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Chapter 3

Continuous Random Variables

Definition: A random variable X is absolutely continuous (or just continuous) if its cdf is a
continuous function of x.
We may also use the following definition:

A random variable is absolutely continuous if there exists a function f, f ≥ 0 such that

FX(x) =

∫ x

−∞

f(t)dt ∀x ∈ R. (3.1)

f(.) is called the probability density function (pdf).
Using the Fundamental Theorem of Calculus, if f(.) is continuous, we have

d

dx
FX(x) = fX(x).

We write X ∼ fX(x).

Theorem 3.0.1. A function fX(x) is a pdf iff

(a) fX(x) ≥ 0 ∀x;

(b)
∫∞

−∞
fX(x)dx = 1.

Proof: The Necessity follows directly from the properties of FX . The sufficiency requires us to show
that if a function satisfies the two conditions above, then there exists a unique random variable for
which this is the pdf.

�

If a random variable is continuous, then P (X = x) = 0 for all x ∈ R.
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3.1 Transformations

Let X be a random variable with cdf FX(x). Sometimes, we are interested not in X, but a trans-
formed version of X. Let Y = g(X) be a function of X.
Clearly, Y is also a random variable. We can describe the probabilistic behaviour of Y in terms of
that of X. We have

P [Y ∈ A] = P [g(X) ∈ A] for any A.

Let X be the sample space of X. Then
g : X → Y

where Y is the set of possible values of the random variable Y .
We can define the inverse mapping

g−1 : Y → X
where

g−1(A) = {x ∈ X ; g(x) ∈ A}.
Therefore

P [Y ∈ A] = P [g(X) ∈ A]

= P [{x ∈ X ; g(x) ∈ A}]
= P [X ∈ g−1(A)].

This defines the probability distribution of Y . This distribution satisfies Kolmogorov’s axioms.

If X and Y are continuous r.v.’s, it is possible to find simple formulae for the cdf and the the pdf
of Y in terms of the cdf and pdf of X.
We have

FY (y) = P (Y ≤ y) = P (g(X) ≤ y)

= P [{x ∈ X ; g(x) ≤ y}]

=

∫

{x∈X ;g(x)≤y}

fX(x)dx.

This is called the method of distribution functions.

Example: Let X be a random variable with pdf

fX(x) =

{

2x
π2 , 0 < x < π;
0, o.w.

Let Y = sinX. The range of Y is (0, 1).

FY (y) = P (Y ≤ y) = P [sinX ≤ Y ]

= P [0 ≤ X ≤ x1] + P [x2 ≤ X ≤ π].

where x1 = sin−1 y, x2 = π − sin−1 y.
Therefore

FY (y) =

∫ x1

0

2x

π2
dx+

∫ π

x2

2x

π2
dx

=
x2
1

π2
+ 1− x2

2

π2
.
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�

Definition: The support of a random variable or distribution is the set of values for which the
pdf (pmf) is nonzero:

X = {x : fX(x) > 0}.
Let Y be the sample space for Y . We have

Y = {y : y = g(x) for some x ∈ X}.

If the transformation x → g(x) is monotone, we can obtain simple expressions for FY (y).

Theorem 3.1.1. Let X ∼ FX(x) and Y = g(X).

(a) If g is an increasing function, then

FY (y) = FX [g
−1(y)] for y ∈ Y .

(b) If g is a decreasing function, then

FY (y) = 1− FX [g
−1(y)] for y ∈ Y .

Proof: (a) If g is an increasing function, it is one-to-one and onto from X → Y . In other words,
each x goes to only one y, and each y comes from at most one x [one-to one], and for each y ∈ Y ,
there is an x ∈ X such that g(x) = y (onto). We have

FY (y) = P (Y ≤ y) = P (g(X) ≤ y)

= P [{x ∈ X ; g(x) ≤ y}]
= P [{x ∈ X ; x ≤ g−1(y)}]
= FX [g

−1(y)].

(a) If g is a decreasing function, we have

FY (y) = P (Y ≤ y) = P (g(X) ≤ y)

= P (X ≥ g−1(Y )]

= 1− FX [g
−1(y)].

�

Example: Let X be a random variable with pdf

fX(x) =

{

e−x, x > 0;
0, o.w.

Let Y = lnX. Therefore g−1(y) = ey. We have

d

dx
g(x) =

d

dx
ln x =

1

x
> 0.

Therefore g is an increasing function. As x ranges from 0 to ∞, y ranges from −∞ to ∞. We have

FY (y) = FX [g
−1(y)]

= FX(e
y).
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We have

FX(x) =

∫ x

0

e−tdt = 1− e−x.

Substituting for FX(x), we have
FY (y) = 1− e−ey .

�

Example: Let X be a random variable with pdf

fX(x) =

{

αxα−1, 0 < x < 1;
0, o.w.

Let Y = − lnX. Therefore g−1(y) = e−y. We have

d

dx
g(x) =

d

dx
(− ln x) = −1

x
< 0.

Therefore g is a decreasing function. As x ranges from 0 to 1, y ranges from 0 to ∞. We have

FX(x) =

∫ x

0

αtα−1dt = xα.

FY (y) = 1− FX [g
−1(y)]

= 1− FX(e
−y) = 1− e−αy.

�

If the pdf of Y is continuous, it can be obtained by differentiating the cdf.

Theorem 3.1.2. Let X ∼ fX(x) and Y = g(X), where g is a monotone function. Suppose fX(x)
is continuous on X and g−1(y) has a continuous derivative on Y. Then

fY (y) =

{

fX [g
−1(y)]

∣

∣

∣

d
dy
g−1(y)

∣

∣

∣
, y ∈ Y;

0, o.w.

Proof: Use the chain rule.
�

Example LetX be a non-negative continuous random variable with pdf fX(x). Let Y = Xα, α > 0.
Then

d

dx
g(x) =

d

dx
xα = αxα−1 > 0,

which implies g(.) is an increasing function. We have g−1(y) = y
1
α . Using the theorem, we have

fY (y) =

{

fX

[

y
1
α

]

1
α
y

1
α
−1, y > 0;

0, o.w.

�
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3.2 Expectation

Definition: Let X be a continuous random variable. The expected value or mean of the random
variable g(X) is

E[g(X)] =

∫

g(x)fX(x)dx, (3.2)

provided the integral exist. If E|g(X)| = ∞, we say that E(g(X)) does not exist.

Example: Let X be a continuous random variable with

fX(x) =
1

π

1

1 + x2
x ∈ R.

This is the Cauchy distribution. We have

E|X| =
∫ ∞

−∞

|x|
π

1

1 + x2
dx =

2

π

∫ ∞

0

x

1 + x2
dx.

For any M > 0,
∫ M

0

x

1 + x2
dx =

1

2
log(1 + x2)

∣

∣

∣

∣

M

0

=
1

2
log(1 +M2).

We have

E|X| = lim
M→∞

2

π

∫ M

0

x

1 + x2
dx = ∞,

which implies E(X) does not exist. �

Note: The integral
∫∞

−∞
g(x)dx exists provided

lim
a → ∞
b → ∞

∫ a

−b

g(x)dx

exists. It is possible for lima→∞

∫ a

−a
g(x)dx to exist without the existence of

∫∞

−∞
g(x)dx.

For the previous example, we have

lim
a→∞

∫ a

−a

x

π

1

1 + x2
= 0.

3.2.1 Properties of Expectation

Theorem 3.2.1. Let X be a random variable and let a, b, c be constants. Then for any functions
g1(X) and g2(X) whose expectations exist:

1. E[ag1(X) + bg2(X) + c] = aE[g1(X)] + bE[g2(X)] + c.

2. If g1(x) ≥ 0 ∀ x, then
E[g1(X)] ≥ 0.

3. If g1(x) ≥ g2(x) ∀ x, then
E[g1(X)] ≥ E[g2(X)].
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4. If a ≤ g1(x) ≤ b ∀ x, then
a ≤ E[g1(X)] ≤ b.

Proof: Property 1. We have

E[ag1(X) + bg2(X) + c] =

∫

[ag1(X) + bg2(X) + c]f(x)dx

=

∫

ag1(X)f(x)dx+

∫

bg2(X)f(x)dx+

∫

cf(x)dx

= a

∫

g1(X)f(x)dx+ b

∫

g2(X)f(x)dx+ c

∫

f(x)dx

= aE[g1(X)] + bE[g2(X)] + c.

This is the linearity property of the expectation operator.
Property 2. We have

E[g1(X)] =

∫

g1(x)f(x)dx ≥ 0.

Property 3. We have

E[g1(X)] =

∫

g1(x)f(x)dx ≥
∫

g2(x)f(x)dx = E[g2(X)].

Property 4. We have

∫

af(x)dx ≤
∫

g1(x)f(x)dx ≤
∫

bf(x)dx

⇒ a ≤ E[g1(X)] ≤ b.

If the random variables were discrete, the integrals would simply be replaced by summations.
�

3.2.2 Uniform or Rectangular Distribution

Definition: A random variable X is said to have a uniform distribution on the interval (a, b) if its
pdf is given by

f(x|a, b) =
{

1
b−a

, a < x < b;
0, otherwise.

We write X ∼ U(a, b)

Theorem 3.2.2. Let X ∼ U(a, b). Then

µ =
a+ b

2
(3.3)

and

σ2 =
(b− a)2

12
. (3.4)
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�

3.2.3 Normal or Gaussian Distribution

The most well known and widely used continuous random variable is the Normal random variable.
The form of the distribution was discovered early in the history of probability as an approximation
to binomial probabilities by Abraham de Moivre. Laplace and Gauss proposed the distribution as
a ”law of errors” to describe the variability of measurement errors in the physical sciences.
Definition: The random variable X is said to have a normal distribution if its probability density
function is given by

f(x|µ, σ2) =
1√
2πσ

e−
(x−µ)2

2σ2 , −∞ < x < ∞, (3.5)

where µ and σ2 are the parameters of the distribution. We can show that

E(X) = µ V ar(X) = σ2.

We write
X ∼ N(µ, σ2).

Theorem 3.2.3. Suppose X ∼ N(µ, σ2). Then

Z =
(X − µ)

σ
∼ N(0, 1)

the standard normal distribution.

Proof: We have

Z =
X − µ

σ
⇒ X = σZ + µ.

This implies dx = σdz, and

fZ(z) =
1√
2πσ

e−
z2

2 |σ| = 1√
2π

e−
z2

2 . (3.6)

�

To show the function in (3.6) is a valid pdf, we need to show

∫ ∞

−∞

1√
2π

e−z2/2dz = 1.

We have
[
∫ ∞

−∞

1√
2π

e−z2/2dz

]2

=

(
∫ ∞

−∞

1√
2π

e−z2/2dz

)(
∫ ∞

−∞

1√
2π

e−t2/2dt

)

=
4

2π

∫ ∞

0

∫ ∞

0

e−(z2+t2)/2dzdt.

We can make a transformation to polar coordinates. Let

z = r cos θ t = r sin θ.

Then
dzdt = rdθdr t2 + z2 = r2.
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The double integral becomes

4

2π

∫ ∞

0

∫ π/2

0

e−r2/2rdθdr =
4

2π

π

2

∫ ∞

0

re−r2/2dr

=

∫ ∞

0

re−r2/2dr = −e−r2/2
∣

∣

∣

∞

0
= 1.

�

Remarks:

1. The mode (point on the horizontal axis where the curve is maximum) occurs at x = µ.
[Differentiate the pdf wrt x and set the derivative equal to 0.]

2. The graph of this function is a symmetric bell shaped curve, with the point of symmetry being
µ.

3. The points of inflection occur at x = µ±σ. The inflection points are where the curve changes
from concave to convex.

4. The normal curve approaches the horizontal axis asymptotically as we proceed in either di-
rection away from the mean.

Theorem 3.2.4. If X ∼ N(µ, σ2), we have

E(X) = µ V ar(X) = σ2. (3.7)

�

Definition: If X ∼ N(µ, σ2), the cumulative distribution function is given by

Φµ,σ2(x) =

∫ x

−∞

1√
2πσ

e−
(t−µ)2

2σ2 dt. (3.8)

3.2.4 Gamma Distribution

The Gamma distribution has been widely used in the reliability and survival literature to model
the lifetime of mechanical or biological systems.

Definition: The random variable X is said to have a Gamma Distribution if its pdf is given by

f(x|α, β) =
{

1
βαΓ(α)

xα−1e−x/β, x > 0;

0, otherwise.

where α, β > 0. The parameter α is called the shape parameter (influences peakedness), and β is
called the scale parameter (influences spread). We write X ∼ G(α, β). Here Γ(α) is the gamma

function defined by

Γ(α) =

∫ ∞

0

xα−1e−xdx

Integrating the function by parts, we get

Γ(α) = (α− 1)Γ(α− 1).
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When α = n, a positive integer, repeated applications of the above result yield the following:

Γ(n) = (n− 1)!

Remark: We can use the normal integral to show that

Γ

(

1

2

)

=
√
π. (3.9)

We have shown that
∫ ∞

−∞

1√
2π

e−z2/2dz = 1 ⇒
∫ ∞

0

1√
2π

e−z2/2dz =
1

2
.

Let
t = z2/2 ⇒ z2 = 2t ⇒ dt = zdz.

We have
∫ ∞

0

1√
2π

e−z2/2dz =

∫ ∞

0

1√
2π

1√
2t
e−tdt =

1

2

⇒ Γ

(

1

2

)

=

∫ ∞

0

t−1/2e−tdt =
2
√
π

2
=

√
π.

�

Theorem 3.2.5. If X ∼ G(α, β), we have

µ = αβ σ2 = αβ2. (3.10)

�

Remarks:

1. When α = 1, we get the exponential distribution with pdf

f(x|β) =
{

1
β
e−x/β, x > 0;

0, otherwise.

where β > 0. We write X ∼ E(β).

2. If α = p/2, where p is an integer and β = 2, then X is said to have the chi squared

distribution with p degrees of freedom. We write X ∼ χ2(p).

The Lack of Memory Property of the Exponential

The exponential distribution has the lack of memory property. In other words, regardless of the
age of the product, there is no wearing out and the product is ”as good as new”. Mathematically,
for s > t ≥ 0,

P (X > s|X > t) = P (X > s− t). (3.11)

One can also show that the converse is true, i.e. if a pdf satisfies (3.43), it must be the exponential
pdf. From (3.43), we have

P (X > s|X > t) =
P (X > s)

P (X > t)
= P (X > s− t).
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Therefore

1− FX(s)

1− FX(t)
= 1− FX(s− t)

⇒ F̄X(s) = F̄X(s− t)F̄X(t).

This is Cauchy’s functional equation and under certain regularity conditions has the solution

F̄ (x) = e−cx.

The exponential distribution is the only distribution with the lack of memory property. This is
called a characterization of the distribution.

Relationship to the Poisson Process

If events follow a Poisson process with rate λ (the average number of events per unit time), and if
T represents the waiting time from any starting point until the occurrence of the next event, then
T ∼ E(1/λ). We have

P (T > t) = P (no occurrences in interval of length t)

= 1− e−λt.

Let T1 represent the waiting time until the first event, T2 the waiting time between the occurrence
of the first and second event etc. Then T1+ . . . Tr has a Gamma distribution with parameter α = r
and β = 1/λ, i.e. the waiting time until r events have occurred is distributed as a Gamma random
variable.

Theorem 3.2.6. If X ∼ E(β), then Y = X
1
γ has a Weibull distribution with parameters γ and β,

with pdf given by

fY (y|γ, β) =
γ

β
yγ−1e−yγ/β, y > 0; γ, β > 0. (3.12)

�

Applications of the Gamma and Exponential Distributions

Example: The response time X at a certain on-line computer terminal (the elapsed time between
the end of a user’s inquiry and the beginning of the system’s response to that inquiry) has an
exponential distribution with average response time equal to 5 seconds.

(a) Find the probability that the response time is at most 10 seconds.

(b) Find the probability that the response time exceeds 15 seconds.

Example: Assume that arrival times at a drive-through window follow a Poisson process with
an average rate λ = 0.2 arrivals per minute. Find the probability that the third customer arrives
within 20 minutes of opening.
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3.2.5 Beta Distribution

Definition: The random variable X is said to have a Beta Distribution if its pdf is given by

f(x|α, β) = 1

B(α, β)
xα−1(1− x)β−1 0 < x < 1 (3.13)

where α, β > 0. We write X ∼ Beta(α, β). Here B(α, β) is the beta function defined by

B(α, β) =
Γ(α)Γ(β)

Γ(α + β)
. (3.14)

Remarks:

1. Since the range of X is the unit interval, the Beta distribution is used to model proportions.

2. If α = β = 1, we get the Uniform distribution.

Theorem 3.2.7. If X ∼ Beta(α, β), we have

E(Xn) =
B(n+ α, β)

B(α, β)
n > −α. (3.15)

Proof: We have

E(Xn) =
1

B(α, β)

∫ 1

0

xnxα−1(1− x)β−1dx

=
1

B(α, β)

∫ 1

0

xn+α−1(1− x)β−1dx.

The integral is the kernel of a B(n+ α, β) random variable provided

n+ α > 0 ⇒ n > −α.

Therefore

E(Xn) =
B(n+ α, β)

B(α, β)
.

�

Theorem 3.2.8. If X ∼ Beta(α, β), we have

E(X) =
α

α + β
V (X) =

αβ

(α + β)2(α + β + 1)
. (3.16)

�

3.2.6 Cauchy Distribution

Definition: The random variable X is said to have a Cauchy Distribution if its pdf is given by

f(x|θ) = 1

π

1

1 + (x− θ)2
−∞ < x < ∞ (3.17)

where θ ∈ R. We write X ∼ C(θ).
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We have
∫ ∞

−∞

1

π

1

1 + (x− θ)2
=

1

π
arctan(x− θ)|∞−∞ = 1.

Remarks:

1. The Cauchy is a symmetric bell shaped distribution.

2. It has thicker tails than the normal.

Theorem 3.2.9. Let X ∼ C(0). The moments of order < 1 exists, but moments of order ≥ 1 do
not exist.

Proof: We have

E[|X|α] = 2

π

∫ ∞

0

xα

1 + x2
dx.

The integral converges if α < 1 and diverges if α ≥ 1.
In particular, the mean does not exist (See Page 26, Chapter 2). The mgf does not exist.
�

Theorem 3.2.10. Let X ∼ C(θ). The median is given by θ.

Proof: The median of an absolutely continuous distribution is defined as the value x for which

P (X ≤ x) = 0.5.

For the Cauchy distribution, we have

FX(x) =

∫ x

−∞

1

π

1

1 + (x− θ)2

=
1

π
arctan(t− θ)|x−∞

=
1

2
+

1

π
arctan(x− θ). (3.18)

Setting FX(x) = 0.5, we have
x = θ.

�

3.2.7 Lognormal Distribution

Definition: If X is a random variable that is positive, and Y = logX is normally distributed, then
X is said to have a Lognormal distribution with pdf given by

f(x|µ, σ2) =
1√
2πσ

1

x
e−

(log x−µ)2

2σ2 , x > 0, (3.19)

where µ ∈ R and σ > 0.

Remarks:

1. To show that the pdf integrates to 1, use the transformation Y = logX.
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2. We have
E(X) = eµ+(σ2/2),

and
V ar(X) = e2(µ+σ2) − e2µ+σ2

.

These expressions can be obtained by using the relationship to the normal distribution.

3. The lognormal is a right skewed distribution that resembles the Gamma.

3.2.8 Laplace or Double Exponential Distribution

Definition: The random variable X is said to have the double exponential distribution if its pdf is
given by

f(x|µ, σ) = 1

2σ
e−

|x−µ|
σ x ∈ R, (3.20)

where µ ∈ R and σ > 0.

Remarks:

1. The double exponential is a symmetric distribution with heavier tails than the normal. It is
not bell shaped.

2. We have
E(X) = µ V ar(X) = 2σ2.

3. It is not differentiable at x = µ.

3.2.9 Probability Integral Transformation

Theorem 3.2.11. Let X have a continuous cdf FX(x) and let Y = FX(X). Then Y ∼ U(0, 1), i.e.

P [Y ≤ y] = y 0 < y < 1.

Proof: If FX(x) is strictly increasing, the inverse F−1
X is well defined by

F−1
X (y) = x ⇔ FX(x) = y.

We have

P (Y ≤ y) = P [FX(X) ≤ y]

= P [X ≤ F−1
X (y)]

= FX [F
−1
X (y)] = y 0 < y < 1.

If FX(x) is not strictly increasing, i.e. it is constant over some interval, then F−1
X is not well defined.

In the graph, any x satisfying x1 ≤ x ≤ x2 satisfies

FX(x) = y.

Define

F−1
X (y) = inf{x : FX(x) ≥ y} = x1

F−1
X (1) = ∞ if F (x) < 1 ∀ x

F−1
X (0) = −∞.

14



 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y

x1 x2

Figure 3.1: Inverse of the CDF
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This definition of F−1
X agrees with the usual inverse if FX(.) is strictly increasing. The proof of the

theorem is then as follow:

P [Y ≤ y] = P [FX(X) ≤ y]

= P [F−1
X [FX(X)] ≤ F−1

X (y)]

since F−1
X is an increasing function.

If FX is strictly increasing, F−1
X [FX(x)] = x. If FX is flat, then F−1

X [FX(x)] may not equal x. For
x ∈ [x1, x2], F

−1
X [FX(x)] = x1.

However,

P [F−1
X [FX(X)] ≤ F−1

X (y)] = P [X ≤ F−1
X (y)]

since
P [X ≤ x] = P [X ≤ x1] for any x ∈ [x1, x2].

Therefore

P [Y ≤ y] = P [X ≤ F−1
X (y)]

= FX [F
−1
X (y)]

= y

since FX is continuous.
�

The probability integral transformation provides a way to generate random variables with specific
distributions.

Theorem 3.2.12. If U ∼ U(0, 1), then X = F−1
X (U) has cdf FX(.).

Proof: We have

FX(x) = P (X ≤ x) = P [F−1
X (U) ≤ x]

= P [U ≤ FX(x)] = FX(x).

�

We generate a uniform random number between 0 and 1 and solve for x in

FX(x) = u

where FX is the required cdf.

Example: Let U ∼ U(0, 1). We have

fU(u) =

{

1, 0 < u < 1;
0, o.w.

Let Y = −ln U . This implies U = e−Y . The range of Y is (0,∞). Using Theorem 3.1.2, we have

fY (y) = fU(e
−y)| − e−y| = e−y.

This is the pdf of the Exponential distribution.
�
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Example: Let X be a continuous r.v. with pdf

fX(x) =

{

1
2
, 1 < |x− 2| < 2;

0, o.w.

The range of x is (0, 1) and (3, 4). The cdf of X is

FX(x) =























0, x < 0;
1
2
x, 0 ≤ x < 1;

1
2
, 1 ≤ x ≤ 3;

1
2
+ x−3

2
, 3 < x < 4;

1, x ≥ 4.

The cdf is not 1-1. The inverse is

F−1
X (y) =

{

2y, 0 < y ≤ 0.5;
2(y + 1), 0.5 < y < 1.

�

Example: X ∼ Bin(1, p).

FX(x) =







0, x < 0;
p, 0 ≤ x < 1;
1, x ≥ 1.

F−1
X (y) =

{

0, 0 < y ≤ p;
1, p < y ≤ 1.

�
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