
CMI (BSc II)/BVRao Analysis, Notes 12 2014

Home Assignment:

Given a compact set K contained in an open set U , show an r > 0 such
that ⋃

x∈K

B(x, r) ⊂ U.

Solution : Suppose not. then for every n there are points xn ∈ K and
yn ∈ U c such that d(xn, yn) < 1/n. SinceK is compact there is a subsequence
of (xn) which converges to a point, say x of K. Let us take (xn) to be the
subsequence itself. If you do not like then use (xnk

) below instead of (xn).
But then

d(x, yn) ≤ d(x, xn) + d(xn.yn) → 0.

In other words, yn → x and U c being closed we conslude that x ∈ U c. But
x ∈ K and K ⊂ U . This contradiction proves the result.

OR: For each x ∈ K pick rx > 0 so that B(x, 2rx) ⊂ U . Now consider
the balls

{B(x, rx) : x ∈ K}

covers K and hence finitely many of them cover K. Say the balls around
x1, x2, · · · xk. Take

r = min{rx1
, rx2

, · · · , rxk
}

We say this will do. To argue our claim, take x ∈ K and take y ∈ B(x, r).
We need to show y ∈ U . But y is in one of the selected finitely many balls,
say, ball around xi. Thus

d(x, xi) < rxi

But then
d(y, xi) ≤ d(y, x) + d(x, xi) ≤ r + rxi

≤ 2rxi

and we know ball of radius 2rxi
around xi is contained in U . Thus y ∈ U .

OR: Consider the function

f(x) = d(x, U c).

We know it is a continuous function. Since K is compact it has a minimum
on K and the minimum is attained. Note that since K ⊂ U we see that
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f(x) > 0 for each point x ∈ U . Thus it is non-zero at points of K. Thus this
minimum of f on K must be r > 0. This will do.

K is compact and C is closed and K ∩ C = ∅ then show d(K,C) > 0.

If U = Cc then U is open; hypothesis implies that K ⊂ U and previous
exercises completes the proof. Then d(K,C) ≥ r > 0 where r is as obtained
above.

Is the above statement true if both sets are given to be closed.
Consider the two sets contained in R:

A = {1, 2, 3, 4, 5 · · ·}

B = {2 +
1

2
, 3 +

1

3
, 4 +

1

4
, 5 +

1

5
· · ·}

Of course, you could think of high school pictures too. You must have
drawn hyperbola many times and also learnt the word asymptote. Here are
subsets of R2.

A = {(x, y) : x > 0, y > 0, xy = 1.}

B = {(x, y) : y = 0}

Cn is decreasing non-empty closed sets. show ∩Cn is non-empty.
Solution: Take a point xn ∈ Cn. Since all these are in C1, a compact set

it has a convergent subsequence, say, converging to x. Since the sequence is
contained in C1 we see x ∈ C1. After the first term all terms of the subse-
quence are in C2 and hence x ∈ C2. In general after the k-th term all terms
of the sequence and subsequence are in Ck and hence x ∈ Ck.

OR: If the intersection is empty, then every point of C1 is outside some
Cn. In other words

Cc
2, Cc

3, Cc
4, · · ·

cover C1 and hence finitely many of them cover. Since Ci are decreasing, the
complements are increasing. Thus one of these covers C1. Say Cc

j ⊃ C1, or
Cj ⊂ Cc

1. But Cj ⊂ C1. The only possibility is that Cj = ∅, contradiction.

Is this true if all the sets are closed, non-empty decreasing.
Take [n,∞) subsets of R.

is this true if all the sets are closed non-empty decreasing but one is com-
pact. Yes, because if Ck is compact, consider the sets only after the k-th
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stage. Observe that closed subset of a compact set is compact. Thus all sets
after the k-th stage are compact.

How do we show that a closed subset C of a compact space K is compact?
Several ways. If you are given a collection of open sets which cover C, include
Cc and say now K is covered; take a finite sub cover and delete Cc from this
(if it is here). The remaining finitely many cover C. Alternatively, take a
sequence from C, since it is also a sequence from K take a converging subse-
quence, but C being closed the limit of the subsequence must be in C already.

In a compact space a family of closed sets is given. Every finitely many
of them have a point in common. show all the sets have a point in common.

If not, the grand intersection is empty; equivalently their complements
(which are open) cover the space; get finitely many of them which cover and
get contradiction (?).

If a metric space satisfies the above condition then show the space is com-
pact. This is precisely definition of compactness if you take complements.
Think.

If every bounded real valued continuous function attains its supremum,
then show every such function attains its infimum too.

Take bounded real f . Take g(x) = −f(x). then g is also bounded contin-
uous function, use hypothesis about sup for g and observe that gives inf for f .

When every real bounded continuous function attains its bounds then
show the space is compact.

First we show that the space is complete. Denote the space by X. Take
a Cauchy sequence (xn) Consider the function f(x) = lim d(x, xn). The limit
exists because the sequence of real numbers {d(x, xn)} is Cauchy. This is
because

|d(x, xn)− d(x, xm)| ≤ d(xn, xm) → 0 m,n → ∞.

f is continuous because |f(x) − f(y)| ≤ d(x, y). Unfortunately f may not
be bounded. So take g(x) = min{f(x), 1}. Thus g is bounded, continuous,
non-negative. Its infimum is zero. Given 0 < ǫ < 1 ( get N so that for
d(xm, xn) < ǫ for all n,m > N . Observe f(xN) = lim d(xN , xn) ≤ ǫ and
hence g(x) = f(x) ≤ ǫ. Thus g being non-negative we conclude zero is its
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infimum. This is attained at say x0. Clearly then lim d(x, xn) = 0 or xn → x.

fix ǫ > 0. Shall show we can cover X by finitely many balls of radius ǫ. if
not you can get a sequence {xn} such that distance between any two points
is at least ǫ. Let

An = {xn, xn+1, xn+2, · · ·}.

fn(x) = d(x,An); gn(x) = min{f(x), 1/2n}; n = 1, 2, 3, · · · .

Then each fn and gn are continuous functions, so is g(x) =
∑

gn(x) (why?).
Note g(x) > 0 at all points. Since all An are closed subsets we see that g1
itself is positive at all points outside A1. And gk(xn) > 0 for each k > n.
Thus g is positive at points of A1 too. Since gk(xn) = 0 for k = 1, 2, · · · , n
we see

g(xn) ≤
1

2n+1
+

1

2n+2
+ · · · =

1

2n
.

In other words infimum of g is zero but is not attained at any point.

OR: Instead of separately proving two parts as above you can start by
saying suppose there is a sequence without any convergent subsequence. re-
peat the second step above.

If every real continuous function is bounded, show that the space is
compact.

Repeat same argument above, take 1/g.

If you carefully observe, we have repeated our old proofs on the real line.
You can first complete the space and also argue as I explain din class. Think
about it.

back to Arzela-Ascoli:

Consider C[0, 1] with sup metric. Let K be a compact subset. Let us see
some of its properties.

(i) K is closed.

We knew it, but let us recall. If a is a limit point of K then every open
ball B(a, 1/n) and hence closed ball B(a, 1/n) contains points of K. Since
a 6∈ K, complements of these closed balls cover K and can not have finitely
many of them covering K.

4



Or, you can also say take any sequence in K, then it contains a subse-
quence converging to a point of K, so if the sequence itself converges to a
then a ∈ K. Thus K is closed.

Since [0, 1] is a compact subset of R, every continuous function on it is
bounded. That is, given x ∈ C[0, 1] there is a numberM such that |x(t)| ≤ M
for all t. Even if you take finitely many continuous functions then there is
one bound for all of them. In general, if you take infinitely many functions
then there may not be a common bound for all these functions. But if you
have a compact family then there is a common bound.

(ii) There is a number M such that |x(t)| ≤ M for all x ∈ K and all
0 ≤ t ≤ 1.

Indeed we know that the function

ϕ(x) = d(x, 0) = max |x(t)|

is a continuous function on C[0, 1], in particular, on K. Thus K being com-
pact this function must be bounded on K, that is, there is a number M such
that ϕ(x) ≤ M for all x ∈ K. This is what we wanted.

Since [0, 1] is a compact subset of R, every continuous function on it is
uniformly continuous. In other words, let x ∈ C[0, 1]. Given ǫ > 0, there
is a number δ > 0 such that |x(t) − x(s)| < ǫ for all t, s with |t − s| < δ.
Even if you take finitely many continuous functions then there is one δ > 0
which works for all of them. In general, if you take infinitely many functions
then there may not be a common δ > 0 which works for all them. But if
you have a compact family then there is one δ > 0 that works for all of them..

(iii) Given ǫ > 0, there is a δ > 0 such that |x(t) − x(s)| < ǫ whenever
x ∈ K and |s − t| < δ. (Of course, through out it is assumed that s and t
are in [0, 1]).

Proof is simple. Fix ǫ > 0. Remember, K being compact, there are
finitely many balls of radius ǫ/3 that cover K; say

B(xi, ǫ/3); 1 ≤ i ≤ n.

Fix δ > 0 such that

|s− t| < δ ⇒ (∀i; 1 ≤ i ≤ n)|xi(s)− xi(t)| < ǫ/3.
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This does. For, given now any x ∈ K and any s, t with |s − t| < δ; let us
pick i so that x ∈ B(xi, ǫ/3). remember, this means |x(u)− xi(u)| < ǫ/3 for
all u. Thus

|x(s)− x(t)| ≤ |x(s)− xi(s)|+ |xi(s)− xi(t)|+ |xi(t)− x(t)| ≤ 3× ǫ/3 = ǫ.

Arzela-Ascoli Theorem Let K ⊂ C[0, 1]. Then K is compact iff the
followng three conditions hold.

(i) K is closed.
(ii) There is a number M such that |x(t)| ≤ M for all x ∈ K and all

0 ≤ t ≤ 1.
(iii) Given ǫ > 0, there is a δ > 0 such that |x(t) − x(s)| < ǫ whenever

x ∈ K and |s − t| < δ. (Of course, through out it is assumed that s and t
are in [0, 1]).

Moreover, if conditions (ii) and (iii) hold for a set K, then they hold for
its closure and hence its closure is compact.

Last sentence is obvious. Indeed if a sequence of functions converges in
the space, then they converge point-wise too. Thus the same bound works
and the same δ works.

We have already observed that if K is compact, then the three conditions
hold. Let us now assume that K satisfies the three conditions and show that
it is compact. So take a sequence (xn) in K. We need to exhibit a subse-
quence converging to a point of K. Of course if we just exhibit a converging
subsequence then it must converge to a point of K because of condition (i).

Since the space C[0, 1] is complete, it is enough to exhibit a subsequence
which is Cauchy. This is achieved in two steps.

(A) there is a subsequence

xn1
, xn2

, xn3
, · · · · · ·

such that for every rational number r ∈ [0, 1] the sequence of numbers

xn1
(r), xn2

(r), xn3
(r), · · · · · ·

converges.

(B) the sequence in (A) is Cauchy.
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Let us prove (B) first. To avoid ugly notation, let us rename y1 = xn1
,

y2 = xn2
, and so on. Thus (yn) is a sequence of elements in K and for every

rational number r, the sequence of numbers {yn(r)} converges. Let us show
(yn) is Cauchy.

Fix ǫ > 0. Use condition (iii) with ǫ/3 and get a δ > 0. Take partition

0 = r0 < r1 < r2 < · · · < rk = 1

where each ri is rational and ri+1 − ri < δ. Such a partition can easily be
got. For example, you can, by taking smaller δ if necessary, assume your δ is
rational. Take now multiples of δ/2 and stop when you go out of [0, 1] taking
the last point to be one.

Now choose N such that

n,m ≥ N ⇒ (∀i 1 ≤ i ≤ k) |yn(ri)− ym(ri)| < ǫ/3.

This is possible because each of the sequences (yn(ri) : n ≥ 1) is convergent
and hence Cauchy. We claim this N will do.

To see this, fix any n,m > N and any t ∈ [0, 1]. we need to show that
|yn(t)− ym(t)| < ǫ. Let us say, ri ≤ t ≤ ri+1

|yn(t)− ym(t)| ≤ |yn(t)− yn(ri)|+ |yn(ri)− ym(ri)|+ |ym(ri)− ym(t)|

≤ 3× ǫ/3 = ǫ.

The first and last terms are smaller than ǫ/3 by choice of δ and the middle
term by choice of N .

This proves (B)

Let us now prove (A). This is routine ‘diagonal argument’ we have done
once long ago. Let us do it again. Again to avoid ugly notation let us refor-
mulate our problem as follows.

(AA) For each i = 1, 2, 3, · · · we have a bounded sequence of reals,
{xi(n) : n ≥ 1}. The claim is that there is one subsequence of integers {n1 <
n2 < n3 < · · ·} so that for each i the subsequence {xi(n1), x

i(n2), x
i(n3), · · ·}

converges.

How does this show (A)? We are given a sequence of functions (xn) from
K. So for each rational r we can evaluate our functions at this point to obtain
a sequence of numbers {x1(r), x2(r), x3(r), · · ·}. This sequence is bounded by
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condition (ii) of the theorem. Thus we have countably many sequences as
in the above para. the only difference is that in the earlier para I have one
sequence for each i, here we have one sequence for each r. But it does not
matter because the set of rationals is countable and we can enumerate it as
one sequence. Thus (A) is a consequence of (AA)

We shall now proceed to prove (AA). The idea is simple but execution
needs vocabulary. Here is the idea. List your sequences as follows.

x1(1), x1(2), x1(3), x1(4), · · ·

x2(1), x2(2), x2(3), x2(4), · · ·

x3(1), x3(2), x3(3), x3(4), · · ·

...

Since the first row is bounded, select a subsequence which converges. In other
words, put cross marks on some terms so that if you read the sequence along
the cross marks then it converges. Now read the second row only along the
cross marks. Since it is bounded, there is a subsequence which converges.
In other words if you make some cross marks into double crosses, then the
second row read along the double crosses converges. Read the third row only
along the double crosses and make some of these into triple crosses so that
when you read third row along the triple crosses it converges. Continue. The
required subsequence is the first crossed place, second double crossed place,
third triple crossed place etc. This does. Too much english!

Here is the execution. Choose

n11 < n12 < n13 < · · · (1)

so that the sequence

x1(n11), x1(n12), x1(n13), · · ·

converges. Possible because we started with a bounded sequence. Now con-
sider the sequence of numbers

x2(n11), x2(n12), x2(n13), · · ·

and take a subsequence that converges. That is,

n21 < n22 < n23 < · · · (2)
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from among (1) so that

x2(n21), x2(n22), x2(n23), · · ·

converges. Now consider

x3(n21), x3(n22), x3(n23), · · ·

and take a subsequence that converges. That is

n31 < n32 < n33 < · · · (3)

from among (2) so that

x3(n31), x3(n32), x3(n33), · · · .

In general choose

nk1 < nk2 < nk3 < · · · (k)

from among

nk−1,1 < nk−1,2 < nk−1,3 < · · · (k − 1)

so that
xk(nk1), xk(nk2), xk(nk3), · · ·

converges. Put

n1 = n11, n2 = n22, n3 = n33, · · · (∗).

We claim that for each i,

xi(n1), xi(n2), xi(n3), · · ·

converges. We first argue that nk > nk−1. This is because the k-th selection
is a subset of (k−1)-th selection. In other words, at the worst we might have

nk1 = nk−1,1, nk2 = nk−1,2, · · ·nk,k−1 = nk−1,k−1

showing nk = nkk > nk−1. Thus we have a strictly increasing sequence of
numbers (nk).

Since (*) is a subsequence of (1) we see that the first sequence converges
along this subsequence. Since (*) is a subsequence of (2) except possibly
for the first term, we see second sequence converges along the subsequence.
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Since (*) is a subsequence of (3) except possibly for the first two terms we
see that the third sequence converges along this subsequence. In general (*)
is a subsequence of (k) except possibly for the first (k− 1) terms so that the
k-th sequence converges along this subsequence.

This completes proof of (AA) and thus of (A) and thus of the theorem

There are just two points that need too be mentioned.
Firstly, I used a phrase like ‘the first sequence converges along this sub-

sequence’. we have never precisely defined what it means. I hope it is clear,
but here it is. suppose we have a sequence a = (an) of real numbers and a
strictly increasing sequence of integers S = (mi). We say that the sequence
a converges along the subsequence S, if the sequence {am1

, am2
, am3

, · · ·}
converges.

Second point is the following. we did some construction by induction. I
cautioned once that when ever you do such a construction, you should pre-
cisely write down what you are going to do and then carry out. Carry out
first step and assuming that you constructed up to (k − 1)-th step, explain
how you would do next step. do not say ‘like this’ ‘like that’ ‘so on’ etc. I
may also add that subtle point is that when you before hand list properties,
they should be interpretable inductively. if you are not clear you should refer
too an earlier notes where this was discussed.

I carried out an inductive construction without listing before hand what
I am proposing to do. That was done in order not to interrupt the thought
process set in motion by the motivation. Here is the claim. We construct for
each k a strictly increasing sequence

Sk = {nk1, nk2, nk3, · · ·}

of natural numbers so that (i) elements of Sk are among Sk−1 and (ii) the
k-th sequence (xk) converges along Sk.
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