat and arrived at this problem. You should recall
that last semester we did discuss heat equation, found out that the ‘normal
density’

p(x, t) =
1√
2πt

e−x2/2t

is fundamental solution, in a precise sense. If you remember, the problem
was to describe at every time t > 0, the distribution of heat in an (two sided)
infinite rod when you know the initial distribution of heat on the rod. The
problems for a finite rod are more difficult.

Before making systematic study of the above type of series, let me add
most of mathematics originated here. In fact understanding certain problems
in Fourier series was the genesis of Set Theory by Cantor. Understanding
these issues are behind even in matters like convergence of series and so on.
Of course, series were used earlier too.

Exponentials:

The whole theory (at least for us now) can be regarded as an extension
of what we learned about Cn earlier. Let us start considering C[0, 1]. For
the time being forget about periodic etc. So it is not necessary to have
f(0) = f(1) at this moment —later when theorems appear, we need. But
the change of attitude is that we consider complex valued functions.

Let us quickly recall. f : [0, 1] → C then for each x, f(x) is a complex
number and hence is f1(x) + if2(x) where f1(x) and f2(x) are real numbers.
Thus given a complex valued function, there are two real valued functions f1
and f2 so that f = f1 + if2. The function f1 is called the real part of f and
f2 is called the imaginary part of f . You must note that these functions are
real valued.

Conversely, given two real valued functions, the above equality provides
you a complex function. Unless stated to the contrary, when we write
f = f1 + if2 we mean that these are the real and imaginary parts. Also,
bringing in the notion of convergence in C, you see that f is continuous iff
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its real part and imaginary part are continuous.

For later use, let us also make an observation. Suppose you have a se-
quence (fn = fn

1 + ifn
2 ) of complex valued functions and a function f =

f1 + if2. Then fn converges to f uniformly iff the real parts and imaginary
parts converge uniformly. This follows from a simple observation. For a
complex number z = a+ ib

max{|a|, |b|} ≤ |z| ≤ |a|+ |b|.

Thus if fn → f uniformly, then ||fn
1 − f1|| ≤ ||fn − f || and hence fn

1 → f 1

uniformly. Similarly fn
2 → f2 uniformly.

conversely, if the real and imaginary parts converge uniformly, then

||fn − f || ≤ ||fn
1 − f1||+ ||fn

2 − f2||

showing that fn → f uniformly.

We define for any real number θ,

eiθ = cos θ + i sin θ.

Then by induction and using the sine and cosine formulae, we can show

einθ = cosnθ + i sinnθ.

This is called De Moivre’s formula and you must have seen it in high school.

Actually, one defines for every complex number z, the series

exp{z} = 1 + z +
z2

2!
+

z3

3!
+ · · ·+ zn

n!
+ · · ·

This series converges. Indeed take the disc {|z| ≤ M}. Let Sn(z) be the
n-th partial sum of the above series. Then the sequence {Sn(z)} is uniformly
Cauchy in the disc because for n ≥ m

|Sn(z)− Sm(z)| ≤
n∑

m+1

Mk

k!
→ 0 as m,n → ∞.

If you take θ to be real number, then the above definition along with the fact
that i2 = −1 tells us

exp{iθ} = 1 + iθ +
(iθ)2

2!
+

(iθ)3

3!
+ · · ·+ (iθ)n

n!
+ · · ·
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= 1− θ2

2!
+

θ4

4!
+ · · ·+ (−1)n

θ2n

(2n)!
+ · · ·

+i

{
θ − θ3

3!
+

θ5

5!
+ · · ·+ (−1)n

θ2n+1

(2n+ 1)!
+ · · ·

}

= cos θ + i sin θ

where the last identification is from the expressions we obtained in our first
course for the sine and cosine functions. Thus the definition we used above
is same as the natural one defined just now. Further, if z has zero imaginary
part, that is, z is real, then this definition coincides with what we learnt
earlier.

One can prove Cauchy theorem on products of series and show, exactly
as in the real case, that

exp{z + w} = exp{z} exp{w}

justifying the use of the notation ez for exp{z}. This gives another proof of
the De Moivre formula. But we need not depend on the unproved Cauchy
rule.

Recall that integration is done by using the real and imaginary parts.
Thus for k 6= 0,

∫ 1

0
e2πiktdt =

∫ 1

0
cos(2πkt)dt+ i

∫ 1

0
sin(2πkt)dt = 0.

C[0, 1] as Cn for Huge n:

Let us from now consider the space of complex valued continuous func-
tions on [0, 1]. This will be C[0, 1] during the remaining part of our discussion.
This will replace Cn, as you will see.

We define some special functions on [0, 1] as follows.

en(t) = e2πint, n = 0,±1,±2 · · · .

The calculation of integral above can be recast in terms of these functions.

∫ 1

0
en(t)em(t)dt = 0; if n 6= m; = 1 if n = m.

We defined on Cn inner product

〈z, w〉 =
∑

zkwk; z = (z1, · · · , zn); w = (w1, · · · , wn).
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Analogously let us define an inner product on the vector spar C[0, 1] (re-
member complex valued continuous functions)

〈f, g〉 =
∫ 1

0
f(t)g(t)dt

This is indeed an inner product:
linear in the first argument f ,
conjugate linear in the second argument g;
〈f, f〉 = ∫ |f |2 ≥ 0
〈f, f〉 = 0 iff f = 0 (remember continuity of f)
〈f, g〉 = 〈g, f〉 because ∫

ϕ =
∫
ϕ.

Moreover the integrals of exponentials we evaluated above, tells us that
the family {en : −∞ < n < ∞} is an orthonormal system.

The only thing is that in Cn we have a finite orthonormal basis. If you
found n orthonormal vectors, then there are no more to extend this system.
If you found only m orthonormal vectors and m < n you can find more. You
should actually find more because you can not express every vector as linear
combination of just these m vectors.

In the present vector space we have found an infinite system of orthonor-
mal vectors. It is not clear if there are any more that can be added to this
list. Just as we expanded an vector in Cn in terms of an orthonormal sys-
tem, we can try to expand a function in terms of this orthonormal system.
Hopefully

f =
∞∑

−∞

ckek.

Back to Fourier Series:

The question then is whether such an expansion is possible and what has
it got to do with Fourier series. Well, actually, this is nothing but Fourier
series. We started out with series of sines and cosines. We now have exponen-
tials. But obviously {sinnt; cosnt} can be expressed as linear combinations
of {exp(int); exp(−int)} and vice versa. Thus linear combination of expo-
nentials and linear combination of sines and cosines are exactly the same.

So let us now turn our attention to the set up we have settled upon,
namely the vector space C[0, 1] with inner product

∫
fg and the orthonor-

mal basis {en : −∞ < n < ∞}.
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Suppose we can express f =
∑

cnen; without even knowing the sense
in which this infinite sum is to be interpreted. Then the first question is
what should be the coefficients? Going by our understanding of the finite
dimensional case we would guess

cn = 〈f, en〉 =
∫ 1

0
f(t)e−2πintdt.

Notice that conjugate of en is e−n.

Of course even if we did not know the finite dimensional case, as far as
guess is concerned we would feel

∫
fen =

∫
(
∑

ckek)en =
∑

ck

∫
eken = cn.

where we used the fact that the system (en) is orthonormal. Of course
whether we can interchange the infinite sum with integral is unclear; any
way the meaning of the infinite sum itself is unclear. This is only a thought
process to guess what the coefficients should be.

Now we define Fourier series of a function f ∈ C[0, 1] to be the series

∑
f̂kek; f̂k =

∫ 1

0
f(x)e−2πikxdx.

The numbers f̂k are called the Fourier coefficients of f ; and more precisely
this is the k-th Fourier coefficient.

Of course, yet there is no meaning for the infinite series. There are sev-
eral ways of giving meaning. The right stage for this drama is the Lebesgue
integral, but we shall not enter that stage. We shall continue to work with
familiar continuous functions and familiar Riemann integral.

Towards giving a meaning to the series, let us define partial sums

SN(x) =
N∑

−N

f̂ke
2πikx; N ≥ 1.

Following usual procedure of giving a meaning to an infinite series, we ask if
the above sequence of partial sums converges.

The fact that we have taken ‘symmetric’ partial sums will hurt you. But
do not worry. We can deal other sums as well after the smoke clears. But in
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any case that should not be main issue.

Let us first think of uniform convergence. Whether point wise or uniform,
one thing is clear. All en and all SN are period one functions. So limit, when
exists, is also of period one. Thus we are advised to restrict to period one
functions — if we are aiming at uniform convergence.

Here is the first main theorem of the theory.
Theorem: Suppose f is a period one function with (period one) continu-

ous derivative. Then SN converges to f uniformly.

Let me add period one simply means f(0) = f(1). Its derivative is pe-
riod one means f ′(0) = f ′(1). This is same as saying that when you extend
f to all of R as period one functions then it is continuously differentiable
on R. If you are restricting your attention to [0, 1] then differentiability
does not mean derivative is period one, even though original function is
so. For example f(x) = (x − 1/2)2 is a period one function, takes same
values at zero and one. It is C1 function on the interval [0, 1]. However
f ′(0) = −1 6= +1 = f ′(1).

We start with some general observations, trying to imitate the finite di-
mensional case. Let f ∈ C[0, 1] not necessarily period one function. not
necessarily differentiable. Recall that now the space C[0, 1] has metric d;

d2(f, g) = 〈f − g, f − g〉 =
∫ 1

0
|f − g|2.

1o. Does SN capture ‘all of f ’ in the span of {ek : −N ≤ k ≤ N}? Yes.
Denote this subspace by L. Then we claim that f − SN ⊥ L. to see this

take any h =
∑

ckek in L.

〈f − SN ,
∑

ckek〉 = 〈f,
∑

ckek〉 − 〈
∑

f̂kek,
∑

ckek〉

=
∑

ck〈f, ek〉 −
∑

f̂kck = 0

Remember we had exactly the same result with same proof in Cn.

2o. SN is the closest to f in the span of the vectors {ek : −N ≤ k ≤ N},
this sub space is denoted by L above.

To see this take any h =
∑

ckek in this subspace. Need to show

||f − SN || ≤ ||f − h||.
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To show this observe f − h = (f − SN) + (SN − h) and SN − h ∈ L so that
this is orthogonal to f − SN from 1o. Thus pythogoras tells

||f − h||2 = ||f − SN ||2 + ||SN − h||2 ≥ ||f − SN ||2

with equality iff SN = h.
In the above calculation, by pythogoras we mean, if f ⊥ g then

||f + g||2 = 〈f + g, f + g〉 = 〈f, f〉+ 〈f, g〉+ 〈g, f〉+ 〈g, g〉

= ||f ||2 + ||g||2

3o.
N∑

−N

|f̂k|2 ≤ ||f ||2 =
∫ 1

0
|f(x)|2dx.

This is known as Bessel’s inequality.

This is immediate from the fact

f = (f − SN) + SN ; f − SN ⊥ SN

and Pythogoras to get

||f ||2 = ||f − SN ||2 + ||SN ||2; ||SN ||2 ≤ ||f ||2

But
||SN ||2 = 〈

∑
f̂kek,

∑
f̂kek〉 =

∑
f̂kf̂k =

∑
|f̂k|2.

Same result was in Cn. Now you go back and see ‘direct computation’ i
mentioned there and how it does not make sense here.

4o. For any f ∈ C[0, 1];

∞∑

−∞

|f̂k|2 ≤ ||f ||2 =
∫ 1

0
|f |2.

This immediately follows from the inequality for all finite sums obtained
above.

Observe that convergence of the series tells us that for any f ∈ C[0, 1]
f̂k → 0 as k → ±∞.

5o. Let now f and f ′ be period one functions. Then

f̂ ′
k = −2πikf̂k.
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This is a simple consequence of integration by parts.

f̂ ′
k =

∫ 1

0
f ′(x)e−2kπixdx = f(x)e−2kπix

∣∣∣10 −
∫ 1

0
f(x)(−2kπi)e−2kπixdx.

The first term on right side is zero because the functions take same values
at both end points.

Thus differentiating f is transformed to multiplication in the Fourier do-
main.

This is an extremely powerful result as the next observation shows.

60. Let f be as in the theorem. Then the sequence (SN) is uniformly
Cauchy.

Take n < m positive integers, then

|Sn(x)− Sm(x)| = |
∑

n<|k|≤m

f̂kek| ≤ |
∑

n<|k|≤m

|f̂k|

≤
∣∣∣∣∣∣

∑

n<|k|≤m

f̂ ′
k

1

2πik

∣∣∣∣∣∣

≤ 1

2π

√ ∑

n<|k|≤m

|f̂ ′
k|2

√ ∑

n<|k|≤m

1/k2

≤ 1

2π

√∫
|f ′|2

√ ∑

|k|>n

1/k2.

Denote M =
√∫ |f ′|2/(π) we have

sup
x

|Sn(x)− Sm(x)| ≤ M
√∑

k>n

1/k2

Since the series
∑

1/k2 is convergent the tail sums can be made small and
thus the right side above can be made small for all large values of n.

This shows that the sequence of functions (SN) is Cauchy uniformly.

7o. If we now show that the sequence SN converges point wise to f we
would have proved our theorem. To this end, let us understand the partial
sums.

SN(x) =
N∑

−N

f̂kek =
∑∫

f(y)e−2πkiydy e2πikx
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=
∫
f(y)

N∑

−N

e2πik(x−y)dy.

Let us denote

DN(θ) =
N∑

−N

e2πikθ.

Then we have

SN(x) =
∫ 1

0
f(y)DN(x− y)dy.

Using formula for sum of finite geometric series,

DN(θ) = e−2πiNθ 1− e2πi(2N+1)θ

1− e2πiθ
.

When θ = 0, this is to be interpreted as (2N + 1).

DN(θ) =
e−2πiNθ − e2πi(N+1)θ

1− e2πiθ

=
e−2πi(N+1/2)θ − e2πi(N+1/2)θ

e−πiθ − eπiθ

=
sin π(2N + 1)θ

sin πθ
.

As a consequence of the orthogonality of the exponential functions, we also
get from the above summation,

∫ 1

0

sin π(2N + 1)θ

sin πθ
dθ = 1.

Thus

SN(x) =
∫ 1

0
f(y)

sin π(2N + 1)(x− y)

sin π(x− y)
dy

Change the variable, notice integrand is a period one function so that you
need not worry about range of integration, any interval of length one would
give the same answer.

SN(x) =
∫ 1/2

−1/2
f(x− y)

sin π(2N + 1)y

sin πy
dy.

Let us from now on fix a point x. We shall show SN(x) converges to f(x).
Remembering that DN integrates to one we see

SN(x)− f(x) =
∫ 1/2

−1/2
[f(x− y)− f(x)]

sin π(2N + 1)y

sin πy
dy.
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Observe that the function

ϕ(y) =
f(x− y)− f(x)

sin πy

is a nice continuous function on [−1/2, 1/2]. Its value at zero is

ϕ(0) = f ′(x) · 1
π
· (−1).

Thus we can write

SN(x)− f(x) =
∫
ϕ(y)

[
eπi(2N+1)y − e−πi(2N+1)y

] 1

2i
dy

=
∫
ϕ(y)eπiy

1

2i
e2Nπiydy −

∫
ϕ(y)e−πiy 1

2i
e−2Nπiydy

The first term on right side is (−N)-th Fourier coefficient of some contin-
uous function and hence converges to zero as N → ∞. Similarly, second term
is N -th Fourier coefficient of a continuous function which again converges to
zero as N → ∞.

This shows that for each x, SN(x)− f(x) → 0.
Since (SN) is already shown to be uniformly Cauchy, we conclude that

SN converges to f uniformly.
This completes proof of the theorem.

8o. Let f be any function as in the proof of the theorem, that is, both f
and f ′ are continuous of period one.

SN → f uniformly

Thus
SN → f uniformly

Hence
|SN |2 = SNSN → |f |2 uniformly

And thus finally ∫ 1

0
|SN |2 →

∫ 1

0
|f |2.

But

||SN ||2 =
N∑

−N

|f̂k|2 →
∞∑

−∞

|f̂k|2.

so we conclude ∑
|f̂k|2 =

∫ 1

0
|f |2.
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This is called Plancherel equality. remember we have proved an inequality
earlier, for all functions f , not necessarily f of the theorem.

9o Since polynomials are dense, it is reasonable to believe that the above
equality remains to hold for all f , not necessarily for f satisfying the theorem.
This is indeed true and we shall prove shortly. But why are we interested in
this? Let me convince you of its importance.

10o.
Consider the function

f(x) = x, 0 ≤ x ≤ 1.

This is a continuous function and of course not periodic, takes different values
at zero and one. However from what we said above,

∑
|f̂k|2 =

∫ 1

0
|f |2.

Let us see what it means. ∫ 1

0
x2dx = 1/3.

f̂0 =
∫ 1

0
xdx = 1/2.

For k 6= 0, integration by parts gives

∫ 1

0
xe−2πikxdx = − 1

2πik

Thus we have
1

4
+ 2

∞∑

1

1

4π2k2
=

1

3

In other words
∞∑

1

1

k2
=

π2

6
.

It is very interesting, in the very first course we showed that the series∑
(1/k2) converges, but we had to wait for an year to find out what the

sum is.

One can use this method to evaluate sum of even powers of 1/k. for
example

∞∑

1

1

k4
=

π4

90
.
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Try your hands on it.

Unfortunately, we still do not know sum of odd powers.

It remains to show that Plancherel equality hods for all f ∈ C[0, 1]. This
is not too difficult but needs some careful analysis.

The first step consists of understanding the map that sends f to its Fourier
coefficients. Let X = C[0, 1], space of complex valued continuous functions
on the interval [0, 1]. We equip it with the metric

d(f, g) =
∫ 1

0
|f − g|2.

Note we are not taking sup metric.

Let Y = l2 be the space of all complex sequences z = (zn;−∞ < n < ∞)
such that

∑ |zn|2 < ∞. We considered this space earlier but there are two
main differences. First, earlier we considered only real sequences. Now we
are forced to consider complex sequences. So let us do, we have no choice!
Second difference is that earlier we considered one sided sequences, but now
we are forced to consider two sided sequences. that is, functions defined on
Z rather than on N . We have no choice!

You pause for a moment and make sure that you understand. Luckily, a
series of positive numbers converges iff the (finite) partial sums are bounded.
Then the sup of the partial sums is the sum of the infinite series. This is
so even if you have two sided sequences. We said

∑ |zn|2 < ∞. You can
interpret the infinite sum as limit of the sequence

sN =
N∑

−N

|zk|2.

Even if you take, for example,

tN =
3N∑

−2N

|z2|

then this sequence tN converges and converges to the same limit as above.
But, if you are getting confused, you can just keep in mind the symmetric
sums sN . It is OK at first attempt.
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The Cauchy Schwarz inequality still holds. After all, the C-S inequality
for infinite sums was obtained as limit from the finite case. The only problem
is that we proved for real numbers. Suppose you have complex numbers
(ak : 1 ≤ k ≤ n) and (bk : 1 ≤ k ≤ n),

|
∑

akbk| ≤
∑

|ak||bk| ≤
√∑

|ak|2
√∑

|bk|2.

Here the first inequality is simply that mod of sum is smaller than sum of
mod. The second inequality is usual C-S for real numbers, no more complex
numbers!.

It is the C-S that shows

d(z, w) =

√√√√
∞∑

−∞

|zk − wk|2

is a metric on the space l2.

Exactly as in the case of the l2 that we considered, this is also complete.
Take a Cauchy sequence; show each coordinate converges; using that it is
Cauchy in your metric show that this coordinatewise limit is actually in your
space (show finite partial sums are bounded); show that the convergence
takes place in the l2-metric.

Define the map T : X → Y by

Tf = {f̂k : −∞ < k < ∞}

We already showed, right after Bessel inequality, that for f ∈ C[0, 1], the sum∑ |f̂k|2 < ∞. In other words, Tf ∈ l2. Let D be the set of all f ∈ C[0, 1]
that satisfy the theorem. We shall show that D is dense in the metric d on
the space X. Clearly, D is a linear subspace of X. Also

T (f − g) = Tf − Tg

What we proved amounts to saying that the map T is an isometry ofD into l2.

To proceed further let us recapitulate something that we discussed already
once. Let X and Y be two metric spaces and Y be complete. Suppose D is a
dense subset of X and T is an isometry of D to Y . Then we can extend T as
an isometry of X to Y . Proof is trivial. Take any x ∈ X. Since D is dense,
take pn ∈ D such that pn → x. Hence (pn) is Cauchy; use T is isometry
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to conclude (Tpn) is Cauchy in Y ; use Y is complete to get its limit and
declare it as Tx. This is good definition because if you take qn → x in D;
then d(pn, qn) → 0; T being isometry d(Tpn, T qn) → 0; thus (Tpn) and (Tqn)
have same limit. Finally, this extension is isometry because if you take x and
y and pn → x and qn → y then using the fact that metric is ‘continuous’ we
have

d(Tx, Ty) = lim d(Tpn, T qn) = lim d(pn, qn) = d(x, y).

(Did you realize we are using the same symbol d for metric everywhere!)

Returning to our problem at hand, the Fourier coefficient map T from
D ⊂ C[0, 1] to l2 is an isometry and hence can be uniquely extended as an
isometry on all of C[0, 1] to Y . Interestingly, we already have the existing
map T defined on all of C[0, 1]. Is this extension same as the existing map?
If so it is an isometry already and this is exactly what we need!

We shall sort out this next time and complete this discussion.
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