
CMI (BSc II)/BVRao Analysis, Notes 15 2014

Plancherel:

We have X = C[0, 1], complex valued continuous functions on [0, 1] with
metric

d(f, g) =

√

∫ 1

0
|f − g|2

We have l2, space of (two sided) infinite sequences which are square summable
with metric

d(a, b) =

√

∑

|ak − bk|2.

We have map from X to Y

Tf = {f̂k : −∞ < n <∞}.

We have the set D of all functions that satisfy the convergence theorem.
That is, all C1 functions on [0, 1] with f(0) = f(1) and f ′(0) = f ′(1).

We claim that D is dense in C[0, 1]. Remember the metric is d above,
not the sup metric. Of course, D can not be dense in sup metric. This is so
because convergence in sup metric, in particular, implies point-wise conver-
gence and so period one stays in the limit (though not differentiability).

Let f be given. Assume that f is real valued. Let ǫ > 0 be given. By
Weierstrass we can get a polynomial P with sup distance from f smaller than
ǫ. Since length of interval of integration is one, we see d(f, P ) < ǫ.

To continue, here is an observation. Given −∞ < a < b < c < d < ∞
there is a C1 function ϕ on R such that ϕ(x) is

zero for x ≤ a;
then increases to one as x increases to b;
then remains one up to c;
then decreases to zero as x further increases to d;
then remains zero for x ≥ d.
Such a function, actually C∞ function was constructed last year. But

since we do not need C∞ now, we can do it in a simpler way as follows.

Define ψ on R:
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zero below a;
between a and b its graph is an isosceles triangle with base [a, b] and

height +2/(b− a) thus graph is above x-axis;
again zero between b and c;
between c and d its graph is an isosceles triangle with base [c, d] and

height −2/(d− c) thus graph is below x-axis;
from d onwards zero again.
Now take indefinite integral

ϕ(x) =
∫ x

−∞
ψ(t)dt.

By fundamental theorem of calculus, ϕ′ = ψ and is hence continuous and ϕ
has all the required properties.

Now to continue with our earlier argument, let P be a real polynomial
on [0, 1] Suppose |P | ≤M . Take ϕ of the above paragraph with

a = 0; b = 1/8M ; c = 1− (1/8M); d = 1

and take the product g = Pϕ. Observe that g and g′ are continuous and
periodic; g and P agree on a large part of the interval (namely, on [b, c]) and
direct calculation shows you d(P, g) < ǫ

By triangle inequality, we have proved the following. Given any real con-
tinuous f on [0, 1], there is g ∈ D with d(f, g) < ǫ. Complex case follows. If
f = f1 + if2 complex valued, get g1 and g2 for f1 and f2 with ǫ/2 and argue
that by taking g = g1 + ig2 we have d(f, g) < ǫ and g ∈ D.

All this goes to show that D is a dense subset of C[0, 1].

Observe that we have already shown, after Bessel inequality,

∑

|f̂k|2 ≤
∫

|f |2

Since T (f − g) = Tf − Tg, conclude

d(Tf, Tg) ≤ d(f, g)

In other words, T is a continuous map. But remember that T is an isometry
on D. If you now take f, g ∈ C[0, 1]; you can get fn ∈ D; fn → f and
gn ∈ D; gn → g. Since both T and the distance function are continuous, we
get

d(Tf, Tg) = lim d(Tfn, T gn) = lim d(fn, gn) = d(f, g)
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This shows that T is an isometry on all of X into Y .

since T0 = 0, taking g = 0 we get Plancherel for all f ∈ C[0, 1].

Thus we have completed proof of Plancherel identity and thereby com-
pleted proof of the fact

∑

(1/k2) = π2/6.

Jacobi identity:

For real number t > 0 define

ϑ(t) =
∞
∑

−∞
e−n2πt.

This is called theta function. This series is convergent because exp{−πt} < 1
and geometric series

∑

an converges and the above series is dominated by this
geometric series.

This function appears in many contexts: Riemann zeta function, number
theory, statistical physics. Here is an useful identity due to Jacobi.

ϑ(t) =
1√
t
ϑ(1/t).

We shall prove this identity now. Consider the function

f(x) =
∞
∑

−∞
e−(x−n)2/2t; 0 ≤ x ≤ 1.

This series is uniformly convergent. In fact, fix any x ∈ [0, 1].
If |n| = 2, then (x− n)2 ≥ 12; if |n| = 3, then (x− n)2 ≥ 22; and so on; thus
this series is dominated (beyond the terms n = 0,±1) again by a convergent
series of numbers and is hence uniformly convergent.

In particular this series defines a continuous function on [0, 1]. This is
also periodic, f(0) = f(1); it is the same sum, just the terms get shifted. Let
us compute its Fourier coefficients.

f̂k =
∫ 1

0

∞
∑

−∞
e−(x−n)2/2te−2πikxdx;

Because of uniform convergence you can interchange the order of integration
and summation;

=
∞
∑

−∞

∫ 1

0
e−(x−n)2/2te−2πikxdx;
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Now a change of variable and the realization that exp{2πikn} = 1 for any
integer n will tell us the following. For example take the term n = −1

∫ 1

0
e−(x+1)2/2te−2πikxdx =

∫ 2

1
e−y2/2te−2πikydy

(too lazy to write for general ±n) we see

f̂k =
∫ ∞

−∞
e−y2/2te−2πikydy.

Fortunately, this is something we had already known, done under the name
characteristic function of the normal distribution. Recall

1√
2π

∫ ∞

−∞
e−x2/2eiuxdx = e−u2/2.

Changing the variable x to y/
√
t we get

1√
2πt

∫ ∞

−∞
e−y2/2teiuy/

√
tdy = e−u2/2.

Remember t > 0 is fixed. Use this formula with u = −2πk
√
t to see

1√
2πt

∫ ∞

−∞
e−y2/2te−2πiktydy = e−4π2k2t/2 = e−2π2k2t.

or ∫ ∞

−∞
e−y2/2te−2πiktydy =

√
2πt e−2π2k2t.

Thus returning to our calculation

f̂k =
√
2πt e−2π2k2t.

What an achievement! we have been able to evaluate a rather complicated
looking integral, the integrand is itself an infinite series.

Suppose that someone tells us that the Fourier expansion is valid for our
function, that is

f(x) =
∞
∑

−∞
f̂n e2πinx.

Then we see that for every x ∈ [0, 1]

∞
∑

−∞
e−(x−n)2/2t =

∞
∑

−∞

√
2πt e−2π2n2te2πinx.
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Read this equation for x = 0 to get

∞
∑

−∞
e−n2/2t =

∞
∑

−∞

√
2πte−2π2n2t.

or
1√
2πt

∞
∑

−∞
e−n2/2t =

∞
∑

−∞
e−2π2n2t.

read this equation for t/2π instead of t.

1√
t

∞
∑

−∞
e−n2π/t =

∞
∑

−∞
e−n2πt.

This is precisely what we are looking for.

The validity of Fourier expansion can be justified by differentiating the
series for f(x) term by term and showing that the series so obtained is uni-
formly convergent. Recall that if the term-by-term derived series is uniformly
convergent then the original series can be differentiated term-by-term. We
also can see that the derived series is continuous and period one function.
All this just depends on the fact that when 0 < a < 1, the series

∑

n≥1
nan

converges. However we shall not pause to verify the details.

Returning to the first convergence theorem, it is also possible to prove con-
vergence theorem for not necessarily smooth functions. Let f be a continuous
periodic function. Define the partial sums SN as earlier for N = 0, 1, 2, · · ·.
Now take their averages

σn =
1

n
{S0 + S1 + · · ·+ sn−1}

Then σn converges uniformly to f on [0, 1]. This is known as Fejer’s theorem
and proved by realizing that

σn(x) =
∫

f(y)Fn(x− y)dy

where Fn is Fejer kernel

Fn(θ) =
1

n

[

sinnπθ

sin πθ

]2

As you may have noticed we are dealing with expressions like
∫

f(y)K(x− y)dy.
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This leads to a general theory called convolutions. Thus the above function
of x is called convolution of the two functions f and K.

Thus SN is convolution of f and DN ; whereas σn is convolution of f and
Fn. The point is that these functions DN or Fn put more and more ‘mass’ at
the point zero as N or n becomes large; thus when you translate by x they
put more and more mass at x and thus capture the value of f at x. This
concept has a beautiful theory behind it that goes by the name of approxi-
mate identities. But we shall discuss no more.

This completes our discussion of Fourier series.

HA:

Three problems from home assignments need to be sorted out.

1. (♠) :

There is again an error, now in the last home work problem.
As pointed out by Uma, it is not a metric. Here is the idea, if you have

two points on the circle, their distance is the length of the ‘smaller part’ of
the arc between them. My error lies in saying that for points in (0, 1) the
distance is the good old one. No.

Here is the correction and very brief solution.

Let X = [0, 1] usual metric. Let Y = (0, 1) ∪ {♠} Thus Y has all points
of X except zero and one, instead it has one extra point. This is the bag
containing zero and one. Here is the metric

d∗(s, t) = min{|t− s|; s ∧ t+ 1− (s ∨ t)}; 0 < s, t < 1

d∗(s,♠) = d∗(♠, s) = min{|s− 0|, |s− 1|} = s ∧ (1− s); 0 < s < 1.

d∗(♠,♠) = 0.

If 0 < s < t < 1 then you can go from s to t directly travelling distance
t − s or you can go from s to 0 which is same as 1 and then to t, you
get s + (1 − t). This explains the first formula. The second formula is sim-
ilarly explained: to go from s to 0 which is same as 1, take the shortest route.
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Note that in the definition of d∗ the two quantities whose minimum is
being taken add to one so that the distance is always at most 1/2.

The questions are: Does this satisfy rules for being distance function?
Is the space homeomorphic to the circle? There appear to be several smart
ways.

Probably, the best way is to map the space Y onto the circle by f(s) =
(cos 2πs, sin 2πs) and f(♠) = (1, 0). This is clearly one-one and onto. Arc
length is a distance on the circle. Arc length means distance between two
points is defined as the angle they make with the origin; you take the one
that is at most π. This distance gives you the usual notion of convergence
on the circle.

Now argue that the map f is nearly an isometry; well it is not, it multi-
plies distance exactly by 2π.

The essential point of this exercise is the following. In the space Y , if
you take a point x different from ♠, then a sequence converges to x iff it
converges in the space X already. Further, in the space Y , a sequence of
points, different from ♠ converges to ♠ iff they converges to either zero or
one in the space X.

2. det one matrices:

The problem is to show that the space of matrices of determinant one
is connected. We fix a k and consider only matrices of order k × k. Recall
the concept of convergence is entry wise; that is, a sequence of matrices Mn

converges to a matrix iff for each i, j their (i, j)-th entries converge. This is
same as identifying the space with an appropriate subset of Euclidean space
of dimension k(k − 1)/2.

The plan is to show that it is path connected. Probably you can do easily
using the Lie group formalism, or simple group theory and connected compo-
nents, I have not thought about it. Probably, you can also do it by any one
of several canonical reductions, like echelon form etc. But there are several
hands on calculations, via: orthogonalize, normalize, (Gram-Schmidt) and
rotate — go to identity matrix from any where. This is lengthy but you can
easily walk through. Another one is to go to signed permutation matrix and
then go to identity. I shall outline the later.
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In what follows, path always means continuous path. Continuity is easy
for you to verify and so we do not mention. Remember Image of a contin-
uous function defined on an interval is a connected set. Thus if you exhibit
a path from a given matrix (of the space) to identity matrix, then the space
is connected. Because then, there is a path between any two matrices. In
case there is a disconnection of the space as A ∪ B, union of two disjoint
non-empty closed sets; then a path from any point of A to any point of B
gets disconnected.

So letM be a given k×k matrix of determinant one. We shall show a path
from it to the identity matrix. this is done in two steps. Let e1, e2, . . . , ek
be the standard orthonormal basis. We show a path from M to the matrix
where each row is ±ei and all i appear. Second step is to show a path from
there to I.

Just keep in mind that non-singularity means just that the rows are in-
dependent. Determinant is a continuous function of the matrix. Thus rows
of M are independent and span all of k-dimensional space Rk.

Let r1 be the first row of M . There is one ei which is not in the span of
the other rows. Fix one such. Let ri = aei + v where v is in the span of the
other vectors and more importantly, a 6= 0. Let f(λ) be the matrix with first
row aei + λv and other rows as they are. No matter what λ is, this is not
in the span of the vectors {r2, r3, · · · , rn} Because if it were then aei would
be and a 6= 0 tells ei would be. Thus independence of rows of M and the
fact that this new first row is not in the span of the rest tells you that rows
of f(λ) are also linearly independent and hence this is non-singular. If g is
f divided by its determinant (divide one row); so that det remains one; you
have a path from the given matrix to a matrix whose first row is aei with
a 6= 0. All this is to make sure that your path lies in your space.

Now consider the matrix with first row λei where λ ranges between a and
1 in case a > 0; and ranges between a and −1 in case a < 0(and divide by
det). You get a path to the matrix whose first row is ±ei. Remember i and
the sign ± is not at our disposal, depends on the given matrix.

Thus given matrix has a path to a matrix with first row ±ei for an i and
the other rows remain as they are. Most important, the path is in our space.
Now look at the second row and span of the other (k − 1) rows and argue
exactly as above. Remember ±ei is already in the first row now, the new
vector you capture is some ±ej with j 6= i. Get a path to a matrix whose
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first two rows are ±ei,±ej.

Continue by induction to get a path from the given matrix to a matrix
whose rows are ±e1,±e2, · · · ,±ek in some order. Of course if these rows are
e1, · · · , ek then we have I. But we do not know. Instead of going from here,
we shall come from I to this matrix with a path. We start with two simple
observations.

Consider only 2× 2 matrices. There is a path from the matrix

(

−1 0
0 −1

)

to I. In fact the path is
(

cos θ sin θ
− sin θ cos θ

)

from θ = 0 to θ = π (may be in the reverse direction). Note that all the
matrices above are det one matrices (rotation).

Second observation is the following; again only 2 × 2 matrices. There is
a path from

(

0 1
−1 0

)

to I. In fact the the same path as above, but now from θ = 0 to θ = π/2.
similarly, there is a path from

(

0 −1
1 0

)

to I.
Now let us return to our original problem. We start with I and make a

path to a matrix A of det one whose rows are ±ei. Just to make writing
simpler, let us denote fi is +ei if it appears in the matrix A; fi is −ei if this
appears in A. Thus fi appears as arrow in A and this is ±ei.

Step 1: A consists of rows f1, f2, · · · , fk in that order.
Thus A is diagonal and −1 appears at an even number of places, because

det is one. Thus take two places and in that coordinate axes apply the rota-
tion mentioned above to I to make those negative. Repeat until you achieve
the matrix A. Since −1 is at even number of places, changing two at a time
yields final result.
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Step 2: Suppose we used ei in the j-th row and −ej at i-th row and others
are ep at p-th row (p 6= i, p 6= j). Or we have used −ei in the j-th row and ej
at i-th row and others are ep at p-th row (p 6= i, p 6= j). Thus one negative
sign and one row permutation applied to I, so that the determinant remains
one. In both cases the rotations in the corresponding coordinate axes will
give the desired result.

Step 3: general case. Since A consists of rows fi in some order, there
is a permutation π of {1, 2, · · · , k} such that fπ(i) appears in the i-th row.
Any permutation is a composition of transpositions and each transposition
changes the sign of the determinant. Using these two facts and the rotations
in two coordinate axes at a time we can complete the proof.

The main point is either you have even number of minus signs and even
number of transpositions OR odd number of minus and odd number of trans-
positions.

This can be made precise and something needs to be written, but I am
not writing because I believe there must be a better way. Probably you show
that det positive matrices is connected and our space is an obvious continu-
ous image of it.

3. Baire category and polynomials:

Let f be an infinitely differentiable function on [0, 1].

(∃ k) (∀ x) f (k)(x) = 0 implies f is a polynomial.
In fact it is a polynomial of degree at most k that appears in the existential

quantifier. This you already know.
It is a simple ‘backward’ argument. Take such k. since derivative of f (k−1)

is zero conclude f (k−1) is a constant a0. conclude f (k−2) is a0 + a1x. Then
conclude f (k−3) must be a0 + a1x+ a2x

2 etc.
Of course instead of etc you use induction. We have done it.

The problem to be settled is
(∀ x) (∃ k) f (k)(x) = 0 implies f is a polynomial.
Thus for each x there is some number n(x) such that the n(x)-th deriva-

tive at x equals zero.

I had already mentioned that this is not an easy problem. Actually the
idea is simple. Let us start with some observations. The first two observa-
tions spell out the idea and the rest is just an elaboration using bare.
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1o. Suppose we know f (5) = 0 on (1/3, 2/3) and f (8) = 0 on (1/4, 1/2).
Then actually f (5) = 0 on the union (1/4, 2/3).

This is because f is a polynomial P (x) in (1/3, 2/3) and a polynomial
Q(x) in (1/4, 1/2). Thus in the common part f equals both P and Q. In
other words the two polynomials equal on the common part, which is a non-
degenerate interval. This implies that the two polynomials must be same.

2o. Suppose (i) at every point x of C Cantor set f (8)(x) = 0 and (ii)
f in each open interval complementary to C, we know f is a polynomial
(depending on the interval). Thus in one deleted interval it may be poly of
degree at most 20 and in other deleted interval it may be poly of degree at
most 100. Then we claim that actually f is a polynomial of degree at most 8.

You see the interesting formulation. If f (8)(x) is zero for all points of an
open interval you can say that f is a poly of degree at most 8 on that open
interval. But if f (8)(x) is zero for all points of Cantor set, it does not make
sense to say that f is a poly of degree at most 8 at all points of the Cantor set.

To get clear idea whether such a thing is possible at all, take the function
h(x) = d(x, C) which is continuous and is zero exactly at points of C. (We
can give many examples of such continuous functions which are zero exactly
at points of C). If

f(x) =

x
∫

0

h(y)dy

then derivative of f is zero exactly for points of the Cantor set. You can keep
taking indefinite integrals. pause and think.

Let us prove the assertion 2o. The proof needs a couple of steps.
First we claim that not only f (8)(x) but f (k)(x) is zero for all k ≥ 8 and

all x ∈ C. The crucial point is that f is differentiable any number of times
and every point of C is a limit point of C. Given x ∈ C, the second property
enables you to take pn ∈ C, pn 6= x and pn → x. The first property enables
you to calculate

f (9)(x) = lim
f (8)(pn)− f (8)(x)

pn − x
= 0.

Thus f (9)(x) = 0 for all x ∈ C. Now use induction.
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The plan is to show that at every point f (8)(x) = 0. Of course this is
granted to you for points in C. Need to show for points outside C, that is,
in each of the deleted intervals.

So let us fix any interval (a, b) complementary to C. Thus a and b are
in C. Let us say f is a poly of degree k on this interval. In case k ≤ 8,
then there is nothing for you to do; by differentiation, you get f (8)(x) = 0
on this interval. Suppose k > 8. For instance say k = 9. Then f (8)(x) is a
continuous function on [a, b] and equals zero at end points and its derivative,
namely f (9) is zero inside the interval should tell you, by integration, f (8) ≡ 0
on all of [a, b].

In the general case you repeat the same argument. Suppose k > 8. Re-
member: we know higher derivatives are all zero at points of C. Thus f (k−1)

is zero at the end points a and b of the interval [a, b] and it is continuous and
f (k) is zero inside. Thus f (k−1) ≡ 0 on [a, b]. Now argue f (k−2) ≡ 0 on [a, b]
and continue till you reach 8. This completes the proof of 2o.

30. Let us return to our problem. Set

Ak = {x : f (k)(x) = 0} k =, 1, 2, 3, · · · .

Then each Ak is closed because each derivative is continuous and ∪Ak = [0, 1]
by hypothesis.

The sets Ak, as of now, may neither increase nor decrease.
For example, f(x) = x3 + x has f ′(0) 6= 0 but f ′′(0) = 0.
For g(x) = x2 we have g′(0) = 0 but g′′(0) 6= 0.

However, their interiors Ao
k are increasing. This is because, if the k-th

derivative is zero on an open interval, then the later derivatives are zero on
that open interval.

But interestingly, suppose A0
k is disjoint union of non-empty open inter-

vals Ip = (ap, bp) : p = 1, 2, · · ·. Then none of these end points can be interior
points at any time later. This is precisely the content of observation 1o. Thus
any future interiors that get added are disjoint to what you already have.

This observation has the following implication. Let

V = ∪Ao
k

say V is the disjoint union of open intervals In : n ≥ 1. Remember any
(non-empty) open set is union of disjoint non-empty open intervals in only
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one way. Then each of these In is already contained in some Ao
k.

This in turn has the following implication. In each In our f is a polyno-
mial.

Let us denote P = [0, 1] − V . There are two possibilities: either P is
empty or not. Suppose it is empty, then V is all of [0, 1]. In other words
the increasing union Ao

k covers all of the compact [0, 1] and so must already
equal this for some k and this then completes what we wanted to set out to
prove.

Let us now assume that P 6= ∅. We claim that it must be a perfect set.
Indeed it is closed being complement of open set V . If it has a point which
is not a limit point, then, we have two intervals (a, b) and (b, c) in V but b is
not. But then as mentioned above f (i) ≡ 0 in (a, b) and f (j) ≡ 0 in (b, c). If
m = i ∨ j then f (m) = 0 on both the intervals and hence, by continuity, on
all of (a, c). Contradiction because then (a, c) ⊂ Ao

m.

Thus P is a non-empty perfect set. Of course

P = (A1 ∩ P ) ∪ (A2 ∩ P ) ∩ (A3 ∩ P ) ∪ · · · .

But P is a polish space in its own right and these are closed subsets of P and
thus one of them must contain an open subset of P . In other words there is
an k and open interval (a, b) such that

(a, b) ∩ P ⊂ Ak ∩ P

. Now argument 2o leads to a contradiction. Every point of P in (a, b) is a
limit point of P and so not only f (k)(x) = 0 for all x ∈ (a, b)∩P we actually
have

f (m)(x) = 0; ∀m ≥ k ∀x ∈ (a, b) ∩ P.
This will help you to show (either by differentiation or by integration, as the
case may be) to show f (k)(x) = 0 for all x in any of the deleted intervals.
This ultimately shows that f (k)(x) = 0 for all x ∈ (a, b). In other words
(a, b) ⊂ Ao

k and would have no point in P . This is a contradiction.
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