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Banach Contraction mapping principle:

Let (X, d) be a complete metric space. suppose T : X → X is a contrac-
tion map., that is, there is a number c; 0 ≤ c < 1 such that d(Tx, Ty) ≤
cd(x, y) for all points x, y. Thus the distance between images is ‘smaller’
than the distance between original points. In other words T decreases dis-
tance. The main point is that distance reduction is by a fixed proportion;
not simply that it is reduced.

The theorem says that there is a unique fixed point, that is, a point x∗

such that Tx∗ = x∗. We saw that there can not be two fixed points. To show
that there is one, let us start with any point x. Put

x0 = x; x1 = Tx0; xn = Txn−1 n ≥ 1.

We shall show that (xn) is a Cauchy sequence.

Then by completeness there is a point x∗ such that xn → x∗. Observe
that if an → a then Tan → Ta because

d(Tan, Ta) ≤ cd(an, a) → 0.

Thus Txn → Tx∗. But Txn = xn+1 → x∗. Thus Tx∗ = x∗.

We now show that (xn) is Cauchy. For n ≥ m

d(xn, xm) ≤ cd(xn−1, xm−1) ≤ c2d(xn−2, xm−2)

≤ · · · ≤ cmd(x0, xn−m)

≤ cm{d(x0, x1) + d(x1, x2) + · · ·+ d(xn−m−1, xn−m)

≤ cmd(x0, x1){1 + c+ c2 + c3 + · · ·+ cn−m}

≤ cmd(x0, x1)
1

1− c
.

Let ǫ > 0 be given. Since c < 1 choose N so that cNd(x0, x1)/(1−c) < ǫ. Let
now n,m ≥ N . without loss of generality, let us say n ≥ m. The estimate
above shows that d(xn, xm) < ǫ. This completes proof.
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This is a very useful tool and a powerful technique. We shall discuss some
examples.

First let us note that every continuous map of an interval [a, b] to itself
has a fixed point; whether it is a contraction or not. This is because if f is
the map, then f(x) − x is a continuous function. Since values of f are in
[a, b], we see f(a)−a ≥ a−a = 0 and f(b)− b ≤ b− b = 0. The intermediate
value theorem completes the proof.

However the above argument does not tell that fixed point is unique. In
fact it may not be, as for example, the identity map f(x) = x shows. The
argument does not tell you how to get a fixed point. If f is a C1 function
(continuously differentiable) then the derivative is bounded. If |f ′| ≤ c < 1
then f is a contraction and so if you start from any point in this interval and
keep applying f successively, you will be heading to the fixed point.

Not only that, you get an idea of how close you are to the fixed point.
Indeed the estimate obtained above tells you (letting n → ∞) that

d(xm, x
∗) ≤ cm d(x0, x1)/(1− c).

contraction on R:

Consider the function

f(x) =
1

2
sin(cos x) + 239

Then you see |f ′| ≤ 1/2 and hence it is a contraction on R. Thus there is a
unique fixed point. Of course, this is nothing exciting because you see that
the values of the function lie in the interval 239±1/2. So you can regard f as
a map of this interval to itself. But as explained earlier, you have a method
to obtain the fixed point.

contractions on Rn:

When is a linear map of Rn a contraction? More generally, let us consider
an affine map Tx = Ax + b where A = (aij) is an n × n matrix and b is a
vector in Rn. Obviously whether a map is a contraction or not depends on
the metric and here we have several metrics on Rn and under each of them
it is complete — all the metrics are equivalent. But let us consider, for illus-
tration, only two of those.
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Let us consider the Euclidean distance

d(x, y) =

√

∑

(xi − yi)2.
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Thus if
∑

i,j
a2ij < 1 then the map T is a contraction (in the Euclidean metric)

and hence there is a fixed point.

Let us take the distance

d(x, y) =
∑

i

|xi − yi|.

Then denoting the column sum
∑

i
|aij| = cj and c = max cj we have

d(Tx, Ty) =
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cj|xj − yj| ≤ cd(x, y).

Thus if max
j

∑

i
|aij < 1 then T is a contraction in the d1 metric and hence

has a fixed point.

Let us take the distance

d(x, y) = max |xi − yi|

Then denoting the row sum ri =
∑

j
|aij| and r = max ri

d(Tx, Ty) = max
i
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i

{
∑

j

|aij|d(x, y)} ≤ rd(x, y)

Thus if max
i

∑

j
|aij| < 1 then T is a contraction in the d∞ metric and hence

has a fixed points.
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Thus the main point is that if any one of the above conditions holds then
there is a unique fixed point. Of course you can consider the dp metrics too.

inverse function theorem:

Another application of the contraction mapping theorem is for proving
the inverse function theorem. We proved it last year. We have an open set
Ω ⊂ Rn and a C1 function f defined on Ω to Rn. We are given a point x0 ∈ Ω
and are told that the derivative matrix f ′ at x0 is non-singular. Then the
conclusion is that there is an open set U with x0 ∈ U ⊂ Ω and an open set
V ⊂ Rn such that f is one-one on U onto V and the inverse map on V onto
U is again C1. Of course there is an expected formula for the derivative of
the inverse map.

You can look up that proof. After showing open sets U and V we had
a small estimate which is reminiscent of contraction. We used it to con-
clude that for a point y ∈ V there can not be two points x1, x2 ∈ U with
f(x1) = f(x2) = y. However, to show that there is a point x at all, we
used a hands on calculation involving solution of linear equations. We could
have used fixed point theorem. This was done in your calculus III course by
Balaji. So we shall not repeat. Actually, you can look up this specific point
in our notes, just to get a glimpse of how we grazed (and not used) the fixed
point theorem.

differential equations:

We shall now discuss another important application. This application
is for solving differential equations. In high school you discussed theory of
equations. We have number, do not know what it is, but we know that it
satisfies x2 − 5x + 6 = 0. We need to find the number. In this case there is
explicit formula, you can ‘factorize’ this polynomial. Sometimes there was no
explicit formula but still you were able to deduce existence of solution using
some other rules (Descarte’s rule of signs or intermediate value theorem or
whatever).

In the study of differential equations, you have a function; you do not
know what it is; but you know that the function and its derivatives obey
some relation. You need to find the function. Just as in the case of theory
of equations it is in general difficult to find explicit formula for the function.
Sometimes you can solve explicitly and get a formula for the function. But
such a luxury is very rare. We should be satisfied if we know that there is a
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function at all satisfying the differential equation. We should be more than
happy if we know how many such functions are there. If we succeed, we shall
try to understand the solution more.

If some one asked you to solve x′(t) = sin t then it is very easy because the
function is x(t) = − cos t + c for some number c. This was simple because of
two reasons. firstly there is no appearance of the function on the right side.
Secondly we could integrate the function. You can integrate whenever right
side does not involve the function x (or its derivatives etc). Whether you can
get a formula or not depends on the right side. For example x′(t) = exp{−t2}
will not allow you to come up with formula. But in these cases you are sure
that the integral of the right side is a solution.

Serious problems arise if the right side also involves the function x. For
example solve: x′(t) = sin x(t). We do not even know if there is a solution at
all (yes, there is, you will see). There is no need for us to define what is a dif-
ferential equation and what is meant by a solution. This is reserved for a later
course. We consider a specific problem, so you will have no trouble following.

Differential equations arise in several contexts. More important are they
in physics. Imagine that in the space in this room at every point there is a
force. Of course, when I say force you will ask; on what is it acting. No, it is
not yet acting — it has the potential to act. For example if there is a particle
at the point P the force at that point will push it in a particular direction.
suppose it is pushed to Q, then the force at that point Q will push it to R
and the force at the point R will push it to etc and so on.

There is just one subtle point which is very important. I simply said the
force at P will act on my particle and push it to Q. Actually when the parti-
cle is on its way to Q it will pass through intermediate points, but there are
forces at these points and they do their bit as well to push. Thus the particle
may actually not reach Q and it may be pushed to Q′. Pause and think
about the situation our particle is in. since there are forces at every point,
our particle is pushed at every time instant. In other words it is continuously
pushed around. Life for our particle is not as discrete as I made it out in the
earlier para.

So what is the problem. Well, I now place a particle at this point P . Tell
me how it travels. Tell me the trajectory or path the particle takes. so you
should tell me at every time instant t the position of the particle. We shall
not consider in this generality and in three dimensions.
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Another situation where these arise is in geometry. Basically, I want to
draw a curve and I have been instructed ‘how the curve should curve’. More
precisely, at every point of the plane, R2, a vector is given. I was given a
starting point P . I should draw my curve starting at the given point P and at
any point on the curve, the tangent is as prescribed at the point, remember
there are placed vectors at every pint of R2 and if your curve passes through
a point then tangent to your curve at that point should be as suggested.

Now let us make matters precise. We are given an open set U ⊂ R2 and
a point (t0, x0) ∈ U . We are given a function F : U → R. We are asked to
locate an interval (t0 − δ, t0 + δ) and a differentiable real valued function x
on this interval satisfying two conditions: x(t0) = x0 (initial condition) and
for every t in this interval x′(t) = F (t, x(t)) (differential equation).

You see the change of attitude. Our task is ‘local’. In a small interval
around the given point t0 we should solve the problem. The idea is that once
you do this you can ‘continue’ from where you ‘reached’. Try to make sense
of it. It does not concern us now because we are not going to carry it out and
find out what is the largest interval on which the solution can be defined.
We shall show locally and stop. Observe that (t, x(t)) is a point on the curve
and we are wanting at that point of the curve the derivative should be same
as value of F at that point.

We solve this problem assuming certain conditions. Here is the precise
theorem.

Theorem (Picard):
Given

(i) Open set U ⊂ R2 and a point (t0, x0) ∈ U .
(ii) F : U → R which is continuous and there is a number M such that

|F (t, x)− F (t, y)| ≤ M |x− y| for all points (t, x) and (t, y) in U .
Then there exists

an interval (t0 − δ, t0 + δ) and a real valued differentiable function x on
this interval such that its graph lies in U and at every point t in this interval
x′(t) = F (t, x(t)).

Proof is very simple. fix a closed ball B with centre (t0, x0) such that
B ⊂ U . Let K be an bound for F on the compact set B. Choose δ > 0 so
that

(i) Mδ < 1 and
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(ii) [t0 − δ, t0 + δ]× [x0 −Kδ, x0 +Kδ] ⊂ B.
Before we produce the function, let us make an observation that motivates

the later considerations.
Solving
x′(t) = F (t, x(t)) and x(t0) = x0 (♠)
is same as solving
x(t) = x0 +

∫ t
t0
F (s, x(s))ds. (♣)

Indeed, suppose (♠) holds. Then x being differentiable, must be contin-
uous and F being continuous F (t, x(t)) is continuous. In other words x′ is
continuous. Then rules of integration tell us that

x(t)− x(t0) =
∫ t

t0

x′(t)dt =
∫ t

t0

F (s, x(s))ds

which is (♣).
Conversely suppose (♣) holds. Then the fundamental theorem of inte-

gration gives (♠).

Consider the space X consisting of functions x ∈ C[t0−δ, t0+δ] satisfying
the following two conditions.

(i) x(t0) = x0 and
(ii) values of x lie in the interval [x0 −Kδ, x0 +Kδ].

In other words the space of continuous functions on the said interval
whose value at t0 is as required and |x(t) − x0| ≤ Kδ for every t in this
interval.

The space C[t0−δ, t0+δ] is a complete metric space — exactly like C[0, 1]
is complete. Its subset X we are considering is a closed subset. If a sequence
of continuous functions satisfying the two conditions converge to a function
in the space (so uniform convergence) then the limit function also satisfies
the two conditions. Hence X is a complete metric space.

Let us define a map T of X to itself by

Tx(t) = x0 +
∫ t

t0

F (s, x(s)ds.

The above analysis suggests that if we find a fixed point of this map then it
satisfies our requirements. Thus the proof is completed by showing firstly,
that the map T we defined takes X to itself and secondly, it is a contraction.
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Since F is continuous and indefinite integral is continuous we see that
Tx is continuous function. Actually the indefinite integral is continuous even
if integrand is not continuous, but we never proved such a theorem. We
however proved that for a continuous function the indefinite integral is con-
tinuous. This is all what we need to see Tx is a continuous function.

Also from definition of Tx we see that its value at t0 is indeed x0. Further,
since x takes values in the interval [x0 −Kδ, x0 +Kδ] the graph of x lies in
our rectangle [t0 − δ, t0 + δ]× [x0 −Kδ, x0 +Kδ] and hence the value of x is
bounded by K. Thus

|Tx(t)− x0| =
∣

∣

∣

∣

∫ t

t0

F (s, x(s)ds
∣

∣

∣

∣

≤ K|t− t0| ≤ Kδ

Thus Tx ∈ X for each x ∈ X.

Finally take any x, y ∈ X and t ∈ [t0 − δ, t0 + δ]. Let us assume t > t0;
similar argument applies if t < t0.

|Tx(t)− Ty(t)| =
∣

∣

∣

∣

∫ t

t0

{ F (s, x(s))− F (s, y(s)) }ds
∣

∣

∣

∣

≤
∫ t

t0

|F (s, x(s)− F (s, y(s)|ds ≤
∫ t

t0

M |x(s)− y(s)|ds

≤
∫ t

t0

Md(x, y) ds ≤ Mδd(x, y).

This shows d(Tx, Ty) ≤ (Mδ)d(x, y) and since Mδ < 1 we have proved that
T is indeed a contraction.

This complete the proof.

Recall that a function g of one variable is said to be Lipschitz if there is
a number M such that |g(x) − g(y)| ≤ M |x − y| for all x, y in its domain.
The number is called the Lipschitz constant. Thus what we demanded, apart
from continuity of F , is that it be Lipschitz in the second variable x for each
fixed value for the first variable t. Further the Lipschitz constant does not
depend on t, thus the same number M works for all t. This condition is
expressed by saying that F is Lipschitz in the second variable, uniformly in

the first variable.

You might be wondering what has such a theorem got to do with physics,
because, the equations you come across there involve second derivatives. Re-
member, the simplest situation is F = ma or mx′′(t) = F . Here x(t) is
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position of particle at time t and x′(t) will give you velocity and x′′(t) gives
the acceleration. so to know where the particle is you should solve a more
complicated equation that we considered. I shall explain the trick.

Suppose you want to solve x′′(t) = −x(t). Of course, you know the
solutions already. Solving for one function which involves second derivative
is transformed to a problem of solving for two functions but involves only
first derivative as follows. Solve for two functions x and y with

x′(t) = y(t); y′(t) = −x(t)

If you could solve the first problem and get x, take y = x′ to see you have a
solution for the later problem. Conversely, if you have solution x, y for the
second problem then x solves the first problem.

The method for solving for two functions is similar to the above, involves
no new ideas but we shall not get into.

integral equations and iterations:

We shall show two other interesting flowers from the fixed point theory
garden. These are a little advanced and we need tools like scissors or blade
to pluck these flowers; bare hands will not do as in the earlier examples. So
we only see and be happy.

We discussed conditions for an affine map to be contraction. More pre-
cisely we have an n×n matrix and an n vector b. We considered the following
map on Rn.

Txi =
∑

j

Aijxj + bi; i = 1, 2, · · · , n.

Instead of denoting vectors by (xi) let us denote as {x(t) : 1 ≤ t ≤ n} and
accordingly we denote the matrix by A(s, t). Thus the map takes the form

Tx(s) =
∑

t

A(s, t)x(t) + b(s); 1 ≤ s ≤ n.

Its appearance suggests a natural interpretation. Think of x as a function!

More precisely, consider C[0, 1]. Suppose you are given a function b in
this space. suppose we are given a continuous function A on [0, 1] × [0, 1].
Consider the problem of finding a function x on [0, 1] such that

x(s) =
∫

1

0

A(s, t)x(t)dt; 0 ≤ s ≤ 1.
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Thus if you define Tx as the function on the right side above, then the prob-
lem is to find a fixed point of Tx = x.

The natural stage for this problem is not the set of continuous functions
on [0, 1] but functions x on [0, 1] such that x2(t) is integrable. This can be
solved using Banach fixed point theorem. Such problems are called integral
equations, as the appearance itself suggests.

Here is another problem. What is the Cantor set? You are familiar with
it. Start with interval [0, 1] and delete middle one-third intervals repeatedly.
Here is another way of looking at it.

Consider the two functions on the interval [0, 1] into itself.

T1(x) =
1

3
x; T2(x) =

2

3
+

1

3
x.

Start with the ‘seed’ the two points {0, 1}. If you keep on applying the above
maps what do you get?

K0 = {0; 1}

K1 = {0; 1/3; 2/3; 1}.

K2 = {0; 1/9; 2/9; 3/9; 6/9; 7/9; 8/9; 1}.

What is happening to these sets? They are converging to the Cantor set!
You will wonder how that can happen because each of these sets is finite and
the limit should, at the best, be countable. Also you will wonder what this
has got to do with contraction. Also, this appears like a complicated way of
explaining Cantor set that we know so well! Is it of any use at all. These
issues are what we explain now.

Consider the space X which consists of all non-empty closed subsets
(equivalently, compact subsets) of [0, 1]. For example the set {0, 1} or any
finite set or Cantor set or the interval [1/3, 1/2] etc are all elements of this
set X. The set {1/n : n = 1, 2, 3, · · ·} is not an element of this set but the
set {0, 1/n;n = 1, 2, 3, · · ·} is an element of this set.

Hausdorff defined a nice metric on the set X which makes it a complete
metric space (actually compact metric). This is a nice metric: Two sets
which appear to your eye close are close in this metric. We shall not get into
precise definition.
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Define the following map T on this space.

TK = T1(K) ∪ T2(K) =
{

1

3
x;

2

3
+

1

3
x; x ∈ K

}

.

It so happens that T is a contraction of this space X. If you start with the
set K0 described above then the successive iterations lead you to K1, K2 and
so on. It is possible to prove that the sequence T nK0 converges to C, the
Cantor set in the Hausdorff distance. Thus you get Cantor set as a result of
iteration of a contraction.

So what is the use. I need to send you a picture of Cantor set. Scanning
and sending it takes too much space. I can feed the map T and the seed and
instruct iteration. Then the computer can iterate a large number of times
and plot the resulting set. This will be an excellent approximation of the
Cantor set. Eventhough not all points of the Cantor set are plotted, enough
are plotted and your eye believes it is seeing Cantor set!

Of course, you might ask whether the construction process, namely, start-
ing with an interval and deleting middle one-thirds could as well be followed.
This process can be iterated a large number of times and the resulting set
can be plotted. No matter how many times you iterate you will plot intervals
and the picture will not reveal the true nature of Cantor set, after all, Cantor
set does not contain any non-trivial interval.

Of course, I illustrated using a trivial set that you are familiar, but most
important situation is when you want to describe beautiful designs. There is
a beautiful theory behind manufacturing impressive designs.

Compact spaces:

We have been discussing completeness and its consequences. Let us pass
to another topic which is equally important.

A metric space (X, d) is compact if the following is true: Given any col-
lection of open sets whose union is X, we can pick finitely many of those
open sets whose union equals X. In other words, given a collection of open
sets that cover X, there are finitely many of those which also cover X. The
first order of business is to relate ti to what we know in Rn.

Theorem 1: X is compact implies every sequence has a limit point.
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Suppose a sequence (xn) has no limit point. Then given any point x there
is an open ball Bx such that x ∈ Bx and which does not contain infinitely
many terms of the sequence; that is, there is a stage after which no term of
the sequence is in this ball. Consider such a ball for each point. These balls
cover X. Pick finitely many of these balls which cover X. But then, there is
a stage after which no term of the sequence is in any of these finitely many
balls. But those points are in X! This contradiction proves the statement.

Theorem 2: X is compact implies every sequence has a convergent sub-
sequence.

We know that there is a subsequence converging to limit point of the
sequence. so this follows form the previous theorem.

Theorem 3: X is compact implies that every Cauchy sequence converges.

If a Cauchy sequence (xn) has a subsequence that converges to a point
x, then the sequence itself converges to x. This is easy and can be seen as
follows. Let n1 < n2 < n3 < · · · be such that

xn1
, xn2

, xn3
, · · · → x.

We show xn → x. Let ǫ > 0 be given. Fix k so that d(xni
, x) < ǫ/2 for

i ≥ k. fix N > nk such that d(xn, xm) < ǫ/2 for m,n ≥ N . Let us take any
m larger than N . Pick an ni larger than N . Then

d(xm, x) ≤ d(xm, xni
) + d(xni

, x) ≤ ǫ.

To prove the theorem, note that given any Cauchy sequence, the previous
theorem says that there is a subsequence which converges. But then as seen
above the sequence itself converges.

Theorem 4: X is compact implies the following. For any given ǫ > 0,
finitely many ǫ balls cover X. That is, there are finitely many balls whose
radius is ǫ and their union equals X.

Here you can interpret balls as open balls or as closed balls, the statement
is true.

Given ǫ > 0 take open ball of radius ǫ around each point x ∈ X. Clearly
all these open balls cover X. Since open ball is open set, compactness implies
finitely many of these balls cover X.
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Closed Balls with same centres and same radius ǫ too cover X.

Theorem 5: If X is compact then the following two conditions hold.
(i) X is complete.
(ii) For any given ǫ > 0, finitely many ǫ balls cover X.
Conversely if (i) and (ii) hold then the metric space is compact.

If X is compact, then by Theorem 3 every Cauchy sequence converges
and hence the space is complete. Second part is just the previous theorem.

Conversely let us assume that (i) and (ii) hold. We show X is compact.
Fix any collection U of open sets whose union is X. We repeat exactly the
same proof that we did in Rn.

Assume that no finite sub collection covers X. Take finitely many closed
balls of radius one which cover X. If each one of these can be covered by
finitely many sets from U then surely X can also be covered. Since this is
not the case, fix one such ball B1 which can not be covered by finitely many
sets from U .

Take finitely many closed balls of radius 1/2 which cover X. Take their
intersection with the above B1. If each one of these can be covered by finitely
many sets from U then surely B1 can also be covered. Since this is not the
case, fix one ball B2 of radius 1/2 so that B1 ∩ B2 can not be covered by
finitely many sets from U .

Thus by induction, we can get a sequence of balls (Bi) such that
For each i, Bi is a closed ball of radius 1/i and
for each n, B1 ∩ B2 ∩ · · · ∩ Bn can not be covered by finitely many sets

from U .
By completeness and Cantor intersection theorem you get a point x ∈

∩i≥1Bi. Since U covers X, pick U ∈ U with x ∈ U . Pick ǫ > 0 with
B(x, ǫ) ⊂ U . Pick N so that 1/N < ǫ/4. Then we claim BN ⊂ U . To see this
first observe that distance between any two points of BN is at most 2/N (go
via centre). Also x ∈ BN . Thus for any y ∈ BN we have d(x, y) ≤ 2/N ≤ ǫ/2.
In other words y ∈ B(x, ǫ) ⊂ U .

Thus B1 ∩ B2 ∩ · · · ∩ BN is covered by just one set from U . But our
construction says this is not possible. This completes the proof that finitely
many sets from U indeed cover X.
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Note that R is complete but not compact. Thus condition (i) alone is
not enough to deduce compactness. The metric space X = (0, 1) satisfies
condition (ii) but is not compact. Thus condition (ii) alone is not enough to
deduce compactness.

Theorem 6: X is compact iff every sequence has a convergent subse-
quence.

If X is compact then theorem 2 already shows that every sequence has a
convergent subsequence.

Conversely, assume that every sequence has a convergent subsequence.
We show X is compact. We verify the two conditions of the previous theo-
rem.

To show completeness, take any Cauchy sequence, then hypothesis tells us
that there is a convergent subsequence but then the sequence itself converges
as observed earlier.

Let ǫ > 0 be given. We need to show that finitely many ǫ balls cover the
space. suppose it is false. Take any point x1. Since B1 = B(x1, ǫ) is not all
of X, pick x2 6∈ B1 and let B2 = B(x2, ǫ). since B1 ∪B2 is not all of X, pick
x3 6∈ B1 ∪B2. proceeding in this way we pick a sequence of points

x1, x2, x3, · · · ; xn 6∈
⋃

i≤n−1

B(xi, ǫ).

Clearly distance between any two points of the sequence is at least ǫ. This
sequence has no convergent subsequence. If it has, say converging to p then
B(p, ǫ/4) should contain at least two terms of the sequence, which would
mean distance between those two points is at most ǫ/2.

This completes the proof.

We shall now discuss compactness of subsets. Let (X, d) be a metric
space. Let Y ⊂ X. Recall that we can regard Y itself as a metric space;
metric being the restriction of d to Y × Y .

Theorem 7: The following two statements are equivalent.
(i) Given any family of subsets of Y which are open in Y there are finitely

many whose union equals Y .
(ii) Given any family of open subsets of X whose union includes Y , there

are finitely many of those whose union includes Y .
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The importance of this theorem is the following. When you re talking
about compact subsets of a pace X, any of the above two statements can be
used as definition. The statement (i) forgets the background and says that
the metric space (Y, d) is compact. On the other hand statement (ii) does
not forget the background and states in terms of the open sets of X, does
not refer to open subsets of Y at all.

To prove the theorem we only need to observe the following;
(*) A set U ⊂ Y is open in Y iff there is a set V ⊂ X which is open in X

such that U = V ∩ Y .

Assume, for a moment, truth of the above statement. We prove the the-
orem as follows. Let (i) hold. Let (Vα) be a family of sets open in X whose
union includes Y . Then Uα = Vα ∩Y are open in Y and cover Y and finitely
many Uα cover Y and then the corresponding Vα cover Y .

Conversely let (ii) hold and (Uα) be a collection of sets open in Y whose
union is Y . For each α pick a set Vα which is open in X and Uα = Vα ∩ Y .
these (Vα) cover Y and so finitely many of them cover Y and the correspond-
ing Uα cover Y .

Proof of (*) is routine. Suppose V is open in X and let U = V ∩Y . Need
to show U is open in Y . Let y ∈ U . So y ∈ V . Since V is open in X there
is a ball in X, say BX(y, r) ⊂ V . The ball in Y of radius r, that is BY (y, r)
is nothing but BX(y, r)∩Y and is hence contained in U . This shows U is open.

Conversely, let U be an open set in Y . We need to exhibit a set V
open in X such that U = V ∩ Y . For each y ∈ U we get a ball in Y , say,
BY (y, r) ⊂ U . This r depends on the point y, we did not show it in the
notation. Let BX(y, r), the ball in X with the same centre be denoted by
Ay. Thus remember Ay ∩ Y = BY (y, r). Union of all these balls Ay be
denoted by V . Then V is open in X and V ∩ Y = U .

This completes the proof.

You should carefully understand the above proof. It is actually trivial,
but you can say so only if you understood it.

continuity:

So far we have been taking about sets — closed, open, compact, con-
nected, first category, second category etc.
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We shall now study functions between metric spaces.

Let (X, d) and (Y, ρ) be two metric spaces and f : X → Y . We say that
f is continuous if it preserves convergence. That is, xn → x in X implies
that f(xn) → f(x) in Y .

Remember our main idea in taking up metric spaces is the feeling that
if we have a concept of ‘how close things are’ we can do at least a part of
calculus that deals with convergence and continuous functions.

After all xn → a meant that xn is getting closer and closer to a. Further,
our idea of continuous function on R to R is that: when x is close to a then
f(x) should be close to f(a). This was made precise by saying that whenever
xn → a then f(xn) → f(a).

We shall now explore continuous functions and their properties.
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