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completion continued:

We have a metric space (X, d). We considered the space X1 of Cauchy
sequences (xn). Defined an equivalence relation (xn) ∼ (yn) if they ap-
pear to be converging to the same point; more precisely, if d(xn, yn) → 0.
X∗ is the space of equivalence classes or bags as we called them. Define
d∗([x], [y]) = lim d(xn, yn). We showed that this limit exists and does not
depend on the sequences you have taken from the two bags.

Defined the map ϕ : X → X∗ as follows. For p ∈ X, ϕ(p) is the bag
containing the constant sequence all of whose terms equal p. We showed that
this is distance preserving map.

Recall that, for a metric space (Z, ρ), a subset D ⊂ Z is dense in Z if
every non-empty open set contains a point of D. equivalently, given z ∈ Z
and ǫ > 0, there is p ∈ D such that ρ(z, p) < ǫ..

We now show that range ϕ(X) is dense in X∗. To do this, take [x] ∈ X∗

say the bag containing the Cauchy sequence (xn). Let ǫ > 0. We shall show
p ∈ X such that d∗(ϕ(p), [x]) < ǫ. Choose N such that n,m ≥ N implies
d(xn, xm) ≤ ǫ/2. Take p = xN . We show that this does. Since ϕ(p) is the
constant sequence {p, p, p · · ·} we see, by calculation,

d∗(ϕ(p), [x]) = lim d(xN , xn) ≤ ǫ/2 < ǫ.

We now show that X∗ is a complete metric space. But before we do this
let us make an observation which will avoid some notational confusion later.

Let (S, d) be a metric space and T ⊂ S be a dense subset.
Assume the following: (xn) is a Cauchy sequence; each xn belongs to T

then there is a point of x ∈ S such that xn → x. Then the metric space S is
complete.

Equivalently, every Cauchy sequence in S converges.
In other words, if you know Cauchy sequences with terms coming from

T converge (in S, we are not saying that they converge to points in T ) then
every Cauchy sequence in S converges.
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Proof is simple and as follows. let (xn) be a Cauchy sequence in S. for
each n, using denseness of T pick yn ∈ T so that d(xn, yn) < 1/2n. Now we
see that (yn) are all points in T . The plan is to show that (yn) is a Cauchy
sequence and get its limit guaranteed by hypothesis, and show that original
sequence (xn) also converges to this limit. Towards showing (yn) is Cauchy,
fix ǫ > 0. Choose N so that m,n ≥ N implies d(xn, xm) < ǫ/2 and also
∑

m≥N

2−m < ǫ/2. if now, m,n ≥ N

d(ym, yn) ≤ d(ym, xm) + d(xm, xn) + d(xn, yn) ≤ ǫ/2 + ǫ/2.

So let yn → y. Towards showing that xn → y, you only need to note
that d(xn, yn) ≤ 1/2n → 0. Or, explicitly, given ǫ > 0, choose N so that
|yn − y| < ǫ/2 for n ≥ N and also 1/2N < ǫ/2. Then for n ≥ N ,

d(xn, y) ≤ d(xn, yn) + d(yn, y) ≤ ǫ/2 + ǫ/2.

This completes the observation. Let us now return to showing that X∗ is
complete. From the observation, it suffices to show that Cauchy sequences
whose points come from the dense set ϕ(X) converge. Accordingly, take
a Cauchy sequence ϕ(pn) where pn ∈ X for each n. Since ϕ is distance
preserving map, we conclude that x = (pn) is a Cauchy sequence in X and
is an element of X1, the space of Cauchy sequences. We show ϕ(pn) → [x].
Take ǫ > 0. Choose N so that d(pn, pm) < ǫ/2 for n,m ≥ N . We show
now d∗(ϕ(pi), [x]) < ǫ. for i ≥ N . Keep in mind that ϕ(pi) is the constant
sequence

pi, pi, pi, pi, · · ·

and x is the sequence
p1, p2, p3, p4, · · · .

Use definition of d∗ to see

d∗(ϕ(pi), [x]) = lim
n

d(pi, pn) ≤ ǫ/2.

The last inequality is from the fact that i ≥ N and as soon as n ≥ N we
know d(pi, pn) ≤ ǫ/2.

definition of Completion:

Let (X, d) be a metric space. By completion of (X, d) we mean a metric
space (Z, ρ) and a map ϕ : X → Z such that the following hold.
(i) Z is a complete metric space.
(ii) ϕ is distance preserving map.
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(iii) Range ϕ(X) is dense in Z.

Condition (ii) tells you that ρ(ϕ(x), ϕ(y)) = d(x, y). In particular if x 6= y
then ϕ(x) 6= ϕ(y). Thus ϕ is a bijection from X to ϕ(X). Since the distance
is also preserved, when you see ϕ(X) it looks exactly like X. In other words
you see a replica of X in this new space.

To put it differently, if you rename the point ϕ(x) as x, then you see X
in Z. Thus many times we regard X ⊂ Z. Just like, while constructing real
number system starting from rationals, we considered either cuts or Cauchy
sequences; but no matter what, we regarded Q as a subset of the R we con-
structed.

Such a view leads to the nice feeling that the extra points, that is points
of Z − X, are the new ones needed to show as limits of Cauchy sequences.
Thus the new space is not as abstract as it appears, but original set of pints
with new things thrown in where ever necessary.

Condition (iii) tells you that you have not added unnecessary points.
More precisely, if z ∈ Z −ϕ(X), then denseness of ϕ(X) tells you that there
is a sequence (xn) ⊂ X such that ϕ(xn) → z. But then ϕ(xn) is a Cauchy
sequence (recall any convergent sequence is a Cauchy sequence, in any metric
space). But ϕ being distance preserving, we conclude (xn) itself is a Cauchy
sequence in X. It does not converge in X [if it did, say to x then ϕ(xn)
converges to ϕ(x) a point of ϕ(X) contradicting that it converges to a point
of Z − ϕ(X).] Thus the point z is essential to show as limit of the Cauchy
sequence (xn).

Of course condition (i) tells you that your new space is complete. Thus we
‘embedded’ X in a complete space without bringing in un-necessary points
in the process.

Thus what we have shown is that every metric space has a completion.
(X∗, d∗) satisfies all the three conditions.

We shall now show that a completion is unique. More precisely, if there
are two completions (Z1, ρ1, ϕ1) and (Z2, ρ2, ϕ2) then there is distance pre-
serving bijection between them that keeps X fixed. This means there is
f : Z1 → Z2 which is distance preserving and f(ϕ1(x)) = ϕ2(x) for all
x ∈ X. Remember x ∈ X looks like ϕ1(x) in Z1 whereas it looks like ϕ2(x)
in Z2.
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Sometimes statement of a claim itself includes how to start its proof.
Thus let there be two completions with notation as above. We define f

as follows. For x ∈ X we define f(ϕ1(x)) = ϕ2(x). Now take any z ∈ Z1.
Since ϕ1(X) is dense in Z1 take a sequence ϕ1(xn) → z in Z1. In particular,
{ϕ1(xn)} is a Cauchy sequence in Z1. Since ϕ1 is distance preserving we
conclude that (xn) is Cauchy in X. But now ϕ2 is distance preserving tells
us that {ϕ2(xn)} is Cauchy in Z2. since Z2 is complete the limit limϕ2(xn)
exists in Z2 and this limit is defined as f(z).

This is a good definition because if some one takes a different sequence
ϕ1(yn) → z then we see

ρ2(ϕ2(xn), ϕ2(yn)) = d(xn, yn) = ρ1(ϕ1(xn), ϕ1(yn)) → 0

so that ϕ2(yn) also converges o the same limit as ϕ2(xn).

This completes the definition of f on Z1 to Z2. It is distance preserving
because for two points z, w ∈ Z1 take ϕ1(xn) → z and ϕ1(yn) → w and see

ρ2(f(z), f(w)) = lim ρ2(ϕ2(xn), ϕ2(yn)) = lim d(xn, yn)

= lim ρ1(ϕ1(xn), ϕ1(yn)) = ρ(z, w).

It follows that f is one-one too. Indeed if z 6= w, then

ρ2(f(z), f(w)) = ρ1(z, w) 6= 0

showing that f(z) 6= f(w).

Shall show that f is onto Z2. Indeed, if w ∈ Z2, then using ϕ2(X) is
dense, take ϕ2(xn) → w. Repeating the earlier argument conclude {ϕ2(xn)}
and hence {xn} and hence {ϕ1(xn)} are Cauchy (in their respective spaces)
Using completeness of Z1 get limit z of this last sequence and argue f(z) = w.

This completes the proof of the fact that every metric space has a com-
pletion and it is unique in the sense (loosely speaking) between any two
completions there is a distance preserving bijection that is identity on X,
which is inside both. Of douse, more precise statement is as mentioned ear-
lier.

This process is due to Cantor. What we have done earlier to construct
real numbers starting from rationals is precisely this completion; no more
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and no less.

This analysis shows some general facts. here is one.
Suppose (Z1, ρ1) and (Z2, ρ2) are two complete metric spaces. suppose

D is a dense subset of Z1 and f is a distance preserving map defined on D
into Z. Then the map can be extended to a distance preserving map on
Z1 into Z2. Proof is already contained in what we have done above. Take
any z ∈ Z1; use D is dense, get xn ∈ D such that xn → z, conclude (xn)
is Cauchy, conclude f(xn) is Cauchy, use Z2 is complete, get its limit and
declare that as f(z). One shows that this is well defined; does not depend
on the sequence (xn) you have taken from D.

Also this is distance preserving just as above. Such an extension is
unique too, because any distance preserving map has the property that when
xn → x, then f(xn) → f(x). This shows that for z, its value f(z) must equal
to what we defined.

of course this may not be onto. One can show that it is onto iff f(D) is
dense in Z2.

Here is another fact that comes out of the analysis above. Let X1 be a
set and d1 : X ×X → [0,∞) satisfying the following:
d1(x, x) = 0.
d1(x, y) = d1(y, x).
d1(x, z) ≤ d1(x, y) + d1(y, z).

Thus d1 is nearly a metric. It falls short of being metric only because it
may not satisfy: d1(x, y) = 0 implies x = y. If this condition is also satisfied
then this is indeed a metric.

Let us start with (X1, d1) as above. then define x ∼ y if d1(x, y) = 0.
This is an equivalence relation. Indeed, x ∼ x because d1(x, x) = 0. If x ∼ y
then y ∼ x by symmetry of d1. Triangle inequality shows that x ∼ y and
y ∼ z implies x ∼ z.

Let us consider the space of equivalence classes, denote, X. Define
d([x], [y]) = d1(x, y). This is well defined. Indeed, if u ∈ [x] and v ∈ [y],
then

d1(u, v) ≤ d1(u, x) + d1(x, y) + d1(y, v) = 0 + d1(x, y) + 0 = d1(x, y).
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and

d1(x, y) ≤ d1(x, u) + d1(u, v) + d1(v, y) = 0 + d1(u, v) + 0 = d1(u, v).

Thus d1(x, y) = d1(u, v).

It is not difficult to verify that (X, d) is a metric space. Thus d satisfies
all the three rules above and the missing rule too.

If you carefully see the completion process this is precisely what we did.
The space X1 is the space of Cauchy sequences and
d1((xn), (yn)) = lim d(xn, yn).
The above equivalence relation is precisely what we used to make bags of
Cauchy sequences and the new metric was d∗.

In other words the process of completion due to Cantor not only outlined
how to complete a metric space, producing a construction of real numbers; it
has also thrown out certain general techniques like the above two. [Of course,
historically, matters are different. Cantor did for real line construction. But
what he did was so powerful that it applied for metric spaces when they were
discovered].

Some times, completion has a concrete representation. For example con-
sider (0, 1) with usual d(x, y) = |x − y|. The space is not complete. To
complete it you should consider space of cauchy sequences. But in this case
completion is just [0, 1]. This is obvious pif you consider the map ϕ to be the
map ϕ(x) = x on (0, 1). Here X = (0, 1), Z = [0, 1]. We know Z is complete,
ϕ preserves distance and its range ϕ(X) is dense in Z.

But then what happens if you repeated the construction? Well you see
apart from the bags containing constant sequences {p, p, p · · ·} for p ∈ (0, 1);
you will get only two new bags. They are: bag containing the sequence
{1/2, 1/3, 1/4, 1/5, · · ·} and bag containing {1/2, 2/3, 3/4, 4/5, · · ·}. If you
name these two bags as zero and one you have [0, 1].

category, pseudo metric, isometry:

I have resisted the temptation of mentioning technical words. This is
because many times students use such a technical word but unfortunately
can not explain what it means. You should know that technical word is only
an agreement to use a compact word instead of long expression. The most
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important thing is to know and understand what the word stands for.

The d1 we described above which nearly satisfies the axioms of a metric
is called a pseudo-metric.

Thus pseudo metric on a set X is a function d defined on X×X which
satisfies axioms of metric except possibly: d(x, y) = 0 implies x = y. Thus
a metric is a pseudo-metric, but a pseudo metric need not be metric. But
what we described above produces a metric space from a pseudo-metric space.

For example, you can consider R3 and define

d(x, y) =
√

(x1 − y1)2 + (x3 − y3)2; x = (x1, x2, x3), y = (y1, y2, y3).

This is a pseudo metric but not a metric.

Distance preserving maps are called isometries. Thus an isometry from
a metric space (Z1, d1) to a metric space (Z2, d2) is a map T satisfying
d1(x, y) = d2(Tx, Ty).

As mentioned at the beginning of our excursion into metric spaces, the
plan is to execute convergence, continuity, and imitate some of our calculus
concepts in a more general setting. We discussed sequences and convergence.
A function from a metric space X to a metric space Y is said to be contin-

uous if the following holds: whenever xn → x then f(xn) → f(x).

Several routine results from calculus can be imitated. For example a
function is continuous iff inverse image of open sets are open. Also, the (ǫ, δ)
definition holds. More precisely, define f , as above from X to Y is contin-
uous at a point a if the following holds: xn → a implies f(xn) → f(a).

Then one can show f is continuous at a iff given ǫ > 0, there is a δ > 0
such that the following holds: dY (f(x), f(a)) < ǫ whenever dX(x, a) < δ.
Also one can show that f is continuous iff it is continuous at every point.
Proofs are exactly same as in the usual case discussed in Calculus.

Returning to isometries, you can immediately see that an isometry is a
continuous map. It is more than continuous. It satisfies a stronger property,
namely, preserves distances.

What we called small sets are called nowhere dense sets. Thus nowhere

dense set is a set A such that closure of A has no interior point. That is,
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the only open set contained in A is the empty set.

Here is the reason for this word. if you take Q the set of rationals then
it is dense in R. It was referred to as everywhere dense. Suppose I take D
to be the set of all integers union set of rationals in (0, 1). Then it is clear
that D is not dense in R, for example, the interval (14, 15) does not have any
point of D. But you can see that this set D is dense in a part of R, namely,
in the open set (0, 1) (or [0, 1] does not matter).

A small set is not dense in any open set U 6= ∅. That is why it was called
nowhere dense. A set is first category if it is union of countably many
nowhere dense sets. A set is of second category if it is not of first category.

Thus we can state Baire’s theorem as: Avery complete metric space is
of second category.

Try to understand these technical words, then you can follow literature.
Nobody uses the word small sets, distance preserving maps etc.

Banach’s contraction mapping principle:

We need to discuss compactness and continuous maps. But let us discuss
one more important theorem in Complete metric spaces. This is due to Ba-
nach.

LetX be a metric space. A map T : X → X is called a contraction if there
is a number c such that 0 ≤ c < 1 and for all points d(Tx, Ty) ≤ cd(x, y).
Thus application T reduces distances in a strong sense. It is not simply dis-
tances are reduced, they are reduced by an assured proportion c.

Of course, contraction is a continuous map. Indeed if xn → x then

d(Txn, Tx) ≤ cd(xn, x) → 0.

Theorem (Banach fixed point theorem, Banach contraction mapping princi-
ple).

If T is a contraction of a complete metric space X to itself then there is
unique point x∗ such Tx∗ = x∗.

Such a point Ta = a is called a fixed point, because T fixes it. That fixed
point is unique is not surprising. If a and b are fixed points then

d(a, b) = d(Ta, T b) ≤ cd(a, b); i.e. d(a, b) = 0.
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Existence o fixed point is also easy, we show that whatever point x you start
with, the sequence x, Tx, T 2x, T 3x, · · · converges to x∗.

This theorem has several applications and several generalizations. We are
not concerned with any generalization. There are several ways contraction
maps arise and are useful.

suppose that f is a C1 map of [a, b] to itself. Since derivative of f is
continuous and the interval is closed bounded, there is a number c such that
|f ′| ≤ c. Suppose that (by chance) c < 1. Then the map f is a contraction
map. Indeed by mean value theorem, if you take x 6= y then

|f(x)− f(y)|

|x− y|
= |f ′(θ)| ≤ c.

In other words, |f(x)− f(y)| ≤ c|x− y|.
Or equivalently, we have d(f(x), f(y)) ≤ cd(x, y).
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