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This semester we shall not continue with calculus. So this exercise set
does not represent our topics. It is intended to bring you back to the mood
and also remind you that there are many interesting matters we did not
discuss.

1. Show that there are no real numbers a and b such that 1
a
+ 1

b
= 1

a+b
.

But there are complex numbers satisfyng it.

2. Let a and b be real numbers. Show

∫ ∞

0

1

1 + x2

xb − xa

(1 + xa)(1 + xb)
dx = 0.

Deduce
∫ ∞

0

1

1 + x2

1

1 + xa
dx =

1

2

∫ ∞

0

1

1 + x2
dx =

π

4
.

3. Fibonacci numbers are defined by F0 = F1 = 1;Fn+2 = Fn+1 + Fn for

n ≥ 0. Show
∞
∑

0
Fnt

n = 1
1−t−t2

.

4. Let f and g be functions on R to R which are differentiable as many
times as needed below. Show Leibniz’s rule:

Dp(fg) =
p
∑

k=0

(

p

k

)

Dkf Dp−kg.

Calculate the first ten Bernoulli numbers defined by

t

et − 1
=

∞
∑

0

Bn

n!
tn.

Show
n−1
∑

j=0

ejt =
ent − 1

t

t

et − 1
= f(t)g(t) say.

Show
n−1
∑

j=0

jp =
p
∑

k=0

(

p

k

)

(Dkf)(0) (Dp−kg)(0).
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=
p
∑

k=0

(

p

k

)

nk+1

k + 1
Bp−k =

p
∑

k=0

(

p+ 1

k + 1

)

nk+1

p+ 1
Bp−k.

Deduce

1 + 2 + 3 + · · ·+ n =
1

2
n2 +

1

2
n.

12 + 22 + 32 + · · ·+ n2 =
1

3
n3 +

1

2
n2 +

1

6
n.

13 + 23 + 33 + · · ·+ n3 =
1

4
n4 +

1

2
n3 +

1

4
n2.

110 + 210 + 310 + · · ·+ n10 =

1

11
n11 +

1

2
n10 +

5

6
n9 − n7 + n5 − 1

2
n3 +

5

66
n.

5. Let f be C1 on [1,∞). Show

n
∑

1

f(k) =
∫ n

1
f(x) dx +

f(1) + f(n)

2
+
∫ n

1

(

x− [x]− 1

2

)

f ′(x) dx

P1(x) = x− 1/2 on [0, 1), extended periodically to all of R. Deduce

n
∑

1

f(k) =
∫ n

1
f(x) dx +

f(1) + f(n)

2
+
∫ n

1
P1(x)f

′(x) dx

This is known as the first derivative formula (of Euler).

Let us now assume f is C2. Set P2(x) = x(x − 1) + 1/6 on [0, 1),
extended periodically to all of R. Show

n
∑

1

f(k) =
∫ n

1
f(x) dx+

f(1) + f(n)

2
+
f ′(n)− f ′(1)

12
−1

2

∫ n

1
P2(x)f

′′(x) dx

This is the second derivative formula.

These are Euler Summation formulae.

P2 is continuous and determined by P ′
2 = 2P1;

∫ 1

0
P2(x)dx = 0.

Here are special cases. Read Err as Error.
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(a) f(x) = 1/x gives
n
∑

1
1/k = log n+ C + Err(n).

C = 1−
∫ ∞

1

x− [x]

x2
dx; Err(n) =

1

2n
+
∫ ∞

n

P1(x)

x2
dx.

(b) f(x) = log x gives

log n! = (n+ 1/2) log n− n+ C − Err(n).

giving Stirling formula n! ∼ eCe−nnn+1/2. I hope you remember
that C = log

√
2π.

(c) Fix a number s > 0 and s 6= 1. Then f(x) = 1/xs gives

n
∑

k=1

1

ks
=

n1−s

1− s
+ Cs + s

∫ ∞

n

t− [t]

ts+1
dt

where

Cs = 1 +
1

s− 1
− s

∫ ∞

1

t− [t]

ts+1
dt.

Letting n → ∞, note that Cs for s > 1, is nothing but the Rie-
mann zeta function

∑

1/ks. This last summation does not make
sense for 0 < s < 1 where as the above expression for Cs makes
sense.

(d) f(x) = log x/x gives

∑ log k

k
=

1

2
(log n)2 +

1

2

log n

n
+ C − Err(n)

6. Let C be the set of all pairs (a, b) of real numbers with usual addition
(+) and multiplication given by (a, b)×(c, d) = (ac−bd, ad+bc). Show
that (C,+,×) is a field.

Let M be the set of all 2×2 matrices of the form

(

a b
−b a

)

where a, b

are real numbers. With usual addition and multiplication of matrices,
show that it forms a field.

Let Q be the set of all polynomials p(t) in one variable t with real
coefficients. Consider usual addition and multiplication of polynomials.
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Say p1 ∼ p2 if there is a polynomial p such that p1− p2 = (t2+1)p. Let
P be the set of equivalence classes. Show that the equivalence relation
respects (?) the operations of addition and multiplication. Show that
P is a field.

Show that the three fields above are isomorphic in a ‘canonical way’.

For even integer n ≥ 1, show that there are n×n invertible real matrices
A and B such that

A−1 +B−1 = (A+B)−1.

7. Let Q be R4 with points written as (a, b, c, d) = a + bi + cj + dk. Use
coordinate-wise addition. Multiplication is ‘prescribed’ by
i2 = j2 = k2 = ijk = −1.
Show ij = k, jk = i, ki = j and ji = −k, kj = −i, ik = −j.
Show that Q is nearly a field, it misses only commutativity of multipli-
cation. It is called skew-field.

Show M , the set of 4×4 real matrices of the form











a −b −c −d
b a d −c
c −d a b
d c −b a











is ‘canonically’ isomorphic to the above skew field. This skew field is
called ‘Quaternions.’
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8. Let X be any set and P (X) be its power set, that is, collection of all
subsets of X. Define for A,B ⊂ X, their symmetric difference, by.
A∆B = (A− B) ∪ (B − A) = {x : x is in exactly one of the sets.}.
Show that A1∆A2∆A3∆ · · ·∆An consists of points that belong to an
odd number of these sets; in whichever order you operate.

Show that P (X) is a group under the operation ∆.

Let H ⊂ P (X) be the collection of finite sets. Show that H is a
subgroup.

Let H ⊂ P (X) be the collection of countable sets. Show that H is a
subgroup. If H is the collection of countably infinite sets then is it a
subgroup.

9. Let G be a group and X a non-empty set. The collection of functions
on X to G, denoted by GX , is a group with pointwise (?) operations.

The set 2 = {0, 1} is a group under addition modulo 2. What is the
relation between the group 2X and the earlier P (X) group.

10. Instead of finite union, you can define union of any family of sets.
Suppose C is a collection of sets. Then their union, ∪C, is the set of
all objects x such that x ∈ C for some setsC ∈ C. Similarly, ∩C is the
collection of all objects x such that x ∈ C for every C ∈ C.
Prove DeMorgan’s laws

(∪C)c = ∩Cc; (∩C)c = ∪Cc; where Cc = {Cc : C ∈ C}.

11. For a sequence of sets (An), we define lim supAn to be the set of all
objects x such that x belongs to An for infinitely many values of n.
When this happens for an object x then we also say that x ∈ An

frequently. Similarly, lim inf An is the set of all objects x such that
there is an n0 and x ∈ An for every n ≥ n0. When this happens for an
object x we also say that x ∈ An eventually.
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Prove De Morgan’s laws:

(lim supAn)
c = lim inf Ac

n; (lim inf An)
c = lim supAc

n.

If X is the universe of discourse (this means all sets we now consider
in this exercise are subsets of this X), we define for a set A ⊂ X its
indicator function or characterstic function to be the following function
defined on X: IA(x) = 1 if x ∈ A and IA(x) = 0 if x 6∈ A.
This function IA is also denoted by χ

A
.

Show that lim sup IAn
= Ilim supAn

; lim inf IAn
= Ilim inf An

Let An = [0, 1] if n is even and An = [2, 3] if n is odd. Find limsup and
liminf.

Let {an} be a sequence of real numbers and An = (−∞, an) and Bn =
(−∞, an]. Calculate lim inf An and lim supAn in terms of liminf and
limsup of an. Do the same for (Bn).

In what follows N = {1, 2, · · ·}. (Do you understand what exactly is
hidden in the dots?).

12. Write a complete proof of the fact: If m < n then there is no bijection
between {1, 2, · · · ,m} and {1, 2, , · · · , n}.

13. If X is a countable set, then show that there is a 1− 1 function on X
to (into or onto) N . Conversely, if there is a 1− 1 function on X to N
then show that X is countable.

If X is countable set, show that there is a function on N onto X. Con-
versely, if there is a function on N onto X, show that X is countable.

Let X be a countable set and Y ⊂ X. Show that Y is countable.

Let Xi for i = 1, 2, · · · be countable sets. Show that ∪iXi is a countable
set. This is stated as ‘countable union of countable sets is countable’.

(Hint: For each i fix a 1 − 1 function fi : Xi → {1, 2, · · ·}. Here is f .
Take x in the union. Take the first i such that x ∈ Xi put

f(x) = 2i3fi(x).

If X and Y are countable, show that X × Y is also countable.

Let seq(N) be the set of all finite sequences of integers. Show that it
is countable.
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Let Y be the set of all infinite sequences of integers. Show Y is not
countable.

14. If X is the set of all 5×5 real matrices and Y = R25, exhibit a canonical
bijection and conclude |X| = |Y |.
If X is the set of all real symmetric 5× 5 matrices and Y = R15 show
that |X| = |Y |. If Z is the set of all upper triangular 5 × 5 matrices
then |Z| = |X|.

15. If X is an infinite set, then there is a subset Y ⊂ X which is countably
infinite. Prove this.

If X is an infinite set then show that there is a proper subset Y ⊂ X
and Y 6= X such that |X| = |Y |. Conversely, if X is a set and if there
is a proper subset Y ⊂ X and Y 6= X such that |X| = |Y | then show
that X is an infinite set.

16. If |X| = |Y | and |A| = |B| then show that |X × A| = |Y × B|.
With the same assumption show that |XA| = |Y B|.
Here XA is the set of all functions from A to the set X.

17. Let Y be the set of all ordered pairs of real numbers, in other words,
Y = R2. Show |Y | = |R|.
More generally show that |Rn| = |R| for any integer n ≥ 1.

Let seq(R) be set of all finite sequences of real numbers and X = the
set of all infinite sequences of real numbers. Show both have same
cardinality as R.

18. Verify if the following are equivalence relations on the sets prescribed.

Let X = R. Say a ∼ b if |a− b| ≤ 25.

Let X = R. Say a ∼ b if a − b is an integer. Say a ∼ b if a − b is
rational. Say a ∼ b if a− b is irrational.

Let X = P (R). Say A ∼ B if A∆B is finite. What if finite is replaced
by countable? What if finite is replaced by countably infinite?

Let X be the set of all functions from R to R. Say f ∼ g if f − g
is a continuous function. What if ‘continuosu function’ is replaced by
‘polynomial’.
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Let X = R29. Say a = (a1, · · · , a29) ∼ b = (b1, · · · , b29) if there is a
permutation π of {1, 2, · · · , 29} such that ai = bπ(i) for all i.

Same X as above. Say a ∼ b if there is a permutation π of {1, 2, · · · , 25}
such that ai = bπ(i) for all i with 1 ≤ i ≤ 25.

Same X as above, say a ≡ b if
∑

ai =
∑

bi.

19. First recall The Cantor set C ⊂ [0, 1]. Let I be the collection of all
deleted open intervals of (0, 1). Or equivalently [0, 1]− C = (0, 1)− C
is an open set and hence can be written, in a unique way, as a disjoint
union of open intervals and I is the collection of exactly these open
intervals.

If I = (a, b) and J = (c, d) are in I then say that I ≤ J if either they
are the same interval or b < c (that is, the interval I sits to the left of
J). Show that the collection I with this order is another manifestation
(?) of Q.

Here is another Cantor set. Instead of dividing [0, 1] into three parts
and removing the middle part, divide into five intervals of equal length
and remove second and fourth, keep first, third, fifth. Doing this at
each stage get D ⊂ [0, 1]. Let I be the collection of deleted open
intervals. Show again that I looks like Q (as far as order is concerned).
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CMI (BSc II)/BVRao Analysis, HA-3 22-08-2014

I hope you appreciate what AC is doing for us. Of course, set theory
has many ‘axioms’ which are self evident (no dispute) and hence we do
not talk about them. However about AC doubts exist; for very very
good reasons. Here I tell you a story where AC is the main character.

20. Let N = {1, 2, · · ·} as usual. Let U ⊂ P (N). That is, U is a collection
of subsets of N . It is called an ultrafilter if it satisfies the following
conditions:
(i) N ∈ U ; ∅ 6∈ U ;
(ii) A,B ∈ U ⇒ A ∩ B ∈ U
(iii) A ∈ U , A ⊂ B ⇒ B ∈ U
(iv) A ⊂ N ⇒ A ∈ U or Ac ∈ U .

Thus it is closed under finite intersections, supersets, not all of P (N),
and for every set either that or its complement is in it.

A collection F satisfying only the first three conditions is called a filter.
Here are examples of filters. Verify.

All sets A such that Ac is finite. This is called co-finite filter. The word
co-finite stands for ‘complement of finite’.

All sets A such that Ac has only finitely many even numbers. For
example the set of even integers is one such set.

All supersets of {23, 48, 56}
None of these is ultrafilter. Verify.

Here is an ultrafilter: All sets that contain the number 103. Verify.

You (and me too) can not think of other ultrafilters! — except replacing
103 by another number. These ultrafilters as above are called fixed
ultrafilters.

Say that a filter F is maximal if F ⊂ G and G is a filter imply that
F = G. Thus a maximal filter is a filter which is not proper subset of
another filter. Show that a filter is maximal iff it is an ultrafilter.
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Use Zorn and verify there are ultrafilters which are not fixed. Such
ultrafilters are called free ultrafilters.

Show that an ultrafilter is free iff it misses all singleton sets. Show that
an ultrafilter is free iff it includes co-finite filter.

21. Last semester we discussed closure, boundary of sets. In that story
these concepts were only supporting actors, main actors were integra-
tion and partitions. In the present scene ‘closure’ is the main actor. It
is a good idea to recall. We do so only for R. If you understand you
can do for Rn but no need to do now.

Let S ⊂ R. A point a ∈ R is a limit point of S if every open interval
around a has infinitely many points of S. That is, for every ǫ > 0 the
set A ∩ (a− ǫ, a+ ǫ) is infinite. We denote

S = S ∪ limit points of S.

This is called closure of S.

Show that S is a closed set. Recall closed set means a set that includes
all its limit points. Thus you are supposed to show that a limit point
of S is already in S (in other words, it is already a limit point of S).

Show that if C is a closed set and S ⊂ C then S ⊂ C. Thus S is
the smallest closed set that includes S. That is, closure of a set is the
smallest closed set that includes the set.

Just to get practice, find closures of the following sets.

S = Q, the set of all rational numbers.

S = Z, the set of all integers.

S = {1, 1/2, 1/3, 1/4, 1/5, · · ·}.
S = {n+ (1/n) : n = 1, 2, · · ·}.
Remember The Cantor set? Take one point from each of the deleted
intervals. Let S be the set so obtained. Do not be obsessed with AC
now. Alright, take the mid point of each deleted interval. What is
closure of S.

Take the 1/10-th point of each deleted interval, what is its closure?
1/10-th point of (a, b) is the point (9a+ b)/10. Why is it called so?
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What if you took one point from each, except some 55 of the deleted
intervals?

What if you took 5 points from each deleted interval?

You understand a friend only if you keep interacting with the friend,
not by a cursory hello. Same holds with math concepts too.

22. Now we combine ideas of the two previous exercises. Let U be a free
ultrafilter on N . Let ~x = (xi : i ∈ N) be a bounded sequence of real
numbers. let

lim ~x =
⋂

A∈U

{xi : i ∈ A}

Show that the right side is non-empty and in fact is a singleton. This
number is defined as limit of the sequence ~x along the ultrafilter U and
is denoted lim

U
xn.

Show that lim inf xn ≤ lim
U

xn ≤ lim sup xn.

Show lim
U

xn = a iff given ǫ > 0, there is a set A ∈ U such that

{xi : i ∈ A} ⊂ (a− ǫ, a+ ǫ).

Show that, lim xn = a in the sense of last year Calculus iff given ǫ > 0
there is a set A in the co-finite filter such that
{xi : i ∈ A} ⊂ (a− ǫ, a+ ǫ).

Do you see similarity between calculus definition and the present defi-
nition?

Limit along the ultrafilter remains same if you change finitely many
terms of the sequence. Show this.

Show that lim
U

xn. is a limit point of the sequence (xn). Remember

limit point of a sequence is any number a such that whatever ǫ > 0 you
take xn ∈ (a− ǫ, a+ ǫ) for infinitely many n.

Show that if the sequence (xn) actually converges (in the sense you have
learnt last year) then the limit is same as limit along the ultrafilter.

Show that for any bounded sequences,

lim
U

(xn + yn) = lim
U

xn + lim
U

yn; lim
U

(57xn) = 57 lim
U

xn.

lim
U

(xnyn) = lim
U

xn · lim
U

yn. ∀n xn ≤ yn ⇒ lim
U

xn ≤ lim
U

yn.
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23. Given one specific sequence, and one specific limit point of this se-
quence, it is possible to choose one ultrafilter so that limit along this
ultrafilter for this sequence equals this given number. Have I confused
you?

24. Even if your ultrafilter is a fixed ultrafilter, the above prescription of
limit works; its conclusion can be explained in simpler terms and the
limit could change if one term of the sequence is changed and the con-
cept is useless. I do not want to spoil the suspense, Think.

Limit of a sequence, as learnt in Calculus last year, associates a number
— namely its limit — with ‘convergent’ sequence. But the above pro-
cedure, with free ultrafilter, associates a number with every bounded
sequence. In fact it associates a limit point of the sequence and so does
not destroy what you learnt in Calculus. Of course, you might say use
AC to pick one of its limit points. But the profound fact is this: the
above selection respects addition, multiplication, monotonicity etc.

There is absolutely no easy way to achieve this and this is what you
should appreciate.
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25. We showed that there are discontinuous functions f : R → R satisfying
f(x + y) = f(x) + f(y) for all x, y. Suppose I want the function to
satisfy both the earlier equation and also f(xy) = f(x)f(y) for all x, y
then what are the solutions. Answer: f(x) ≡ 0 and f(x) ≡ x. No more!

Here is a way to prove. If f(1) = 0 show f ≡ 0. Let now f(1) 6= 0.

Show (i) f(x) ≥ 0 if x ≥ 0; (ii) f(x) ≥ f(y) if x ≥ y; (iii) f(1) = 1;
(iv) f(q) = q for rational q.

If for some x we have f(x) > x take q strictly in between and argue
f(q) ≥ f(x), recognize this contradiction.

Similarly there is no x with f(x) < x.

26. Let S ⊂ R be open. Show that |S| is either 0 or c.

Let S ⊂ R be closed. Its cardinality can be any of the following:
0, 1, 2, 3, 4, · · · , ℵ0, c. Give examples of each.

Can it be anything else? No. To see this, assume S is not countable.

First suppose that every point of S is a limit point of S. Show that
there are two disjoint closed intervals I0 and I1, each having points
of S. Show that there are two disjoint closed intervals within each Ik
having points of S. Continue and conclude |S| = c.

To understand the general case, say that an open interval J is small if
it has rational end points and S∩J is countable. Let V be the union of
small intervals. Show S1 = S ∩ V c is closed, uncountable, every point
of S1 is a limit point of S1. Conclude the proof.

27. We consider V = R37 as a vector space, as usual, over the field R.

An ordered basis is a sequence of vectors 〈v1, v2, · · · , v37〉 where vi ∈ R37

for all i; which forms a basis for V . Let X be the set of all ordered
bases of V . Show |X| = c.

Let G be the set of all 23-dimensional subspaces of V . Show |G| = c.
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Show that each of the following collections in R2 has power c: the set
of equilateral triangles, set of rectangles with sides parallel to the axes,
the set of all rectangles, set of circles, set of regular hexagons.

28. Show that the set of all functions from R to R has power strictly larger
than c. This means there is a injection from R to this set but no
bijection.

29. Let X be the space of infinite sequences of real numbers. That is

X = {(x1, x2, · · ·) : xi ∈ R for all i}.

Show that |X| = c.

Let C(R) be the collection of all real valued continuous functions on
R. We define a map from C(R) to X as follows. Fix once and for all
an enumeration of Q, rationals: q1, q2, q3, · · · .
Here is the map. For f ∈ C(R) associate the sequence

s(f) = {f(q1), f(q2), f(q3), · · ·}.

Show this is an injection and conclude that |C(R)| = c.

What is the power of the set of real valued continuous functions on R5.

What is the power of the set of continuous functions on R17 to R71.

The set of real valued continuous functions on R has the same power
as R.

Let P1 be the set of polynomials in one variable x with real coefficients.
|P1| = c. Show.

Let Pk be the set of polynomials in k variables x1, x2, · · · xk with real
coefficients. |Pk| = c. Show.

What if Pk is the set of polynomials in k variables as above but with
rational coefficients.

Let Homeo(R) be the set of homeomorphisms of R onto itself. Show
that its power is c.

30. Let M be the set of monotone increasing functions on R to R. That
is f ∈ M if f : R → R and x < y implies f(x) ≤ f(y). The function
need not be strictly increasing. Show |M | = c.
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Just raise your heels and stretch your hands to reach this result.

First: recall from last semester (prove again) that f ∈ M implies that
f has only countably many discontinuities.

Second: Fix a countable set D = {d1, d2, · · ·} ⊂ R.

For f ∈ M , associate the sequence of numbers

s(f) = {f(q1), f(d1), f(q2), f(d2), · · ·}.

Denote by MD those functions in M whose set of discontinuities are
contained in D. That is, those functions which are continuous at every
x ∈ R − D. Show that the above map is injective on this set and
conclude |MD| = c.

How many countable subsets of R are there? What is |R×R|?
Use answers to the above two queries to conclude |M | = c.

Show that the set of all monotone functions (increasing or decreasing)
from R to R has power c.

31. How large a collection of non-empty subsets of N can you get so that
any two are disjoint? That is, I want a family of sets (Aα : α ∈ ∆),
each ∅ 6= Aα ⊂ N ; such that for distinct indices Aα ∩ Aβ = ∅. How
large can the set ∆ be? Show that it must be countable.

What if we need the non-empty sets to be only almost disjoint? That
is, I want a family (Aα;α ∈ ∆) of non-empty subsets of N so that for
distinct indices Aα∩Aβ is a finite set, could be but need not be empty.
How large can ∆ be? Answer: |∆| = c. To see this, First argue |∆| ≤ c.

Fix an enumeration {r1, r2, · · ·} of rational numbers. You can do this
explicitly without using AC (but this is beside the point). For x ∈ R,
let us define a set as follows. x1 is the first rational in (x − 1, x + 1).
x2 is the first rational that occurs after x1 which is in the interval
(x − 1/2, x + 1/2). In general xk is the first rational that occurs after
xk−1 which is in the interval (x− 1/k, x+ 1/k). Let

Ax = {x1, x2, · · ·}

Ax ⊂ Q; if x 6= y then Ax ∩ Ay is finite.

Returning to the problem we started with, show |∆| = c.
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32. Let P be a partially ordered set and C ⊂ P be a chain.

Understand the difference between the following statements:

(1) ¬ ∃(p ∈ P ) ∀(x ∈ C) (x < p).

(2) ∃(p ∈ P ) ¬ ∀(x ∈ C) (x < p).

(3) ∃(p ∈ P ) ∀ (x ∈ C) ¬ (x < p).

Want to say: there is no point of P which is larger than every element
of C. Which of the above says this? why?

I was too lazy in the class!

Justify why the other two statements do not say that?

33. Consider the set X = [0, 1] × [0, 1] − {(0, 0); (1, 1)} with dictionary
order.

Show that it has no first point; no last point; between two different
points there is some thing strictly in between; every non-empty subset
which is bounded above has a supremum; has no countable dense set.

Is this order isomorphic to R?

Suppose you considered all of [0, 1]×[0, 1] with dictionary order. Which
of the above properties hold?

Suppose you considered R × R with dictionary order. Which of the
above properties hold?

Suppose you consider Z × [0, 1) with dictionary order. Which of the
above properties hold?
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34. Test which of the following properties hold for the losets given beow:
(a) has first element;
(b) has last element;
(c) has another point in between two different points;
(d) has countable dense set;
(e) every non-empty bounded subset has sup.

(i) S = [0, 1] (ii) S = [0, 1) (iii) S = (0, 1]

(iv) S = (0, 1] ∪ [2, 3); (v) S = Q

(vi) S = [0, 1]× [0, 1]− {(0, 0), (1, 1)} with dictionary order.

35. Verify the details left out in class: We defined multiplication xy for
x > 0 and y > 0 and observed its properties. Extend the definition as
follows:
x < 0 and y > 0: xy is defined as: −[(−x)y].
x > 0 and y < 0: xy is defined as −[x(−y)].
x < 0 and y < 0: xy is defined as (−x)(−y).
x = 0 or y = 0: xy is defined as 0.
This definition satisfies all the properties required of multiplication,
Show. Remember, you need not go to cuts. Use known things.

As you noticed probably, the connection of multiplication with order
is only that product of two positive numbers is positive; and the rest
(whatever) is a consequence of just this.

36. In our definition of R we have defined linear order which is friendly
with addition and multiplication.

Instead, sometimes following is taken: There is a subset P ⊂ R with
the following properties.

(i) for all x; exactly one holds: x = 0, x ∈ P , −x ∈ P .

(ii) x ∈ P, y ∈ P implies x+ y ∈ P and xy ∈ P .
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Show that they and us are doing the same thing, that is, (i) starting
with P as above define ≤ satisfying our conditions; conversely, (ii)
starting from our ≤ exhibit P . show also that if you start with P , use
(i) and then (ii) for that ≤; you get back your starting P .

Subsets of R are called ‘unary’ relations in R. Subsets of R × R are
called binary relations in R— like {(x, y) : x ≤ y}. Subsets of R×R×R
are called ternary relations in R— like {(x, y, z) : x+y = z}. In general
you use the word, n-ary relation.

Did you realize how a binary operation like addition is also a relation,
it is ternary relation.

37. Recall the definition of Cauchy sequence and definition of convergence
of a sequence in R.

Show that (xn) is Cauchy iff for any given rational r > 0, there is an
n0 such that |xm − xn| < r for all m,n > n0. Show that (xn) converges
to x iff given rational r > 0 there is an n0 such that |xn − x| < r for all
n > n0.

Show that given any real number x, there is a Cauchy sequence (qn) of
rational numbers which converges to x.

These two statements appear to be below our standard, prove them
anyway. They are profound for the following reasons.

(i) we need only rationals to define Cauchyness and convergence for
sequences. (∗)
(ii) we need only Cauchy sequences of rational numbers to define real
numbers. (∗∗)

38. Consider the set of real numbers R. Recall the ‘least upper bound
axiom’:

(VI) Every bounded non-empty subset has supremum.

Show that this can be replaced by the ‘completeness axiom’: (∗ ∗ ∗)
(VIa) Every Cauchy sequence converges.

These three simple observations (∗), (∗∗), (∗ ∗ ∗) form basis for another
construction of real number system due to Cantor. This method rescues
us many times in Analysis. Shall do soon.
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39. Here is an interesting field that builds on ultrafilter. usually algebraists
are uninterested in this, they have field of rational functions which are
not ordered fields. Analysts do not bother either, because many do not
realize importance of this seed. Logicians have refined this idea as well
as this example thoroughly (whatever this may mean).

Let U be a free ultrafilter on N = {1, 2, · · ·}. Let R0 be the set of all
infinite sequences s = (sn) of real numbers. Here are some examples of
sequences for you to see.

sn ≡
√
555; tn = 1 +

1

1!
+

1

2!
+

1

3!
+ · · ·+ 1

n!
..

un = n; u∗
n = n2; wn =

1

n
; w∗

n =
1

n2
.

Here n = 1, 2, 3, · · · ..
Let us define s ∼ t if {n : sn = tn} ∈ U .
Show this is an equivalence relation.

Let the space of equivalence classes be denoted by R∗.

Remember we have addition and multiplication of sequences term by
term. We can define these operations on R∗. Take x and y. These are
equivalence classes. Take one sequence s ∈ x and one t ∈ y and define
x + y to be the equivalence class containing the sequence s + t. Show
this is a good definition, that is, it does not depend on s and t as long
as you choose from x and y.

Define multiplication in a similar way.

Show that we have a field.

Define order on R∗ as follows. Say x ≤ y iff {n : sn ≤ tn} ∈ U where
s ∈ x and t ∈ y. Show that this is a good(?) definition.

Show that R∗ is a loset with this order.

Show we have an ordered field.

Identify usual set of real numbers as constant sequences. In other
words, if a ∈ R define ϕ(a) ∈ R∗ to be the equivalence class containing
the constant sequence with each term equal to a.

Show that this is an embedding of (R,+, ·,≤).
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Thus this ordered field R∗ contains usual R.

This is the identification we use. Thus when we say the number
7
√
33 ∈ R∗ we mean the equivalence class containing the correspond-

ing constant sequence.

Using the notation of the examples of sequences given at the beginning,
let [s] be the equivalence containing the sequence s.

Show [u] > k for each k ∈ R. In some sense [u] is an infinite integer.

For each ǫ > 0; ǫ ∈ R, show that 0 < [w] < ǫ . In some sense [w] is an
‘infinitesimal’, strictly positive but smaller than all ǫ’s we know.

So also is [w∗].

Show the infinitesimal [w∗] is smaller than the infinitesimal [w].

We shall not discuss more about this field.
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40. Suppose (X, d) is a metric space. Let us define

d1(x, y) = min{d(x, y), 1}.

Show that d1 is also a metric.

Show that xn → x in d iff xn → x in d1.

Show that a sequence is Cauchy in d iff it is Cauchy in d1.

Show that a set is open in the metric d iff it is open in the metric d1.

Show that the metric d1 is bounded, whether d is bounded or not.

Suppose that in taking the minimum above, if I took minimum with
0.0001 how do the answers to above questions change?

Start with a metric space (X, d). Instead of the above, define

d2(x, y) =
d(x, y)

1 + d(x, y)
.

Test whether all the above statements are still valid for d2.

41. Consider the function tan x : (−π/2, +π/2) → R. It is strictly in-
creasing, onto and one-one. Let tan−1 be the inverse map. Let us
define

d1(x, y) = | tan−1 x− tan−1 y|; x, y ∈ R.

Show that d1 is a metric. Show that it is equivalent to d, that is, xn → x
in d iff xn → x in d1.

Do you think the following is correct: A sequence is cauchy in d iff it
is Cauchy in d1.

42. Given any open set U in C[0, 1] with the sup metric, show that there
is a polynomial with rational coefficients which belongs to U .

43. In a metric space show |d(x, z) − d(y, z)| ≤ d(x, y). More generally
|d(x, z)− d(y, u)| ≤ d(x, y) + d(z, u).
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44. Let C[0, 1] be the collection of real continuous functions on [0, 1]. define

d1(f, g) =
∫ 1

0
|f(x)− g(x)|dx.

d2(f, g) =
[∫ 1

0
|f(x)− g(x)|2dx

]1/2

.

Show that these are metrics. More generally, fix p > 1 and show that
the following is a metric

dp(f, g) =
[∫ 1

0
|f(x)− g(x)|pdx

]1/p

.

45. Let l2 be the space of all (infinite) sequences x = (xn : n ≥ 1) of
real numbers such that

∑ |xn|2 < ∞. Show that this is a linear space.
Define

d2(x, y) =
[

∑

|xn − yn|2
]1/2

.

Show that this is a metric.

Let l1 be the space of all sequences x = (xn : n ≥ 1) of real numbers
such that

∑ |xn| < ∞. Show that this is a linear space. Define

d1(x, y) =
∑

|xn − yn|.

Show that this is a metric.

Give examples of sequences which are in l2 but not in l1. Do you think
there are sequences which are in l1 but not in l2.

What happens if we consider sequences of complex numbers in both
the above l2 and l1. Show that they are linear spaces and metric spaces.

More generally, consider for a fixed p > 1, the space lp of all complex
sequences z = (zn : n ≥ 1) such that

∑ |zn|p < ∞.

Show that this is a linear space and the following is a metric on the
space.

dp(z, w) =
[

∑

|zn − wn|p
]1/p

.
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You can consider the space l∞ also. It is the space of all bounded
complex sequences. That is, the space of all sequences z = (zn : n ≥ 1)
with sup |zn| < ∞. Show that the following is a metric on this space.

d∞(z, w) = sup
n

|zn − wn|.

46. Consider

X = [0, 1]∞ = {x = (x1, x2, · · ·) : xi ∈ [0, 1]; i = 1, 2, 3, · · · .}

d(x, y) =
∑ |xi − yi|

2i
.

Show that d is a metric.

Show that xn → x in the metric d iff xn
i → xi for each i ≥ 1. That is,

iff coordinate-wise convergence holds.

You can also take

X = R∞ = {x = (x1, x2, · · ·) : xi ∈ R; i = 1, 2, 3, · · · .}

Show that if you define d exactly as above then the series may not
converge. Define

d1(x, y) =
∑ 1

2i
|xi − yi|

1 + |xi − yi|
.

If you have done last part of exercise 43, you will not be frightened
with this expression.

Show that this is a metric. Show that xn → x iff xn
i → xi for each

i ≥ 1. That is, iff coordinate-wise convergence holds.

47. Let X = Q, the set of rational numbers.

We define, for x ∈ Q, order of x as follows: If x is an integer, then O(x)
is the largest power of 7 that divides x. If x = a/b rational (with a, b
integers), then O(x) = O(a)−O(b). Show that this definition does not
depend on how you represent the rational as a fraction.
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For x ∈ Q, we define ||x|| as follows:

||0|| = 0; ||x|| = 7−O(x) x 6= 0

note the negative sign for exponent.

Show (i)||x|| = 0 iff x = 0.

(ii)||x+ y|| ≤ ||x||+ ||y||. (iii)||xy|| = ||x||||y||.
Define d(x, y) = ||x− y||. Show that this is a distance on Q. Actually
this satisfies a better condition than triangle inequality.

Let x ≥ 1, y ≥ 1 be integers. Show d(x, y) ≤ 1/7n iff x = y mod(7n).

Calculate for n,m ∈ Z,

(i) d(7n, 7m) (ii) d(7−n, 7−m)

Wonder: 7, 72, 73, 74, · · · → 0.

Convince yourself that this metric takes (apart from zero) only the
values

· · · , · · · 1
73
;

1

72
;
1

7
; 1; 7; 72, 73, · · · · · · .

Try to think which fellows are sitting exactly at a distance 1/7 from
zero. Who are sitting at a distance 7 from zero.
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48. Calculate interior, closure, closure of interior, interior of closure and so
on of the following sets:

(a) X = R.

A = Cc where C is cantor set in [0, 1].

A = (0, 1) ∪ (1, 2).

A = (0, 1) ∪ (1, 2) ∪ {6, 7, 8, 9, · · · .}
A = (0, 1) ∪ (1, 2) ∪ {rationals in (3, 4)} ∪ {6, 7, 8, 9, · · · .}

(b) X = R2 and the sets are A × A; take A to be each of the above
sets.

(c) X = C[0, 1] and A is the set of all polynomials; or A is the set of
all continuous functions taking values in (0, 1); or A is the set of
all continuous functions taking values in [0, 1].

In what follows (X, d) is a metric space. A metric gives, distance be-
tween points, provides one measurement. You can use this to define
several other measurements. Naturally, they depend on this metric.

49. For non-empty set A ⊂ X and for x ∈ X define

d(x,A) = inf{d(x, a) : a ∈ A}.

In a sense, measures the least distance you need to travel from your
location x to reach the town A.

(a) X = R usual metric |x− y|. Calculate d(x,A) when

A = [0, 1]. x = 25 or x = −25 or x = 1/2

A = (0, 1). x same as above.

(b) X = R2 Euclidean metric.

A = x1-axis. x = (4, 5); or x = (1, 0); or x = (0, 1)

A = the line x1 + x2 = 4. Same points as above.

A = B(0, 1/2). Same points as above.

25



(c) X = C[0, 1] with sup metric.

A is the set of all functions z ∈ X with z(0) = 0. x is the function
x(t) = t2; or x(t) = cos(2πt); or x(t) is a polynomial in t.

A is the set of all functions z ∈ X with z(0) = 0 = z(1). And x
as above.

(d) X = R with d(x, y) = 0 or 1 according as x = y or not. This is
called discrete metric. Calculate d(x,A) for each x ∈ R and each
non-empty A ⊂ R.

(e) Show that |d(x,A)− d(y, A)| ≤ d(x, y).

(f) Show that x is in the closure of A iff d(x,A) = 0.

(g) How does d(x,A) change when A is made larger?

(h) If A is compact, then show that the inf is actually minimum.
Do you think that if the infimum is attained then A should be
compact?

50. Suppose A and B are two non-empty sets. The distance between the
sets is defined as

d(A,B) = inf{d(a, b) : a ∈ A, b ∈ B}.

In a sense the smallest length of bridge needed to connect the two towns
A and B. calculate d(A,B) for the sets given below.

(a) X = R.

A is set of rationals in [0, 1] and B is set of irrationals in (2, 3).

A = Cantor set in [0, 1] and
B = [4/27, 5/27] ∪ (11/27, 16/27) ∪ [64/81, 71/81].

A = {1, 2, 3, · · ·} and
B = {1 + 1, 2 + (1/2), 3 + (1/3), 4 + (1/4), · · ·}

(b) X = R2.

A is unit disc and B = [2, 3]× [2, 3]

A is the x1-axis and
B = {(x1, x2) : x1 > 0, x2 > 0, x1x2 = 1}

(c) X = R with discrete metric. Describe d(A,B) for all pairs of
nonempty subsets.

26



(d) Show that d(A,B) 6= 0 implies that A∩B = ∅. Do you think the
converse is true?

(e) Show d(A,B) = inf{d(a,B) : a ∈ A} = inf{d(b, A) : b ∈ B}.
(f) Show that distance between two sets is same as the distance be-

tween their closures.

(g) Do you think triangle inequality holds:
d(A,C) ≤ d(A,B) + d(B,C)?

(h) If A1 ⊂ A;B1 ⊂ B, how do you compare d(A,B) and d(A1, B1).

(i) Show that if A and B are compact, then the inf is actually mini-
mum. Do you think that if the inf is attained then at least one of
the sets should be compact?

51. For a non-empty set A, we define the diameter of A by

δ(A) = sup{d(x, y) : x, y ∈ A}.

In a sense, measures how far are the farthest corners of the town A
from each other. Calculate diameters of the sets below.

(a) X = R. A is the interval [0, 1]; or the Cantor set; or set of
rational numbers in (0, 1); or set of irrational numbers in (0, 1);
or the interval (0,∞).

(b) X = R2. A is a line segment; or a triangle; or the open unit
disc; or closed unit disc; or ellipse (with semi-major axis a and
semi-minor axis b); or the unit square [0, 1]× [0, 1].

(c) X = C[0, 1]. A is the set of all x whose graph lies in the unit
square; or set of all x whose graph lies in the unit disc.

(d) x = R with discrete metric. A is the ball of radius 1/2 around 5;
or ball of radius 3/4 around 5; or ball of radius 2 around 5; or ball
of radius 5 around 5.

(e) Show that δ(B(a, r)) ≤ 2r. Do you think equality always holds?

Show diameter of a set A is same as the diameter of its closure.

(f) Show that if A is compact then sup is actually maximum. Do you
think that if the sup is attained then A should be compact?
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52. A set A ⊂ X is said to be bounded if its diameter is finite. Emptyset
by convention, is bounded. But anyway, let us consider non-empty sets
only.

Sometimes the following definition is used. A set A is bounded relative
to a point x ∈ X if sup{d(x, a) : a ∈ A} < ∞, that is, there is a number
M such that d(x, a) ≤ M for all a ∈ A.

If A is bounded relative to one point, show it is bounded relative to
any other point. Show that this definition is same as saying that the
diameter is finite.

Show that any Cauchy sequence is bounded.

Show that union of finitely many bounded sets is bounded.

Do you think every closed bounded set is compact?

Consider Rn with any of the lp distances 1 ≤ p ≤ ∞. Show that this
definition of boundedness coincides with the notion of boundedness we
adapted last year in Rn. recall A ⊂ Rn is bounded if ||x|| ≤ M for all
x ∈ A.

53. Here is another metric spacce. Let X = l∞ be the space of all bounded
sequences of real numbers. Define for x, y ∈ X.

d(x, y) =
∑

n≥0

|xn − yn|e−55n
1

n!
.

This appears complicated, you would not understand whether the num-
ber exp{−5} is necessary at all. The essential point is: this is nothing
but expectation of |x − y| w.r.t. the Poisson probabilities you have
learnt.

Show that this is a metric. do you think the space is complete?
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54. We showed last year that
√
p, for prime p > 1, is irrational number.

Thus
√
2,
√
3,
√
17, · · · are all irrational numbers. Of course there are

many others. We should attend to some fillable gaps in our under-
standing.

(a) You can use the same reasoning to show that for any integer k > 1,
either

√
k is an integer or is irrational. Thus if

√
k is rational then

it must already be integer. Show this.

(b) Here is how you prove e is irrational.
Let if possible e = a/b ratio of two positive integers.
Show then that

1

b+ 1
+

1

(b+ 1)(b+ 2)
+

1

(b+ 1)(b+ 2)(b+ 3)
+ · · ·

is an integer. Show b > 1 and the above can not be an integer.

(c) Here is how you prove π is irrational. (Proof by Ivan Niven)
Let if possible π = a/b ratio of positive integers. Define, for a
positive integer n, two functions

f(x) =
xn(a− bx)n

n!

F (x) = f(x)− f (2)(x) + f (4)(x)− · · ·+ (−1)nf (2n)(x).

Show

f(x) = f
(

a

b
− x

)

.

Show that the function n!f has integer coefficients.
Show that f and its derivatives have integer values for x = 0 and
x = π = a/b. Show

d

dx
{F ′(x) sin x−F (x) cosx} = F ′′(x) sin x+F (x) sin x = f(x) sin x.

∫ π

0
f(x) sin xdx = F (π) + F (0) is an integer.
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0 < f(x) sin x <
πnan

n!
; 0 < x < π.

Note that f depends on n. Argue that if you choose n large enough
the above inequation leads to a contradiction.

(d) Actually the above numbers are transcendental, proof is not easy.

(e) We do not know if γ, Euler constant, is irrational.
When you read such a sentence, you should pause, recapitulate
definition of γ and understand what is said; though there is noth-
ing to prove in here.

55. Giving explicit examples of nowhere differentiable continuous functions
is not easy. First such example was by Karl Weierstrass. Here is one
from Rudin.

Define the function ϕ on R by ϕ(x) = |x| for −1 ≤ x ≤ 1 and ϕ(x+2) =
ϕ(x) for all x ∈ R. Show |ϕ(t)− ϕ(s)| ≤ |t− s|.
Define

f(x) =
∞
∑

n=0

(

3

4

)n

ϕ(4nx).

Show f is continuous.

Fix any x ∈ R. Let

δm = ±1

2

1

4m
.

Show you can choose the sign for δm so that there is no integer between
4mx and 4m(x+ δm). We fix this sign now. Having fixed m, set

γn =
ϕ(4n(x+ δm))− ϕ(4nx)

δm
.

Show that γn = 0 for n > m while |γn| ≤ 4n for 0 ≤ n ≤ m. Show

∣

∣

∣

∣

∣

f(x+ δm)− f(x)

δm

∣

∣

∣

∣

∣

≥ 3m −
m−1
∑

0

3n ≥ 1

2
(3m + 1).

Show f is not differentiable at x.

56. Let (X, d) be a metric space.
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(a) Consider a subset C ⊂ X (always non-empty, in this context).
Restrict d to pairs of points in C; still use d for this. then (C, d)
is a metric space. Show.

(b) Let (X, d) be complete. If C ⊂ X is closed then show that (C, d)
is a complete metric space.

Conversely, let C ⊂ X and (C, d) be complete. Then show that
C is a closed subset of X.

(c) Let (X, d) be a complete metric space. Let U ⊂ X be open set.
¿From the above you know that (U, d) is not complete unless U is
closed.

However, without changing the notion of convergence, we can
change the metric for U as follows. Keep in mind our examples of
metrics on (0, 1] and (0, 1) discussed earlier.

First show that f(x) = d(x, C) where C = U c is a continuous
function and is never zero on U . Secondly, show that

ρ(x, y) = d(x, y) +

∣

∣

∣

∣

∣

1

d(x, U c)
− 1

d(y, U c)

∣

∣

∣

∣

∣

; x, y ∈ U

or (not same, though same notation is used),

ρ(x, y) = d(x, y) + min

{

1

29
;

∣

∣

∣

∣

∣

1

d(x, U c)
− 1

d(y, U c)

∣

∣

∣

∣

∣

}

; x, y ∈ U

is a metric on U . Thirdly, Show that d(xn, x) → 0 iff ρ(xn, x) → 0,
as far as U is concerned. finally show that (U, ρ) is complete.

(d) Thus for example complement of finite sets in the real line can be
given a ‘complete metric’ without changing notion of convergence.

(e) Let (X, d) be a complete metric space. Let A = ∩Un ⊂ X where
each Un is open. Thus A is intersection of countably many open
sets. Put d∗(x, y) = min{1, d(x, y)}. Put

ρ(x, y) = d(x, y)+
∑

n

min

{

1

2n
,

∣

∣

∣

∣

∣

1

d∗(x, U c
n)

− 1

d∗(y, U c
n)

∣

∣

∣

∣

∣

}

; x, y ∈ A.

Show (A, ρ) is a complete metric space; d-convergence is same as
ρ-convergence.
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(f) The set of irrational numbers or the set of transcendental numbers
in R is a possible candidate for above A.

(g) Read part (e) again. Following says we can not do any better.

Suppose A ⊂ X and you can give a metric ρ for A such that the
following two hold: (i) For points of A, ρ-convergence is same as
d-convergence. (ii) (A, ρ) is complete metric space. Then A must
indeed be countable intersection of open sets in X.

We shall not prove, involves some work (beautiful though).

57. Let f be any continuous function on [0, 1]. Let f1 be any function whose
derivative is f . Let, in general, fn be any function whose derivative is
fn−1. (Of course, given fn−1 you have freedom to choose your favourite
constant in getting fn; no more!)

Show the following: if (∃n) (∀x)fn(x) = 0 then f ≡ 0.

Show the following: if (∀x)(∃n)fn(x) = 0 then f ≡ 0.

58. Consider C[0, 1]. A function is said to be everywhere oscillating if it
is not monotone on any (non-degenerate) interval. Pause. Can you
picture such a function? Very very difficult. If I did not put continuity,
it is trivial to imagine!

There are many many everywhere oscillating functions. More precisely,
Complement of the set of everywhere oscillating functions, in C[0, 1],
is countable union of small sets.

59. (Principle of uniform boundedness) Suppose that (X, d) is a complete
metric space. Let F be a collection of real valued continuous functions
on X.

Assume that the collection is point-wise bounded. that is, given x ∈ X,
the set {f(x) : f ∈ F} is a bounded subset of R.

Show that there is an (non-empty) open set U on which these functions
are uniformly bounded. That is, {f(x) : x ∈ U ; f ∈ F} is a bounded
subset of R.
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60. Let (X, d) be a metric space.

Recall A is closure of A and Ao is interior of A.

Check: A ∪B = A ∪ B. Is (A ∪ B)o = Ao ∪ Bo?

Check (A ∩B)o = Ao ∩ B0. Is A ∩ B = A ∩ B?

Show (A)c = (Ac)0. and (Ao)c = Ac

Recall that closure of a set A consists of points which are in A or which
are close to A— recall precise definition. Boundary of a set A is defined
to be the set of all points which are close to A as well as Ac. Precise
definition of boundary is ∂A = A ∩ Ac.

We needed and used this concept in discussing integration in several
variables. But we considered only rectangles and regions within a nice
closed curve.

Show ∂A = A− A0.

Show ∂(A ∪ B) ⊂ ∂A ∪ ∂B and ∂(A ∩ B) ⊂ ∂A ∪ ∂B.

Equality does not hold in general. Give examples.

Do you think ∂(A ∩ B) ⊂ ∂A ∩ ∂B.

Do you think A ⊂ B implies ∂A ⊂ ∂B?

What is ∂Q where Q is the set of rationals in R.

What is boundary of Cantor set inR? What is boundary of complement
of Cantor set in R? What is boundary of a disc in R2? boundary of a
circle in R2 boundary of a rectangle in R2?

Do you think A and A and A0 all have the same boundaries?

61. Consider X = C[0, 1] with the metric d(x, y) =
∫ 1
0 |x(t)−y(t)|dt. Show

the space is not complete? Do you think that convergence in this metric
is same as convergence in the sup metric? If A is a non-empty subset
which is open and closed in this space then it must be either ∅ or all of
X. Show.
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62. Many a times we start with a metric space but soon restrict attention
to some subset of it. This happened, for example, in the proof that R
is not union of infinitely many disjoint non-empty closed sets.
Let (X, d) be a metric space. Let Y ⊂ X. Keep the same metric on Y .
Then (Y, d) is called a subspace of X.

For a ∈ Y , the ball BY (a, r) is just BX(a, r) ∩ Y . Show.

A set U ⊂ Y is open in Y iff there is a set V ⊂ X which is open in X
and U = V ∩ Y . Similarly, a set C ⊂ Y is closed in Y iff there is a set
F ⊂ X closed in X such that C = F ∩ Y . Show.

Give an example where a proper subset of Y is open in Y but not open
in X. Can you give such an example with Y open in X?

Give an example of a proper subset of Y which is closed in Y but not
closed in X. Can you give such an example with Y closed in X?

Let A ⊂ Y . Show that the closure of A in Y is nothing but closure of
A in X intersected with Y . That is,

A
Y
= A

X ∩ Y

Is (Ao)Y = (Ao)X ∩ Y ?

Give an example where a subset of Y is small in X but not small in Y .
Can you give an example of a set A ⊂ Y which is small in Y but not
small in X?

In the following find A
Y
.

X = R; Y = Q; A =
{

∑n
k=0

1
k!
; n ≥ 1

}

X = R2; Y = [0, 1) × (0, 1]; A is the set of all points (x, y) with
each of x, y being either 1/n or 1− (1/n).

63. Recall that a metric space is connected if empty set and whole space
are the only sets which are both closed and open. We say that Y ⊂ X
is connected if (Y, d) is connected.

Show that if Y ⊂ X is connected then Y
X

is also connected. Do you

think the converse is true? That is Y ⊂ X and Y
X

is connected then
Y is connected.

Consider U an open subset of R2. Show that it is path connected, that
is, given two points a and b in U , there is a continuous function γ on
[0, 1] taking values in U such that γ(0) = a and γ(1) = b.
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Such a space is called path connected. More precisely, (X, d) is path
connected if given any two points a and b in X there is a continuous
function γ on [0, 1] such that γ(0) = a and γ(1) = b.

Show that a path connected space is connected. Now do you see why
R35 and C[0, 1] with sup metric or d1 or d2 or dp metrics are connected?
Show that l2 (infinite square summable sequences) is connected.

Consider X = R2. Consider the following set.

Y = {(x, sin(1/x)) : 0 < x ≤ 1} ∪ {(0, y) : 0 ≤ y ≤ 1}.

Show Y is connected.

Show this Y is not path connected. Thus connected open sets are path
connected but connected closed sets need not be path connected. This
is also an example of connected space which is not path connected.

64. In R every non-empty open set is union, in a unique way, of countably
many non-empty open intervals. Of course, in R2 you can not talk of
intervals.

Show the following: Every non-empty open set in R2 is union, in a
unique way, of countably many non-empty open connected sets.
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65. Here is an application of Baire (a Diophantine approximation).

Suppose that {tn} is a strictly increasing sequence of positive numbers
increasing to ∞. This is given to us. Then there is a large set S of real
numbers such that if you take x ∈ S, then the set

{tnx+m : n ≥ 1;m ∈ Z}

is dense in R. of course, we can not exactly specify for which numbers
x the above set is dense. However, Kronecker tells that when tn = n
then the above set is dense for every irrational number x.

66. Here is another application of Baire, similar to what we did for integrals.
Suppose that f is a C∞ function on [0, 1].

If (∃k) (∀x) f (k)(x) = 0 then f is a polynomial. Show.

If (∀x) (∃k) f (k)(x) = 0 then f is a polynomial. Show (not easy).

In particular, there is one k such that the k-th derivative vanishes
identically.

67. We learnt Cantor intersection theorem; Baire’s theorem; Banach fixed
point theorem in complete metric spaces. but we have not shown that
some of the standard spaces we saw are actually complete. Yes, we
know R is complete.

(a) Show that Rn is complete.

(b) Recall that R∞ is the space of all infinite sequences x = (xn) of
real numbers. The metric is (exercise 46)

d1(x, y) =
∑ 1

2i
|xi − yi|

1 + |xi − yi|

according to which the convergence is again coordinate-wise con-
vergence.
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Show that this space is complete. Take a Cauchy sequence {xn}
where

xn = (xn
1 , x

n
2 , x

n
3 , · · · , xn

j , · · ·}
Show that for every j the sequence of numbers {xn

j : n ≥ 1} is a
Cauchy sequence. Let its limit be xj.

Let x = (xj). Show that xn → x in the space R∞.

(c) Show C[0, 1] with sup metric is complete. Take a Cauchy sequence
{xn} — remember this is Cauchy in sup metric.

show that for each t the sequence of numbers {xn(t)} is cauchy.

Show that there is a function x such that xn(t) → x(t) for each t.

Fix ǫ > 0. Fix N (using hypothesis) so that

sup{|xn(t)− xm(t)|; 0 ≤ t ≤ 1} < ǫ/2; n,m ≥ N

Show that |xn(t) − x(t)| ≤ ǫ/2 for each n ≥ N and each t. Con-
clude that

sup{|xn(t)− x(t)|; 0 ≤ t ≤ 1} ≤ ǫ/2; n ≥ N

Conclude that (xn) converges to x uniformly. Conclude that x is
continuous and hence x ∈ C[0, 1].

Show that d(xn, x) → 0.

(d) Recall that l2 is the space of all sequences x = (xj) of real numbers
such that

∑

x2
j < ∞. Recall

d(x, y) =

√

∑

(xj − yj)2.

Show that this space is complete. Take Cauchy sequence (xn)
where xn is the sequence

xn = (xn
1 , x

n
2 , x

n
3 , · · · , xn

j , · · ·).

Show that for very j, the sequence of numbers {xn
j : n ≥ 1} is a

Cauchy sequence. Let xj be its limit.

Using the fact that Cauchy sequences are bounded (and Minkowski)
conclude that there is a number K such that

∑

j

(xn
j )

2 ≤ K; n ≥ 1
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Show that
J
∑

j=1
x2
j ≤ K for every J ≥ 1. Conclude that x ∈ l2.

Fix ǫ > 0. Fix N so that d(xn, xm) < ǫ/2 for n,m ≥ N . Show
that for each J ≥ 1

√

√

√

√

√

J
∑

j=1

(xn
j − xj)2 ≤ ǫ/2; n ≥ N.

Conclude that d(xn, x) < ǫ for n ≥ N ; or xn → x in l2.

You should appreciate the ease with which we try an inequality for
finite sums (limits can be taken for finite sums) and then conclude
the same for infinite sums. pause and understand this sentence.

(e) Test whether you understood the above two calculations by show-
ing that the space l1 is complete. Recall this is the space of all
sequences x = (xj) with

∑ |xj| < ∞ and

d(x, y) =
∑

j

|xj − yj|.

It is also true that all lp spaces (p > 1) are complete but you need
not bother about it now (not for exam either). That will be for a
later functional analysis course, not now.

68. Let (X, d) be a metric space. Recall that a subset D ⊂ X is dense if
every non-empty open set contains a point of D, or equivalently, every
ball contains a point of D. A metric space is separable if there is a
countable dense set.

You know that Q is dense in R and that Q is countable.

(a) Show that the set Qn; the set of n-tuples of ration numbers is
dense in Rn.

Show that this set Qn is countable.

(b) Recall that R∞ is the space of all infinite sequences x = (xn) of
real numbers. The metric is (exercise 46)

d1(x, y) =
∑ 1

2i
|xi − yi|

1 + |xi − yi|
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according to which the convergence is again coordinate-wise con-
vergence.

LetD be the set of all sequences with finitely many non-zero terms
and those terms are rationals. Show that D is dense in R∞.

Show that D is countable.

(c) Show that the set P of polynomials with rational coefficients is
dense in C[0, 1].

Show that this set P is countable.

If you are fed up of polynomials, here is another set. For rational
numbers 0 = t0 < t1 < t2 < · · · < tk = 1 and rational numbers
r0, r1, · · · , rk let x be the function whose graph consists of straight
lines joining (ti, ri) and (ti+1, ri+1) for i = 0, 1, · · · , k − 1. Let D
be the set of all these function as k ≥ 1 varies over integers and ti
and ri vary over rationals as stated. Show that D is dense. Show
D is a countable set.

(d) Consider l2. Let D be the set of all sequences x = (xn) which have
only finitely many non-zero terms and those terms are rationals.
Show that this set is dense in l2.

Show that D is countable.

(e) Show that the same set as above is dense in l1.

69. For any set A, let l(A) denote its set of limit points. N = {1, 2, 3, · · · .}

(a) Let A = {(i, 0, 0, 0) : i ∈ N} ⊂ R4. Then A is closed and l(A) = ∅.
(b) Let B = A ∪ {(i, 1

j
, 0, 0) : i, j ∈ N} ⊂ R4 Then B is closed,

l(B) 6= ∅ but l(l(B)) = ∅.
(c) Let C = B ∪ {(i, 1

j
, 1
k
, 0) : i, j, k ∈ N} ⊂ R4. Then C is closed,

l(C), l(l(C)) are non-empty but l(l(l(C))) is empty.

(d) Let D = C ∪ {(i, 1
j
, 1
k
, 1
m
) : i, j, k,m ∈ N} ⊂ R4. Guess and show.

(e) It is not difficult to get similar sets in R itself. Try, if you like
challenges.

********
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The most important scientific tool of all is not anything you can buy. It is your

own mind. Your thoughts and ideas are the keys that can unlock the mysteries. In

the search for understanding, questions are perhaps the most powerful force of all.

– “The hidden world of forces” by Jack R White

70. I am not sure if you understood the concept of ball in a metric space.
This is crucial. I have plotted some of them in class.

(a) Consider R2 with the Euclidean metric. Plot the unit ball around
the origin. Plot ball of radius 1/2 around the point (1, 3). Plot in
each case closed ball as well as open ball.

(b) Do the same when the metric is d(x, y) = |x1 − y1|+ |x2 − y2|.
(c) Do the same when the metric is d(x, y) = max{|x1−y1|, |x2−y2|}.
(d) Do the same when the metric is d(x, y) = 3

√

|x1 − y1|3 + |x2 − y2|3.
(e) Consider the real line R with the metric d(x, y) = min{|x− y|, 1}

Plot ball of radius r = 1/2 with centre x = 13. Plot ball of radius
r = 1 same centre. Plot ball of radius r = 1.001 with same centre.
What if I said plot ball of same radius r = 1.001 with centre
x = 31.

(f) Consider the open unit interval X = (0, 1) with metric d(x, y) =
|x − y|. Is the set B = {x : 1/3 < x < 1/2}, that is, the interval
(1/3, 1/2) a ball? If so what is its centre and radius?

Is the set (0.99, 1) a ball? There are several centres and radii
posible. Think and discover.

(g) Let X be a finite set and d be any metric on X. Show that every
singleton set is a ball. What is the centre and radius?

(h) Consider the ellipse B =
{

(x1, x2) :
1
4
x2
1 +

1
9
x2
2 < 1

}

. Can you give

a metric for R2 without changing convergence so that the above
ellipse is ball of radius one with centre (0, 0)?

(i) Take a k × k positive definite symmetric matrix. Show that

d(x, y) =
√

(x− y)tA(x− y) =
√

∑

aij(xi − yi)(xj − yj).

is a metric on Rk and convergence in d is usual one.
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71. Just as we have B(x, r) = {y : d(x, y) < r} ball around a point we also
have ball around a set. For a non-empty set S ⊂ X,

B(S, r) = {y : (∃ x ∈ S) d(x, y) < r} =
⋃

x∈S B(x, r).

If K is a compact and U an open set such that K ⊂ U show that there
is an r > 0 such that B(K, r) ⊂ U .

72. Let K be a compact and C a closed set in (X, d). If K ∩ C = ∅ then
show d(K,C) > 0. Recall d(A,B) = inf{d(x, y) : x ∈ A; y ∈ B}.
Do you think the statement remains true if both sets are closed?

73. Sn is a decreasing sequence of non-empty compact sets in a metric
space. Show ∩Sn is non-empty.

Do you think this remains true if the sets are just closed instead being
compact? What if all are closed and one is known to be compact?

74. Let (X, d) be a compact metric space. Show:

(*) If C is a family of closed sets such that intersection of any finitely
many of them is non-empty then there is a point common to all of them
(in other words, intersection of all of them is non-empty) .

Conversely show: a metric space satisfying (*) is compact.

75. If every real valued continuous function is bounded, show that the space
is compact. All this drama is on a metric space, a nice stage.

If every real valued bounded continuous function attains its supremum
then show that such a function attains its infimum too. Show that
when this happens the space is compact.

76. X is a compact metric space and fn is a sequence of real continuous
functions decreasing to a continuous function f point wise. Show that
the convergence is uniform. This is known as Dini’s theorem and we
did it last year for X = [0, 1]

77. Describe all closed additive subgroups of R. Describe all open additive
subgroups of R.

E ∃ A ∀
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is it odd how asymmetrical is symmetry
symmetry is asymmetrical how odd it is.

78. Here are some examples of useful metrics on some useful spaces. Of
course, others we discussed earlier are useful too!

(a) Consider a (finite) set S and an integer N ≥ 1. Consider X = SN ,
sequences (called strings) of length N from the set S. denote
x = (x1, · · · , xN) for points in X. Put

d(x, y) = |{i : xi 6= yi}|,

that is, the number of places where the two strings differ. Verify
this is a metric.

This distance tells you how many places need to be changed to
transform one sequence to the other. This is called Hamming

distance and is useful in coding theory and DNA analysis.

Obviously the larger the distance the better chances of decoding
them correctly; they can ‘withstand’ one or two transmission er-
rors. Or, a larger distance between DNA strings of two animals
will hint that they are different species; other interpretations are
also possible.

(b) Let X = RN and Σ be a symmetric positive definite matrix of size
N ×N . Define

d(x, y) =
√

(x− y)tΣ−1(x− y).

show that this is a metric on RN .

This is sometimes called Mahalanobis distance and is useful in
Statistics.

The points x and y are observations (may be vector consisting of
nose length, cheek bone size, forehead width; scalp measurement
etc of some skull). We have two observations on two skulls we
found. Want to know if they belong to the same tribe. Here
Σ comes from an assumed probabilistic model; appearance of its
inverse seems mysterious but shall not get into details.
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(c) Let X be the set of permutations of S = {1, 2, 3, · · · , N}. For two
permutations π and η define

d(π, η) =

∣

∣

∣

∣

∣

{

(i, j) : i < j;
π(i) < π(j) & η(i) > η(j) OR
π(i) > π(j) & η(i) < η(j)

}∣

∣

∣

∣

∣

that is; the number of pairs which are compared by π and η dif-
ferently.

Show that this is a distance. This is called Kendall’s tau and is
useful in statistics. Its largest value is N(N − 1)/2. When is this
value achieved?

Suppose you and I rank (no ties) fifty selected hotels in Chen-
nai. How different are our rankings? Above distance is one such
measure.

(d) Let X be the set of vectors of length N consisting of non-negative
numbers whose sum equals one.

X = {(p1, · · · , pN) : pi ≥ 0 ∀ i;
∑

pi = 1}.

that is, all probability vectors. equivalently, all possible probabil-
ity models for an experiment which has N outcomes. Define

d2(p, q) =
1

2

N
∑

1

(
√
pi −

√
qi)

2 = 1−
∑√

piqi.

Then d is a distance, called Hellinger or Bhattacharya distance.
This is useful in functional analysis (Hellinger) and in Statistics
(Bhattacharya).

How different are two models? Above is a measure.

(e) Consider S = {0, 1, 2, 3, · · ·} and X = SN . The l1 distance on X,
namely,

d(x, y) =
∑

|xi − yi|
is also called block distance. This is because of the following rea-
son. Imagine houses are located at points of X. roads are laid
only along lines parallel to the axes. Thus when you travel you
can not go diagonally and so on. To go from house x to y this is
the distance you need to travel. Think about it.
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79. Here are some examples of metric spaces which are important when you
study groups. Do not get panicky. For us these are just some routine
examples of subsets of euclidean space.

(a) Let X be R400 and M20 be the space of 20×20 matrices. We think
of them as same in the following way: Given a vector in R400, we
break it into 20 consecutive segments each of length 20 and these
form the rows of a matrix in M20.

Verify that this is an identification of the two sets(?). Bring the
metric of R400 to M20. Show matrix multiplication is continuous.
(From where to where?)

(b) Show that the set of invertible matrices GL20 is an open subset
of M20. Show that matrix inverse is a continuous map of GL20

to itself. In other words, the group operations are friendly with
convergence.

Since this is an open subset of a complete space you can treat it
as ‘complete’ space. Is this connected?

(c) Let SL20 be the subgroup of GL20 which consists of all matrices
A with |det(A)| = 1, that is, det(A) equals ±1. show that this is a
closed subset of SL20. Since this is a closed subset, you can treat
it as a complete metric space. Is this connected?

What if I considered SL+
20, matrices with determinant one. Is it

closed? Is it connected?

(d) Suppose I consider the set Sym of symmetric matrices. Is this
closed subset of M20? Is this connected?

(e) If I considered P+ the set of symmetric positive definite matrices.
is it open or closed? Is it connected?

(f) What if I considered normal matrices, that is, matrices withAAt =
AtA. What kind of subset is it?

(g) If I considered the space O20 of orthogonal matrices, that is, ma-
trices with AAt = AtA = I, identity matrix. What kind of subsets
is it?

Remember: you can think and solve these problems. You should.
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80. Let Q be any bounded closed rectangle contained in R2. Show that the
set of polynomials in x, y is dense in C(Q).

Generalize to Rk.

81. Here is a non-trivial application of the Stone-Weierstrass theorem. Let
(X, d) be a compact metric space. We already know that C(X) the
space of real continuous functions on X with sup metric is a complete
metric space. Goal: to show that C(X) is separable.

Thus C(X) will be a Polish space.

(a) Suppose we could exhibit a sequence of functions {f1, f2, · · ·} in
C(X) which separate points.

Let f0 ≡ 1 and D0 = {fn : n ≥ 0}. Let D1 be the collection of
finite products of functions in D0. Let D be finite rational linear
combinations of functions from D1.

Show D is countable. Show D is closed under multiplication.

Let D be closure of D in our space C(X). show that D is a vector
space; is an algebra. equals C(X). Deduce C(X) is separable.

(b) Let p ∈ X and ǫ > 0. Put f(x) = d(x, p). Put g(x) = min{f(x), ǫ}.
put h(x) = g/ǫ. Show these are continuous functions.

(c) Given any open ball B(p, ǫ) show that there is a continuous func-
tions f with f(p) = 1 and 0 < f ≤ 1 on B and f(Bc) = 0.

(d) (done in class) show that there is a sequence of open balls such
that every open set is a union of some of these balls.

(e) Show that there is a sequence of functions as required in the first
step.

82. Let X be a metric space which is not compact. Goal: to show that the
space Cb(X) of bounded real continuous functions with sup metric is
not separable.

(a) Show that the space Cb(X) is complete; not needed for discussing
separability but good to know such basic facts; at no extra cost.
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(b) Let us consider R. LetN = {1, 2, 3, 4, · · ·}. For any subset A ⊂ N ,
show that there is a bounded continuous function fA on R such
that fA(x) = 1 for each x ∈ A and fA(x) = 0 for each x ∈ N −A.

show that Cb(R) is not separable.

(c) Back to metric space. Let A and B be two disjoint non-empty
closed subsets of the metric space X. Show

f(x) =
d(x,A)

d(x,A) + d(x,B)

is a real bounded continuous function on X.

(d) If X is not compact, there is a sequence which has no convergent
subsequence. Show we can take the sequence to consist of distinct
points. show every subset of the sequence (?) is a closed subset
of X.

(e) Show C(X) is not separable.

83. Let K(x, y) be a continuous function on [0, 1] × [0, 1]. Let us define a
map on C[0, 1] by

Tx(s) =
∫ 1

0
K(s, t)x(t)dt.

Show T takes the space to itself, in other words, if x is continuous then
so is Tx (done last semester, recall proof).

Show: if {xn} is a sequence in C[0, 1] which is uniformly bounded, then
the sequence {Txn : n ≥ 1} is precompact.

84. Suppose that A ⊂ C[0, 1] is a collection of differentiable functions.
Suppose that there is a number M such that for all x ∈ A and for all
t ∈ [0, 1]

|x(t)|+ |x′(t)| ≤ M

Show that A is precompact.

85. Here is an application of Arzela-Ascoli. This is called Peano’s theorem.

We are given an open set Ω ⊂ R2 and a point (t0, x0) ∈ Ω and a
continuous function F : Ω → R. Goal is to show that we can exhibit
an interval around t0 and a differentiable function x on that interval
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such that (i) x(t0) = x0 and (ii) x′(t) = F (t, x(t)). The last condition
means that for each t in the interval exhibited, the point (t, x(t)) ∈ Ω
and the stated equality holds.

get a closed ball B around (t0, x0) contained in Ω and let |F | < M for
all points in this ball. Take δ > 0 so that

[t0 − δ, t0 + δ]× [x0 −Mδ, x0 +Mδ] ⊂ B.

Argue that there is a sequence of polynomials Pn(x, y) such that

d(Pn, f) → 0; |Pn(x, y)| < M ∀(x, y) ∈ B

Show that there is a solution xn(t) for (i), (ii) with data (t0, x0, Pn).

Write the integral equation satisfied by xn.

Show there is a subsequence of {xn} converging to, say, x∗.

show that x∗ is a solution of original problem.

86. consider R2 and F (t, x) = x2/3 and (t0, x0) = (0, 0). Then x(t) ≡ 0 and
x∗(t) = t3/(27) both solve x′ = F (t, x(t)).

87. Let C be a closed subset of R. Show that we can express

C = D ∪ P ; D countable;P closed; P = ∅ or l(P ) = P

Recall that l(P ) is the set of limit points of P and so the last phrase
means that every point of P is a limit point of P . [take D = union of
(a, b) ∩ C which are countable].

Let P be a closed set for which every point is a limit point. Then P
must have same power as c — if non-empty.

You Prove it just like Cantor intersection theorem. Get two disjoint
closed balls B0 and B1. within each get two disjoint closed balls B00, B01

and B10, B11. Stare at these.

Open your thoughts first, then your pen.
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88. The algebra generated by {1, x2} is dense in C[0, 1]. Is it dense in
C[−1, 1]? Suppose I take an integer k ≥ 1. For what I is the algebra
generated by {1, xk} dense in C(I)? Of course, I here is a closed
bounded interval.

89. f is real continuous on [0, 1] and
∫ 1
0 f(x)xndx = 0 for integers n ≥ 0

show f(x) ≡ 0.

90. ]it Unit balls

Remember the unit ball in Rk is the set of all vectors x such that
d(x, 0) = ||x|| ≤ 1. We know it is compact.

Analogously, unit ball in C[0, 1] is the set of all functions x = x(t) such
that d(x, 0) ≤ 1. This means the set of all x with sup |x(t)| ≤ 1. Show
that this is not compact.

Similarly the unit ball in l2 is the set of all sequences x = (xn : n ≥ 1)
such that d2(x, 0) ≤ 1. This means

∑

x2
n ≤ 1 Show this is not compact.

However show that the following set is compact in l2. All points x =
(xn) with |xn|,≤ 1/n for all n.

91. If a metric space is totally bounded then show that every sequence
contains a subsequence which is Cauchy.

Thus, duty of totally boundedness is to provide a Cauchy subsequence;
duty of completeness is to make it converge; together give compactness.

92. compact subsets of R∞

The diagonal argument has great potential.

Remember we made R∞ the space of sequences of real numbers into a
metric space. We gave a metric to the space. Of course convergence is
just coordinatewise convergence. Show that a subset K ⊂ R∞ is pre
compact iff for each n, there is number Mn such that
x = (xn) ∈ K ⇒ |xn| ≤ Mn ∀n.
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93. Here is a further generalization of the space C(X) we considered.

Let X be a compact metric space and Y be a Polish space. Let C[X, Y ]
be the space of all continuous functions on X with values in Y .

Let X = [0, 1] and Y is Cantor set, describe C[X, Y ].

Let X = [0, 1] and Y the set consisting of the vertical lines at x = 2
and x = 4 in the plane. Describe C[X, Y ]. Are you able to imagine it
as two copies of C[0, 1] sitting side by side.

Let X = [0, 1] and Y be the set of complex numbers. Describe C[x, Y ]
are you able to imagine it as C[0, 1]× C[0, 1]?

Let X = [0, 1] and Y = C[0, 1]. Identify C[X, Y ] with C([0, 1]× [0, 1]).
What does identify mean here?

back to generalities.

Show f ∈ C implies range of f is a bounded subset of Y .

Show f ∈ C implies it is uniformly continuous. This means, given
ǫ > 0, there is δ > 0 such that

dX(s, t) < δ ⇒ dY (f(s), f(t)) < ǫ.

Define for f, g ∈ C[X, Y ];

d(f, g) = sup{dY (f(s), g(s)) : s ∈ X}.

Show that this is a metric and C[X, Y ] is a complete metric space.

94. Hausdorff metric

The setup here appears abstract but not the mathematics. I mention
to impress upon you the diversity of metric spaces you can think of.

Consider I = [0, 1] and let Γ be the collection of all non-empty compact
subsets of I. Given two sets K and L in this space show that there is
at least one ǫ > 0 such that K ⊂ B(L, ǫ) and L ⊂ B(K, ǫ).

Hausdorff defines the distance between two sets as the smallest such ǫ.
That is,

ρ(K,L) = inf{ǫ > 0 : K ⊂ B(L, ǫ); L ⊂ B(K, ǫ)}.
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Suppose K and L are singletons {x} and {y} guess what should be
their distance and verify.

Suppose K is a doubleton and L is a singleton. Then what is their
distance? What if both are doubletons?

What is the distance between [0, 1/3] and [2/3, 1]. Guess first and
proceed.

Show that ρ is actually distance on Γ.

It is not difficult to show that the space Γ is compact, but let us not
spend time on it. Remember, in connection with fixed point theorem
we came across this space.

95. Stone-Weierstrass, Complex version

Let X be a compact metric space and C[X,C] be the space of complex
valued continuous functions on X. Let A be a sub algebra of this which
contains constant functions and separates points. Suppose moreover
that f ∈ A implies its conjugate f ∈ A. Show that A is dense in the
space. (Reduce the problem to real case).

Remember if f(x) = f1(x)+if2(x) where f1 and f2 are real valued then
conjugate of f is defined by f(x) = f1(x)− if2(x).

96. identifying points

I said that if you tie the two points zero and one together, the unit
interval becomes unit circle. This is actually a precise statement. Let
us see what it means.

Let X = [0, 1] usual metric. Let Y = (0, 1)∪{♠} Thus Y has all points
of X except zero and one, instead it has one extra point. This is the
bag containing zero and one. Here is the metric d∗(s, t): it is same as
d(s, t) when s, t ∈ (0, 1); if both are the extra point then distance is
zero; if s ∈ (0, 1) then d∗(s,♠) = min{|s− 0|, |s− 1|}.
Show that this is a metric. Show this space is homeomorphic to the
circle via the map h(t) = (cos 2πt, sin 2πt). Need not worry how to
interpret the value at ♠, take it as zero or one; does not matter.

later you will see several such constructions.
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