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Cantor intersection theorem:

In the real line we have shown that a decreasing sequence of closed non-
empty intervals with diameter converging to zero have a point in common.
We shall now generalize this result to metric spaces. But before doing so,
let us understand that the intervals should be as stated in the theorem. A
sequence of sets which are decreasing are called nested.

The intervals {[n,∞) : n ≥ 1} are closed and nested. But they have no
point in common because their diameter is not converging to zero.

The intervals {(0, 1/n);n ≥ 1} have diameter decreasing to zero, they
are nested but have no point in common because the sets are not closed.

The intervals {[n, n+1/n];n ≥ 1} are closed and have diameter decreas-
ing to zero, but they have no point in common because they are not nested.

Theoem: Let (X, d) be a complete metric space, let

C1 ⊃ C2 ⊃ C3 ⊃ · · ·

be nested sequence of closed setts with diameter converging to zero. Then
they have exactly one point in common.

The essential thing is that there is a common point.
If there are two different points x, y in common then the diameter of

each of the sets must be at least d(x, y) > 0 and hence can not go to zero.
If we take one point xn ∈ Cn, then the sequence {xn} is Cauchy. Indeed

{xn : n ≥ N} ⊂ CN so that as soon as the diameter of CN is smaller than ǫ,
we can conclude that d(xm, xn) < ǫ for all m,n ≥ N . By completeness of X
this sequence must converge to a point x. Since each CN is closed and x is
also limit of the sequence (xn : n ≥ N) which is contained in CN we see that
x ∈ CN . This is true for every N .

Thus the intersection is exactly one point.

Actually the above property characterises completeness. More precisely,
let (X, d) be a metric space. Suppose every nested sequence of closed sets
with diameter converging to zero have a common point. Then the space
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is complete. This is seen as follows. Let (xn) be a Cauchy sequence. Set
Cn = {xi : i ≥ n}. Here the overline denotes closure. This is a nested se-
quence of closed sets. The Cauchy property of the given sequence shows that
their diameter is converging to zero. Thus there is a point common to all,
say, x. We claim xn → x.

Baire’s theorem:

Let (X, d) be a metric space. A closed set C ⊂ X is small if it does not
contain any non-empty open set. In other words, it has no interior points.
More generally, we say that a set A ⊂ X is small if its closure does not con-
tain any non-empty open set. Here then is an extremely powerful theorem.

Theorem (Baire Category theorem):
A complete metric space can not be written as a countable union of small

sets.

In other words, if C1, C2, · · · is a sequence of closed sets each of which has
no interior point, then there is a point of X which is not in any one of these
sets. Of course, there will be, not one but plenty of, points outside all the
sets Cn, as we will see.

Proof of this theorem is very simple, but the theorem is itself very power-
ful. It will help you to see objects which you can not see with ordinary eyes!
Let us see two applications before proving this theorem. You will learn later
many many applications.

nowhere differentiable functions:

This application is due to Banach. Consider the set X = C[0, 1], space
of real valued continuous functions on the interval [0, 1]. We show that there
are plenty of functions which do not have finite derivative at any point what-
so-ever. In fact, the set of such functions is much larger than differentiable
functions.

We know that X is a complete space. For integers n,m > 1 consider the
following set.

En,m =
{

x ∈ C[0, 1] :
(

∃t; 0 ≤ t ≤ 1−
1

n

) (

∀h; 0 < h <
1

n

)

∣

∣

∣

∣

∣

x(t+ h)− x(t)

h

∣

∣

∣

∣

∣

≤ m

}

.
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Observe that if a function is differentiable at some point t < 1, then it is
in one of the above sets for some n,m > 1. Indeed let x be a function having
a finite derivative at a point t0 < 1. Get n so that t0 < 1 − 1/n. Consider
the fhe function ϕ(h) = [x(t0 + h)− x(t0)]/h on [0, 1/n]. Of course at h = 0,
the value is its limit which is the finite right derivative of x at t0. This is
continuous and hence bounded, say, by m. Then clearly x ∈ En,m for this
n,m.

The set En,m is closed. To see this first recall that if xn → x, then xn

converges uniformly to x. If tn → t then xn(tn) → x(t). This is because,
given ǫ > 0, we can fix N so that d(xN , x) < ǫ/2 for n ≥ N . Since x
is continuous, we fix N1 so that |x(tn) − x(t)| < ǫ/2 for n ≥ N1. if now
n ≥ N ∨N1, then

|xn(tn)− x(t)| ≤ |xn(tn)− x(tn)|+ |x(tn)− x(t)| < ǫ.

Now to see that En,m is closed, take xi ∈ En,m with xi → x. get ti for
xi. If necessary take subsequence and assume that ti → t∗ ∈ [0, 1/n]. Now
take any h with 0 < h < 1/n. Then the facts ti → t∗ and ti + h → t∗ + h
combined with the observation of the para above show that x also satisfies
the required inequality for difference quotients.

Finally we show that the set En,m does not contain any non-empty open
set. This will then show that each En,m is a small set. We start with an
observation.

Let P be a polynomial and ǫ > 0, then we claim that there is a function
x such that d(x, P ) < ǫ and x 6∈ En,m.

How does this help us? If En,m contains a non-empty open set, then by
Weierstrass theorem this open set must contain a polynomial and hence a
ball around this polynomial is contained in the open set. In other words, if
you assume that interior of En,m is non-empty, then there is a polynomial P
and ǫ > 0 such that B(P, ǫ) ⊂ En,m. But the observation refutes precisely
such a statement, it tells that there is a x in this ball which is not in En,m.

To prove the observation stated above, fix a bound c for the derivative of P
on [0, 1]. Consider the following function z on [0, 1]; it is made up of straight
line segments; it starts with z(0) = 0; increases with slope s = c+ 2m till it
reaches ǫ/2; then decreases with slope −s till it reaches −ǫ/2; then increases
with slope s till it reaches ǫ/2 and then decreases etc; all this continues till
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you reach t = 1 and then stops. Convince yourself that you do reach t = 1
after finite number of these ups and downs. You then see that this defines a
continuous function on [0, 1].

Let x = P + z. Then clearly d(P, x) = sup |z(t)| < ǫ. Now take any t < 1.
Take any h > 0 so that t + h is also before the next corner of z. Thus you
have plenty of h > 0 at your disposal. Then

x(t+ h)− x(t)

h
=

P (t+ h)− P (t)

h
+

z(t+ h)− z(t)

h

By mean value theorem the first term on right side is between −c and +c.
By construction the second term is either c+2m or −c− 2m. Keep in mind
that t, t + h are in the same line segment of z. As a result the difference
quotient for x is at least 2m > m.

This shows that each En,m is small. Similarly, the following sets are also
small.

Fn,m =
{

x ∈ C[0, 1] :
(

∃t;
1

n
≤ t ≤ 1

) (

∀h;−
1

n
< h < 0

)

∣

∣

∣

∣

∣

x(t+ h)− x(t)

h

∣

∣

∣

∣

∣

≤ m

}

.

Thus we have countably many small sets En,m and Fn,m for n,m ≥ 1. If a
function has a derivative at any point of [0, 1] then it must be in one of these
sets. actually we can be more precise as follows. If a function has a finite
right derivative at any point of [0, 1) then it must be in one of the En,m. If
a function has a finite left derivative at any point of (0, 1] then it must be in
one of the Fn,m.

Baire’s theorem tells that there are functions outside all these sets. If we
take such a function then it can not have a finite right derivative or finite
left derivative at any point what-so-ever in [0, 1]. In particular it is not dif-
ferentiable at any point.

Just to make you understand the right and left derivatives, let us con-
sider the function x(t) = |t − 1/2|. Then this is not differentiable at the
point t0 = 1/2. Convince yourself of this. However this has left derivative
equal to −1; and right derivative equal to +1 at the point t0 = 1/2. Thus
the functions whose existence we asserted above can not even be like this.
Think about it.

4



Before going to next application of Baire’s theorem, let us remember a
little history about the hero of this application: Banach.

There was a time when hell descended on earth; in the form of second
world war. Poland suffered very heavily. As far as Maths is concerned here
is a brief view.

Some could emigrate early on: Alfred Tarski (logician), Antony Zyg-
mund (analyst), Jerzy Neyman (statistician), Samuel Eilenberg (topologist),
Stanislaw Ulam (set theory, computation etc) and several others.

Some stayed on and survived the war, either by going underground or
showing that they have pure blood, whatever it may mean: W. Sieprinski,
K. Kuratowski, H. Steinhaus and others.

Some committed suicide: F. Hausdorff.

Some were put to death in camps: S. Saks, J. Marcinkiewicz, J. Schauder,
A. Rajchman, A. Lindenbaum and many many many others.

Some were saved by Director of lab (in Lwow, a city in Poland) that makes
Typhus vaccine. Since Germans needed it, they allowed him to choose vol-
unteers. This vaccine needs lice. Growing lice is done by carefully packing
them and attaching to the calf or thigh of human so that they suck the blood.
These volunteers are called lice-feeders. Our hero Banach was one such. He
survived the war but died soon after due to failed health (and lung cancer).

R as union of closed sets:

Our second application of Baire’s theorem is to show the following which
answers a question that we raised earlier.

Theorem: R can not be expressed as union of of infinitely many non-
empty disjoint closed sets.

We already knew that there is no subset of R which is open and closed
except ∅ and R itself. Thus we can not express R as union of two disjoint non-
empty closed sets. This in turn implies that we can not express R = ∪k

1
Ci

where Ci are nonempty disjoint closed sets and k > 1. If this could be done
then, you can simply take A = C1 and B = ∪k

2
Ci to see R is union of two

nonempty disjoint closed sets.
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Thus R can not be expressed as a finite union of more than one nonempty
disjoint closed sets. The theorem says you can not express R even as count-
ably infinite union of nonempty closed sets.

Let, if possible
R = C1 ∪ C2 ∪ C3 ∪ · · · · · · .

Let the interior of Ci be denoted by Ji. Denote

U = J1 ∪ J2 ∪ J3 ∪ · · · · · · .

Since none of the Ci can be open we see each Ji is a proper subset of Ci,
possibly empty. This U is an open set and its complement, denoted by H is
therefore a non-empty closed set. Thus H is a complete metric space in its
own right, metric is same d(x, y) = |x− y| for x, y ∈ U .

H = (C1 ∩H) ∪ (C2 ∩H) ∪ (C3 ∩H) ∪ · · · · · ·

= (C1 − J1) ∪ (C2 − J2) ∪ (C3 − J3) ∪ · · · · · · .

The plan of the proof now is the following. We shall now forget R for a
minute and concentrate on the complete metric space H. We show that the
sets on the right side above are small in H. This contradicts Baire’s theorem
for the complete metric space H.

Let us start with an observation. If an interval (a, b) contains a point, say
x, of C1 ∩H, then it contains points from other Ci ∩H (i 6= 1) as well. This
is easy. If the entire interval (a, b) is contained in C1 then it would have been
removed as part of J1, So this interval must have points from, say, C5. Let us
say y ∈ C5 ∩ (a, b). Either y < x or y > x because Ci are disjoint. Suppose
y < x; similar argument applies in the other case. Consider all points in
[y, x] which are in C5 and take its sup, name it z. This is sensible because
the set we are considering includes y and is hence non-empty; moreover it is
bounded by x. Also C5 being closed we conclude that z ∈ C5. In particular
z < x and points in between these are not in C5. in other words there is
no interval around z contained in C5 which means z ∈ C5 − J5 and thus
z ∈ C5 ∩H and z ∈ (a, b) as claimed.

To complete executing our plan, first notice that each Ci ∩ H is a non-
empty closed subset of H. That it is non-empty is already noted earlier. It
is closed in H because whenever a sequence of points from here converge to
a limit then the convergence is ‘usual convergence’ and hence the limit is in
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both the closed sets Ci as well as H.

finally suppose Ci∩H contains a non-empty set open in H. That is, there
is a point x ∈ Ci ∩H and ǫ > 0 such that {y ∈ H : d(x, y) < ǫ} ⊂ Ci ∩H.
In other words (x − ǫ, x + ǫ) ∩ H ⊂ Ci ∩ H. But this is not possible as
observed above. This completes the proof that each Ci ∩H is a small set in
the complete metric space H.

And completes proof of the theorem.

Just to impress upon you the phrase ‘small in H’, let us consider R and Z
the set of integers. Each {n} is small in R. However none of these singleton
sets are small in Z. In fact each of these are both closed and open in Z.

Thus smallness depends on the background. In the background of R, each
{n} is small. In the background of Z, each {n} is not small. You should
understand this point.

Proof of Baire:

This is exactly same as the one for real line, there is no new idea. The
execution is made possible by Cantor intersection theorem for complete met-
ric spaces.

Before you get the wrong impression that Baire just imitated the real line
proof, let me say the following. Even for the real line it is due to Baire. It is
not that the theorem existed for R and he extended it to metric spaces. We
discussed real line case first only to understand the argument in a familiar
territory, so that the general case would pose no problem.

So let (X, d) be a complete metric space and let C1, C2, C3, · · · be small
closed sets. We exhibit a point of X which is not in any of the Ci.

In what follows a ball means ball of positive radius. Every open ball
contains a closed ball with same center (say, any strictly smaller radius) and
every closed ball contains an open ball with same centre (same radius). In
what follows we ask you to choose an open ball inside a closed ball or we ask
you to take a closed ball inside an open ball. Then you should select with
the same center as mentioned above. This is our agreement.

Take any open ball B1 of your choice. We promise to get open balls
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(Bi : i ≥ 1), closed balls (Fi : i ≥ 1) such that the following holds.

B1 ⊃ F1 ⊃ B2 ⊃ F2 ⊃ B3 ⊃ F3 ⊃ · · · ⊃ Bn−1 ⊃ Fn−1 ⊃ · · · (∗)

Fi ⊂ Cc
i ; i = 1, 2, 3, 4, · · · (∗∗)

diameter(Fi) ≤ 1/2i. (∗ ∗ ∗)

Let us see what happens then. Condition (∗) says that the sets Fi are nested
closed sets; condition (∗ ∗ ∗) with Cantor intersection theorem then gives a
point x common to all Fn; condition (∗∗) says that this point is not in any
of the sets Ci. as promised. Actually condition (∗) tells that this point is in
the open set Bi you gave.

Here is how we construct the sets. Since C1 is small surely B1 ∩ Cc
1
6= ∅

and is open. So take a closed ball

F1 ⊂ B1 ∩ Cc
1
.

If you have possibility of choosing large ball, restrain, choose ball of radius
at most 1/2.

Take open ball B2 ⊂ F1 as per our agreement above. Since C2 is small
B2 ∩ Cc

2
6= ∅. So select closed ball

F2 ⊂ B2 ∩ Cc
2
.

Again make sure diameter of F2 is at most 1/22. Take open ball B3 ⊂ F2 as
per our agreement. Then select a closed ball

F3 ⊂ B3 ∩ Cc
3
.

Make sure its diameter is at most 1/23.

Here is the inductive step. Suppose we got the balls (Bi) and (Fi) for i =
1, 2, · · · , n−1 as satisfying the three conditions. here is how we construct Bn

and Fn. Of course Bn is the open ball contained in Fn as per our agreement
earlier. Since Cn is small take closed ball

Fn ⊂ Bn ∩ Cc
n.

If you have a possibility of choosing large Fn, cut it down to have diameter
smaller than 1/2n.

This complete the construction and proof of the theorem.
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I would like to stress once again two points which I made earlier. First
is this. After getting the first three sets you could say, ‘continue like this’.
But when you write a proof, you must make sure that such a continuation
‘for ever’ is indeed possible. So it is important for you to show this.

Secondly, you see, what we want is just that diameter(Fn) → 0 to get a
point common to all of them; it does not matter how it converges to zero,
it does not need to be smaller than 1/2n. Thus in stating my conditions
suppose I carelessly stated (∗ ∗ ∗) as: diameter (Fn) → 0. You will not be
able to construct sets by induction simply because it does not make sense to
say that we have constructed sets up to n satisfying the three conditions.

Thus whenever you need to make an unending construction you must be
able to write the conditions in a way that they make sense inductively; an
you should be able to explain that having done the construction up to a stage
it can be continued to the next stage.

Please pay attention and do think about it.

completion of a metric space:

Having seen how important it is to have a complete space, the natural
question is the following. If the metric space is not complete, is there any-
thing we can do complete it?

Why is the space not complete. There are Cauchy sequences which are
not converging. So either we should make sure such sequences are not Cauchy
or provide a point (of convergence) for each such sequence. The first alter-
native works if we can provide suitable metric without changing the notion
of convergence. This is possible if the space is already an open subset of a
complete metric space. This is possible even if the space is a set which is
countable intersection of open sets in a complete space. It stops there and
does not work for any metric space.

Besides, in the procedure described above, there are two problems. firstly,
I said if your space is an open subset of a complete space you can change the
metric. But how do you recognize that there is indeed a bigger space which is
indeed complete and our space is indeed an open subset of it? Second point
is that one may not like to change the distance. After all, if a particular met-
ric is natural then changing it, just to achieve some other desired property,
makes the new metric artificial and devoid of meaning. such a thing should
be avoided.
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So we look for the second alternative. This is what Cantor did. We men-
tioned this issue when we described Cantor’s construction of real numbers.
Exactly the same procedure works, not only for the set of rational numbers,
but for any space.

This is what we do now.

So let (X, d) be a metric space. Consider the space X1 of all cauchy
sequences in X. Thus each element of X1 is a Cauchy sequence (xn).

Define (xn) ∼ (yn) if d(xn, yn) → 0. This is an equivalence relation on
X1. Denote the space of equivalence classes by X∗. Thus elements of X∗ are
bags. Each bag contains Cauchy sequences which are equivalent. If there is
one Cauchy sequence (xn) in a bag then every Cauchy sequence (yn) equiv-
alent to (xn) is also in that bag — and nothing else is there. Elments of X∗

are denoted [x].

Let us observe that if (xn) and (yn) are Cauchy sequences in X then the
limit lim d(xn, yn) exists. Indeed, to show this, it is enough to show that the
sequence of real numbers {d(xn, yn)} is a Cauchy sequence of real numbers.
But this is easy

|d(xn, yn)− d(xm, ym)| ≤ d(xn, xm) + d(yn, ym).

and hence can be made as small as we please for all large values of m and n.
You only need to see that both terms on the right side can be made small.

Further if (an) ∼ (xn) and (bn) ∼ (yn) then lim d(an, bn) = lim d(xn, yn).
This is again because

|d(an, bn)− d(xn, yn)| ≤ d(an, xn) + d(bn, yn) → 0.

Let us define for [x] and [y] in X∗

d∗([x], [y]) = lim d(xn, yn).

The above analysis shows that this limit exists and is well-defined on X∗.

We show that d∗ is a metric on X∗. Clearly d∗([x], [x]) = 0. Also
d∗([x], [y]) = 0 implies, by definition of the equivalence relation, that [x] = [y].
Symmetry, d∗([x], [y]) = d∗([y], [x]) is also clear. the triangle inequality of d
leads to the triangle inequality for d∗.
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We shall now identify X as a subset of X∗. For p ∈ X, let ϕ(p) be the
constant sequence xn = p for all n, more precisely, ϕ(p) is the bag containing
this sequence. Then this map is one-one. This preserves distance too. That
is d(p, q) = d∗([p], [q]).

We shall show that X is a dense subset of X∗; (X∗, d∗) is a complete
metric space. Thus X is enlarged to a set X∗ and the metric is also extended

to d∗ to make the space complete.

By showing that X is dense, we are saying that for every point of z ∈ X∗

there is a Cauchy sequence (xn) ⊂ X which converges to it. In other words,
in this process of completion we have not added unnecessary points, every
new point z we aded, being limit of a Cauchy sequence (xn) in X.

This leads to the feeling that the completion is unique. Yes, this is so.
We have not yet defined what is completion. We shall do and then prove
that completion is indeed unique.

There are some books that I have consulted from time to time for nice
problems apart from the books I already mentioned. I am giving below. But
you should feel free (and also make it a habit) to consult any book from
the library. It is not enough to be able to understand what I say; it is very
important to be able to understand others too.

You should develop the habit of reading material and internalizing it.
That is, do not classify it as easy or difficult (you are not here to judge,
though you can do it); do not reproduce it word-to-word (this is not a mem-
orizing contest, though you can do it); but understand and think about it till
you are able to explain to others in your own words.

An introduction to complex analysis and geometry
John P D’Angelo.

p-adic analysis compared with real
Katok Svetlana.

A primer of real functions
Ralph P Boas.
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