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Chapter 5

Moments and Generating Functions

Definition: The r-th moment of a random variable X is

µ
′

r = E[Xr]. (5.1)

The r-th central moment is

µr = E[(X − µ)r], (5.2)

where µ = µ
′

1 = E(X) is the expected value or mean of X.

Definition: The variance of a random variable is its second central moment.

σ2 = V ar(X) = E[(X − µ)2] = E(X2)− µ2.

The positive square root of the variance is called the standard deviation.

Remarks:

• The variance and the standard deviation provide a measure of spread of the distribution about
its mean.

• V ar(X) = 0 iff X is a degenerate random variable, i.e. X is constant with probability 1. This
implies no variation in X.

Definition: For any random variable X,

α3 =
µ3

(µ2)3/2
(5.3)

is called the coefficient of skewness and is used as a measure of asymmetry.

Definition: A pdf is said to be symmetric about the point a if for all ǫ > 0,

f(a+ ǫ) = f(a− ǫ). (5.4)
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Definition: A rv X is symmetric about a point a if

P (X ≥ a+ ǫ) = P (X ≤ a− ǫ) ∀ ǫ

F (a− ǫ) = 1− F (a+ ǫ) + P (X = a+ ǫ).

Theorem 5.0.1. If a pdf is symmetric about the point a, then α3 = 0.

Proof: We have µ3 = E(X − µ)3. The mean is given by

µ = E(X) =

∫ ∞

−∞
xf(x)dx

=

∫ a

−∞
xf(x)dx+

∫ ∞

a

xf(x)dx.

Let y = x− a. Then dy = dx and

E(X) =

∫ 0

−∞
(y + a)f(y + a)dy +

∫ ∞

0

(y + a)f(y + a)dy

=

∫ 0

−∞
(y + a)f(y + a)dy +

∫ ∞

0

(y + a)f(a− y)dy

= a

∫ ∞

−∞
f(a+ y)dy = a.

µ3 = E(X − a)3 =

∫ ∞

−∞
(x− a)3f(x)dx

= 0.

This implies α3 = 0.
�

Example: Let f(x) = e−x, x > 0. We have

E(X) =

∫ ∞

0

xe−xdx = 1.

E(X2) =

∫ ∞

0

x2e−xdx = Γ(3) = 2.

E(X3) = Γ(4) = 6.

Therefore
µ3 = E[(X − µ)3] = 2, µ2 = 1.

Substituting, we have
α3 = 2 > 0,

This is a distribution that is skewed right.
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Definition: For any random variable X,

α4 =
µ4

(µ2)2
(5.5)

is called the coefficient of kurtosis and measures the peakededness or flatness of the pdf.

Example: Let X ∼ N(0, 1). We have

E(X4) = 3.

E(X2) = 1.

Substituting, we have
α4 = 3.

This is called a mesokurtic curve.
�

Example: Let

fX(x) =
1

2
, −1 < x < 1.

We have
E(X) = 0.

E(X2) =

∫ 1

−1

x2

2
dx =

x3

6

∣

∣

∣

∣

1

−1

=
2

6
.

E(X4) =
2

10
.

Substituting, we have

α4 =
9

5
< 3.

This is called a platykurtic curve.
�

Example: Let

fX(x) =
1

2
e−|x|, x ∈ R.

We have
E(X2) = 2.

E(X4) = Γ(5) = 24.

Substituting, we have
α4 = 6 > 3.

This is called a leptokurtic curve.
�
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Definition: Let X be a random variable with cdf FX(.). The moment generating function

(mgf) of the random variable X, denoted by MX(t) is defined as

MX(t) = E(etX), (5.6)

provided the expectation exists in some neighbourhood of 0. We have

mX(t) =







∑

x

etxp(x), if X is discrete;

∫∞
−∞ etxf(x)dx, if X is continuous.

Example Let

fX(x) =
1

2
e−x/2, x > 0.

We have

MX(t) =
1

2

∫ ∞

0

etxe−x/2dx

=
1

2

∫ ∞

0

e(t−
1

2
)xdx

=
1

1− 2t
if t <

1

2
.

If t > 1
2
, the integral is infinite.

�

Theorem 5.0.2. If the mgf MX(t) of X exists in a neighbourhood of 0, the derivatives of all orders
exist at t = 0 and may be obtained by differentiating under the integral (or summation), i.e.

Mn
X(0) =

dn

dtn
MX(t)|t=0 = E(Xn).

Proof: We have

d

dt
MX(t) =

d

dt

∫ ∞

−∞
etxf(x)dx

=

∫ ∞

−∞

d

dt
(etx)f(x)dx

= E(XetX).

d

dt
MX(t)|t=0 = E(X).

�
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Remark: Since

MX(t) = E(etX) = E

(

1 + tX +
t2

2!
X2 + . . .

)

= 1 + tE(X) +
t2

2!
E(X2) + . . .

E(Xn) is the coefficient of tk/k! in the above expansion.

Example: Consider the Geometric rv with pmf

P (X = k) = p(1− p)k−1 k = 1, 2, . . . .

We have

MX(t) =
∑

k

etkp(1− p)k−1

=
p

1− p

∑

k

[(1− p)et]k

=
pet

1− qet
.

�

Theorem 5.0.3. If Z ∼ N(0, 1), we have

MZ(t) = et
2/2. (5.7)

Proof: We have

MZ(t) = E(etZ) =

∫ ∞

−∞

1√
2π

etze−z2/2dz

=
1√
2π

∫ ∞

−∞
exp

[

−1

2
[z2 − 2zt]

]

dz

=
1√
2π

∫ ∞

−∞
exp

[

−1

2
[z2 − 2zt+ t2]

]

exp
[

t2/2
]

dz

= et
2/2

∫ ∞

−∞

1√
2π

exp

[

−1

2
(z − t)2

]

dz

= et
2/2,

since the last integral is the N(t, 1) pdf.
�

Theorem 5.0.4. If X ∼ N(µ, σ2), we have

MX(t) = eµte
t
2
σ
2

2 . (5.8)
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Proof: We have

MX(t) = E(etX) = E[et(σZ+µ)]

= E[eσtZ ]eµt

= exp[µt] exp[(σt)2/2].

�

Remarks:

• If the mgf exists, it characterizes an infinite set of moments.

• However. characterizing the infinite set of moments does not uniquely determine a distribution
function, i.e. two random variables that are distinct may have the same moments.

Example: Let

f1(x) =
1√
2πx

e−(log x)2/2; x ≥ 0

and
f2(x) = f1(x)[1 + sin(2π log x)]; x ≥ 0.

We have
E(Xr

1) = er
2/2 all finite.

We have

E(Xr
2) = E(Xr

1) +

∫ ∞

0

xr sin(2π log x)f1(x)dx.

The last integral is equal to zero. Therefore X1 and X2 have the same moments for r = 0, 1, . . . but
distinct pdf’s.
For this example, the mgf of X1 does not exist.
�

Remark:

• Existence of moments does not imply existence of the mgf.

• If the cdf’s have bounded support, i.e.

X = {x : fX(x) ≥ 0}

is a bounded set, then the moments are unique. In this case the infinite sequence of moments
will uniquely determine the distribution.

• When the mgf exists, the moment sequence determines the distribution uniquely.

Theorem 5.0.5. Let FX(.) and FY (.) be two distributions all of whose moments exist.
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(a) If FX(.) and FY (.) have bounded support, then

FX(u) = FY (u) ∀ u ⇔ E(Xr) = E(Y r), r = 1, 2, . . . .

(b) If the mgf’s exist and

MX(t) = MY (t) ∀ t in some neighbourhood of 0,

then
FX(u) = FY (u) ∀ u.

These are characterizations of a distribution.
�

Theorem 5.0.6. Convergence of moment generating functions. Suppose {Xi} is a sequence
of random variables each with mgf MXi

(t). Suppose

lim
i→∞

MXi
(t) = MX(t) ∀ t ∈ (−h, h),

and MX(t) is a mgf. Then there is a unique cdf FX(.) whose moments are determined by MX(t),
and, for all x where FX(x) is continuous, we have

lim
i→∞

FXi
(x) = FX(x).

The proof relies on the uniqueness of the Laplace transforms.
�

Since the mgf may not exist for all random variables , we can define a different function that will
always exist and has properties similar to the mgf.

Definition The characteristic function of a random variable X is given by

φX(t) = E[eitX ], (5.9)

which always exists and completely determines the distribution.
The inversion theorem helps us to compute the cdf from the mgf or the characteristic function.

Example: Let X ∼ Bin(n, p), the binomial distribution. We have

MX(t) = (pet + q)n

= (1− p+ pet)n

=

[

1 +
1

n
(et − 1)np

]n

=

[

1 +
1

n
(et − 1)λ

]n

, (np = λ).
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We have
lim

n → ∞ np = λ
p → 0

MX(t) = eλ(e
t−1),

which is the mgf of the Poisson distribution.
�

Example: Let X ∼ P (λ). Then

MX(t) = eλ(e
t−1) ∀ t.

Let

Y =
X − λ√

λ
.

Then

MY (t) = e−t
√
λM

(

t√
λ

)

.

Therefore

logMY (t) = −t
√
λ+ λ(e

t√
λ − 1)

=
−t

(
√
λ)−1

+ λ

[

t√
λ
+

t2

2λ
+ . . .+

]

=
t2

2
+

t3

3!
√
λ
+ . . .

As λ → ∞, this converges to t2/2, which implies

MY (t) → et
2/2,

which is the mgf of the standard normal.
�

Normal Approximation to the Binomial

Let X ∼ B(n, p). Then

Z =
X − np√

npq

is approximately distributed as a standard normal random variable as n → ∞.
Recall

MX(t) = (pet + q)n.

Let

Z =
X − np√

npq
.
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Then

MZ(t) = E(etZ) = exp

[−npt√
npq

]

E

(

exp

[

tX√
npq

])

= exp

[−npt√
npq

] [

p exp

(

t√
npq

)

+ q

]n

=

[

p exp

(

qt√
npq

)

+ q exp

( −pt√
npq

)]n

=

[

1 +
t2

2n
+ o

(

1

n

)]n

→ et
2/2 as n → ∞.

�

10


