
CMI (BSc II)/BVRao Analysis, Notes 2 2014 Second week

Theorem (Cantor’s Characterization of Q): Let (X,≤) be a count-
able linearly ordered set (non-empty) which has no first element; no last
element; between any two distinct elements there is another element.

Then X is isomorphic to Q, that is, there is a bijection f : X → Q such
that x ≤ y iff f(x) ≤ f(y).

You should note that we are denoting partial order by≤ both onX andQ.

Proof:

We start with an observation. Let S and T be two finite subsets of X
with S < T . This means s < t for every s ∈ S and every t ∈ T . Then there
is a ∈ X with S < a < T . Since S and T are finite sets, take maximum of S
and minimum of T and pick an element between these. Note that finiteness
of the sets is important.

In case one of the sets is empty, the hypothesis that there are no end
points makes this possible. For example if T is empty, then you take max of
S, say s∗ and using the fact that there is no last element, take a such that
s∗ < a. This will do because you need not satisfy anything w.r.t. T . (If both
S and T are empty?, we do not need this, but).

The technique used below is called back and forth argument. First let us
fix an enumeration.

X = {x1, x2, x3, · · ·}; Q = {q1, q2, q3, · · ·}.

We shall re-enumerate the sets

X = {a1, a2, a3, · · ·}, Q = {b1, b2, b3, · · ·},

in such a way that the map f(ai) = bi is the required isomorphism. This will
be so if we make sure that for each k

f(ai) = bi is order preserving on {a1, · · · , ak} onto {b1, · · · , bk}. (*)

After all the fact that we have enumerated the sets will tell you that the
map is a bijection. Any instance of verification that the map preserves the
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order depends on just two elements.

Step1: Put a1 = x1 and b1 = q1.

Step 2: Put b2 = q2. If b2 < b1 consider the first i such that xi < x1 and
declare this xi as a2. That there are no end points makes this possible. If
b1 < b2 consider the first i such that x1 < xi and declare this xi as a2.

Note that {a1, a2}; {b1, b2} is an order preserving listing, that is, f(ai) = bi
is order preserving.

Step 3: Put a3 to be the first unused xi. Thus if the xi we have chosen
in step 2 is x2 then a3 = x3 and if the xi chosen in step 2 is not x2, then
a3 = x2. Let

S = {bi : i ≤ 2, ai < a3}; T = {bi : i ≤ 2, a3 < ai}.

Choose the first unused qi such that S < qi < T and set this qi as b3. This is
possible by the observation made at the beginning.

Note that {a1, a2, a3}, {b1, b2, b3} is an order preserving listing.

In general, if we have listings {a1, a2, · · · , a2k} and {b1, b2, · · · , b2k}; order
preserving, then we proceed as follows.

step (2k + 1): Put a2k+1 to be the first unused xi. Let

S = {bi : i ≤ 2k, ai < a2k+1}; T = {bi : i ≤ 2k, a2k+1 < ai}.

Note that if bi ∈ S and bj ∈ T , then ai < a2k+1 < aj so that bi < bj —
remember the existing listing is order preserving. Choose the first unused
qi such that S < qi < T and set this qi as b2k+1. Note that the listing
{a1, a2, · · · , a2k, a2k+1} and {b1, b2, · · · , b2k, b2k+1} is order preserving.

step (2k + 2): Put b2k+2 to be the first unused qi. Let

S = {ai : i ≤ 2k + 1, bi < b2k+2}; T = {ai : i ≤ 2k + 1, b2k+2 < bi}.

As earlier if ai ∈ S and aj ∈ T , then ai < aj. Choose the first unused xi such
that S < xi < T and set this xi as a2k+2.

The way we have listed, all of X is listed as a’s and all of Q is listed as
b’s. In fact, x1 appears at step 1; x2 appears at least by step 3; x3 appears
at least by step 5 etc. Pause and think if you can explain ‘etc’ . Also at each
stage (*) holds. This completes the proof.

2



The proof actually shows something more. Let X be a set as in the the-
orem with a linear order. Given any two elements x ∈ X and q ∈ Q we can
get an order preserving bijection f so that f(x) = q. In particular, such an
order preserving bijection is not unique. You have some freedom.

Theorem 2 (countable dense subsets of R): Let A and B be two
countable dense subsets of R. Then we can get a bijection ϕ of R to itself
so that both ϕ and its inverse are continuous which moreover sends A to B.
More precisely, there is ϕ : R → R such that ϕ(A) = B; ϕ is a bijection, ϕ
is continuous; ϕ−1 is continuous.

A function ϕ : R → R which is a bijection; continuous, inverse is also
continuous is called a homeomorphism of R with itself. In other words, it is
an isomorphism for the ‘concept of continuity’.

Proof: First observe that A and also B are sets satisfying the hypotheses
of Theorem 1. So fix an isomorphism f : A → B. Define, for each x and y,

Ax = {a ∈ A : a < x}; By = {b ∈ B : b < y}.

(i) For each x, Ax 6= ∅. This is because A being dense, there are points in
a with a < x. Also a ∈ Ax a′ ∈ A and a′ < a imply that a′ < x so that
a′ ∈ Ax. Further, supAx = x. This is because if x′ < x, then by denseness
of A, there are points a with x′ < a < x. Thus nothing smaller than x is an
upper bound of Ax. Of course x is an upper bound and hence it is supAx.
Finally, x 6∈ Ax.
Similar statements holds for By.

Define

ϕ(x) = sup f(Ax) = sup{f(a) : a ∈ Ax} = sup{f(a) : a < x}.

This supremum is sensible because the set under consideration is non-empty
from (i). Also A being dense, we can get α ∈ A with x < α and clearly f(α)
is an upper bound for the set under consideration. We have used the fact
that every non-empty set of reals which is bounded above has a supremum.

(ii) ϕ is a strictly increasing function.
Indeed if x < x′ then by successively using denseness of A, we get points
a1, a2 ∈ A such that x < a1 < a2 < x′. Thus every point of f(Ax) is smaller
than f(a1) so that ϕ(x) ≤ f(a1) < f(a2) ≤ ϕ(x′).
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(iii) If x ∈ A, then ϕ(x) = f(x).
Indeed, for every a ∈ Ax, we have a < x so that f(a) < f(x). Hence
ϕ(x) ≤ f(x). If y < f(x), we can choose b ∈ B with y < b < f(x). Then
a = f−1(b) ∈ Ax and y < f(a). Thus nothing smaller than f(x) is an upper
bound of f(Ax), So ϕ(x) = f(x).

(iv) Given any number y, there is an x such that ϕ(x) = y.
Indeed put x = sup f−1(By) = sup{f−1(b) : b < y}. By (i) By and hence
f−1(By) is non-empty. It is bounded above because, B being dense there are
points b ∈ B with y < b and f−1(b) is an upper bound for f−1(By). We show
that ϕ(x) = y.

Need to show that sup f(Ax) = y. If a ∈ Ax, then a = f−1(b) for some
b < y so that f(a) = b < y and hence y is an upper bound for f(Ax). If
y′ < y, then by denseness of B get b ∈ B, with y′ < b < y. Then, definition
of the point x tells that, a = f−1(b) ∈ Ax and y′ < b = f(a) showing that
anything smaller than y is not an upper bound for f(Ax).

Thus ϕ is a strictly increasing map of R in view of (ii). It is onto R in
view of (iv). And f(A) = B in view of (iii). This is the required map.

Just note that any increasing bijection ϕ of R is continuous and its inverse
is also continuous. Being bijection it is first of all strictly increasing. For reals
a < b, we have

ϕ−1(a, b) = (ϕ−1(a), ϕ−1(b)); ϕ(a, b) = (ϕ(a), ϕ(b)).

These equalities are enough to show required continuity.

For example, there is a homeomorphism of R to itself which transports
set of rationals to the set of algebraic numbers. There is a home that trans-
ports the set of rationals to the set of non-rational algebraic numbers.

We can use the Cantor’s theorem to setup homeomorphism as above tak-
ing one Cantor set to another. We shall do this later.

Cantor-Shroder-Bernstein Theorem:

Let X and Y be sets. Let f : X → Y be an injection and g : Y → X
be an injection. Then there is a bijection ϕ : X → Y . In other words, if
|X| ≤ |Y | and |Y | ≤ |X| then |X| = |Y |.
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The original proof of Cantor used well-ordering principle. After several
refinements, here is a proof.

Let us think of f(x) as child of x. Thus if f(x) = y, then y is child of x
or equivalently x is immediate ancestor of y. Similarly, g(y) = x would mean
child of y is x or equivalently y is immediate ancestor of x. Since f and g
are injective an immediate ancestor, if exists, is unique.

Suppose that x ∈ X has an immediate ancestor y1 and y1 has an imme-
diate ancestor x2 and x2 has an immediate ancestor y3 and so on. In other
words, we start with x ∈ X;

g(y1) = x; f(x2) = y1; g(y3) = x2; · · · .

This is the ancestral chain for x. It is quite possible that the ancestral
chain of x continues for ever or the ancestral chain of x stood at a finite
stage. Again there are two possibilities in the later case, x may have an even
number (0, 2, 4, · · ·) of ancestors or an odd number (1, 3, 5, · · ·) of ancestors.
Similarly if you start with y ∈ Y its ancestral chain may continue for ever
or may stop with even number of ancestors or add number. Accordingly we
partition the sets

X = X∞ ∪Xe ∪Xo; Y = Y∞ ∪ Yo ∪ Ye.

We define ϕ(x) = f(x) in case x ∈ X∞ or x ∈ Xe. And ϕ(x) = g−1(x) if
x ∈ Xo. This last clause makes sense because x has an immediate ancestor.

We show that this does.
We show that ϕ maps in a bijective way X∞ to Y∞; Xe to Yo; Xo to

Ye. This shows that ϕ is globally bijective too — since we have partitions
of the sets X and Y . To realise there is something here, remember the x2

map is injective on (−∞, 0]; injective on [0,∞) but not injective on (−∞,∞).

Note that if the ancestral chain of x infinite then so is that of f(x). Indeed
the ancestral chain of f(x) has x and all its ancestors. Hence f(x) ∈ Y∞.
Conversely if y∞, it has an immediate ancestor x. Clearly x ∈ X∞ and
f(x) = y showing that ϕ — which is same as f — is a bijection between X∞

and Y∞.

If x ∈ Xe then x has an even number of ancestors. Since ancestors of f(x)
consists of x and ancestors of x we see f(x) ∈ Yo. conversely if y ∈ Yo, then
y has an immediate ancestor, say x. The ancestors of x consists of ancestors
of y except x itself. Thus x ∈ Xe and of course f(x) = y. Thus ϕ, which is
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same as f is again a bijection between Xe and Yo.

Similar argument as above shows that x ∈ Xo implies that g−1(x) ∈ Ye.
Conversely if y ∈ Ye then g(y) ∈ Xo and ϕ(g(y)) = y; showing that g−1 is a
bijection between Xo and Ye.

This completes the proof.

The proof is tricky, proof using well-ordering principle is straightforward.
However to get a feel for the proof, it is better to look at instructive examples.

Let us consider the most trivial example.

X = Y = {0, 1, 2, 3, · · ·}; f(x) = 2x; g(y) = 2y.

Let us first consider ancestors of points in X. Only zero has infinitely many
ancestors. Elements that have zero ancestors consists precisely the set O of
odd numbers. Elements that have exactly one ancestor constitutes the set
2×O = {2× 1, 2× 3, 2× 5, · · ·}.

The set 22 × O is the set of points that have exactly two ancestors. In
general 2k ×O is the set of points that have exactly k ancestors.

The map ϕ exchanges O with 2 × O; exchanges 22 × O with 23 × O etc
in the obvious way. Of course, ϕ(0) = 0.

Axiom of Choice:

There are several equivalent formulations of this axiom. Without con-
verting this course into a course in Set Theory, here are some.

(1) Given any (nonempty) family A of disjoint non-empty sets, there is
a set S such that S ∩ A is singleton for all A ∈ A. In other words, you can
make a set picking exactly one point from each of the given sets.

(2) Given any family of non-empty sets A, there is a function f with
domain A such that f(A) ∈ A for each A ∈ A. That is, given any family of
nonempty sets we can associate with each set in that family one point from
that set.

Before stating the next one, we need a definition. Let P be a poset. A
set C ⊂ P is called a chain if given any two elements p, q ∈ C either p < q or
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p = q or q < p. In other words (C,<) is a loset. An upper bound for a chain
C means an element s ∈ P such that for each p ∈ C either p < s or p = s.
In other words, it is just an upper bound in the sense we have defined for
subsets of losets. The only difference is that, now we have a poset and the
subset we are talking about is linearly ordered. Note that the upper bound
itself need not belong to the chain, it belongs to the poset.

An element m of the poset is said to be a maximal element if ¬(m < p)
for all p ∈ P . Observe that we are not saying that p ≤ m for each p. We are
only saying that there is nothing larger than m. After all, some elements p
may not be ‘comparable’ with m.

For instance, let P be the collection of subsets of R having at most four el-
ements, with usual inclusion order. The elements {1, 2, 3, 4, }, {8,

√
2, 3/4, 49}

are maximal elements in P . In fact any four element set is a maximal ele-
ment. Here is a chain:
{1}, {1, 2, 3, }.
Here is another chain:
∅, {3}, {3, 49}, {3, 49, 99}, {3, 49, 99,−31}.

The collection of all finite subsets of R is another poset. It has no maxi-
mal elements. Here is a chain in this poset.
∅, {1}, {1, 2}, {1, 2, 3, }, {1, 2, 3, 4, }, · · · · · · · · · .
This chain has no upper bound, because then that set must include all these
points and hence can not be finite.

You can also consider the collection of countable subsets of R.

Here is an equivalent of the Axiom of choice.

(3) Let (P,<) be a (non-empty) poset. Suppose that any chain C ⊂ P
has an upper bound. Then P has a maximal element.

Here is another equivalent of the axiom of choice. We say that a linear
order is a well order if every non-empty subset has a first element. In other
words, let (X,≤) be a loset. it is called a well-ordered set, simply woset, if
A ⊂ X and A 6= ∅ implies there is an element a ∈ A such that a ≤ x for
all x ∈ A. Note that a ∈ A and also note that such an element (if exists) is
unique. Here is another form of the axiom of choice.

(4) Every non-empty set can be well-ordered, that is, given a non-empty
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set X, there is a binary relation ≤ on X so that (X,≤) is a woset.

Such a set as in (1) is called choice set, a function as in (2) is called a
choice function. The statement (1) or (2) is called axiom of choice. The
statement (3) is called Zorn’s lemma. It was actually (in an equivalent form)
proposed by Hausdorff in 1914, Kuratowski in 1922 but popularized by Zorn
in 1935. Statement (4) is called the ‘well-ordering principle’.

Here is an application of the Zorn’s lemma which you already know.

Every vector space has a basis, that is, linearly independent set B which
is maximal — if you put in another vector in B then the resulting set is no
longer independent. (equivalently, every non-zero vector v can be uniquely
expressed as a finite sum v =

∑
civi such that (i) the vectors vi are distinct;

(ii) vi ∈ B for each i and (iii) ci 6= 0 for each i).

Consider the collection P of all independent subsets of the vector space.
Order this collection by saying A ≤ B if A ⊂ B for A,B ∈ P . This collec-
tion is non-empty because singleton set consisting of a non-zero vector is an
independent set. well, if your vector space consists of only zero and nothing
else, then take B to be empty set, verify this does and end the proof.

This is a poset (Any collection of sets with inclusion as order is a poset).
If you take a chain C ⊂ P , then union S of all sets in this chain is an upper
bound. It obviously includes all sets in the chain and hence is an upper
bound, if only we verify that this S ∈ P . If you take finitely many vectors
in this set S, then each of these vectors is in one set in the chain and hence
all these vectors in one set (given finitely many elements of a loset, there
must be one of them which is larger than all others). In other words these
finitely many vectors belong to one independent set. So they are independent.

You should get feeling for the feature ‘independence is a finitary property’.
that is, a set of vectors is independent iff every finite subset is independent.
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