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Chapter 6

Order Statistics

Definition: The sequence of random variables X1, . . . , Xn is said to form a random sample of
size n from the population F (.) if

1. X1, . . . , Xn are independent;

2. X1, . . . , Xn are identically distributed (i.e. have the same cdf).

We also refer to X1, . . . , Xn as independent and identically distributed (iid) random variables.

For discrete random variables, the joint pmf of X1, . . . , Xn is

p(x1, . . . , xn) =
n
∏

i=1

pXi
(xi).

For continuous random variables, the joint pdf of X1, . . . , Xn is

f(x1, . . . , xn) =
n
∏

i=1

fXi
(xi).

Definition: A statistic T = T (X1, . . . , Xn) is a function of X1, . . . , Xn that does not depend on
any unknown parameters.
The statistic T can be real or vector valued. We have

T : Rn : Rm m < n.

Ideally, m will represent the number of parameters.

Example: The following are statistics:

X̄ =

n
∑

i=1

Xi

n
Sample Mean.
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S2 =
1

n− 1

n
∑

i=1

(Xi − X̄)2 Sample Variance.

Since a statistic is also a random variable, we can talk about its probability distribution.
Definition: Let T = T (X1, . . . , Xn) be a statistic. The probability distribution of T is called the
sampling distribution of T .

Lemma 6.0.1. Let X1, . . . , Xn be iid random variables and g(.) be a function such that E[g(X1)]
and V ar[g(X1)] exist. Then

E[
n

∑

i=1

g(Xi)] = nE[g(X1)]

V ar[
n

∑

i=1

g(Xi)] = nV ar[g(X1)].

�

Theorem 6.0.2. Let X1, . . . , Xn be iid random variables from a population with mean µ and vari-

ance σ2 < ∞. Then

MX̄(t) = [MX(t/n)]
n .

Proof: We have

MX̄(t) = E[etX̄ ] = E[e
t
n
(X1+...+Xn)]

= E
[

e
t
n
X1e

t
n
X2 . . . e

t
n
X1

]

= [MX(t/n)]
n .

�

6.1 Order Statistics

Let (X1, . . . , Xn) be an n−dimensional random vector and (x1, . . . , xn) be an n−tuple assumed by
(X1, . . . , Xn).
Arrange x1, . . . , xn in increasing order of magnitude so that

x(1) ≤ x(2) ≤ . . . ≤ x(n).

Definition: The function X(k) of (X1, . . . , Xn) that takes on the value x(k) in each possible sequence
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(x1, . . . , xn) of values assumed by (X1, . . . , Xn) is known as the k−th order statistic.

{X(1), . . . , X(n)} is called the set of order statistics for (X1, . . . , Xn).

Example: Let X1, X2, X3 be 3 discrete random variables. Let X1, X3 take values 0, 1 and X2 take
values 1,2, and 3. Then the random vector (X1.X2, X3) assumes the following triples of values:

(0, 1, 0), (0, 2, 0), (0, 3, 0), (0, 1, 1), (0, 2, 1), (0, 3, 1),

(1, 1, 0), (1, 2, 0), (1, 3, 0), (1, 1, 1), (1, 2, 1), (1, 3, 1).

X(1) takes values 0, 1, X(2) takes values 0, 1 and X(3) takes values 1, 2, 3.

Example: The sample range involves the order statistics X(n) and X(1):

R = X(n) −X(1).

Example: The median involves the order statistics

M =

{

X((n+1)/2), n odd;
X(n/2)+X(n/2+1)

2
, n even.

For any number p between 0 and 1, the 100p-th sample percentile is the observation such that
approximately np of the observations are less than this observation and n(1−p) of the observations
are greater.

Definition: The notation [b] is defined to be the number b rounded to the nearest integer.

Definition: The 100p-th sample percentile is X([np]) if 1/2n < p < .5 and X(n+1−[n(1−p)]) if .5 < p <
1− 1/2n.
The cases p < .5 and p > .5 are defined separately so that the sample percentiles exhibit the
following symmetry: if the 100p-th sample percentile is the i−th smallest observation, then the
100(1− p)-th sample percentile should be i−th largest observation.

Theorem 6.1.1. Let (X1, . . . , Xn) be a random sample from a discrete distribution with pmf

pX(xi) = pi,
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where x1 < x2 < . . . are the possible values of X in ascending order. Define

P0 = 0

P1 = p1

P2 = p1 + p2
...

Pi = p1 + . . .+ pi
...

Then

P [X(j) ≤ xi] =
n

∑

k=j

(

n
k

)

P k
i (1− Pi)

n−k (6.1)

P [X(j) = xi] =
n

∑

k=j

(

n
k

)

[

P k
i (1− Pi)

n−k − P k
i−1(1− Pi−1)

n−k
]

. (6.2)

Proof: For a fixed i, let Y be the number of X1, . . . , Xn that are less than or equal to xi. Define
the event {Xj ≤ xi} as a success. We have

P (Success) = P (Xj ≤ xi) = Pi.

The trials are independent because X1, . . . , Xn are independent. Therefore

Y ∼ Bin(n, Pi).

We also have
{Xj ≤ xi} = {Y ≥ j},

i.e. at least j of the sample values are less than or equal to xi. Therefore

P (Xj ≤ xi) = P (Y ≥ j)

=
n

∑

k=j

(

n
k

)

P k
i (1− Pi)

n−k.

P (Xj ≤ xi) = P (Xj ≤ xi)− P (Xj ≤ xi−1).

�

Suppose X1, . . . , Xn are iid continuous random variables with pdf f(.). With probability one,

X(1) < X(2) < . . . < X(n).
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Theorem 6.1.2. The joint pdf of (X(1), . . . , X(n)) is given by

fX(1),...,X(n)
(x1, . . . , xn) = n!

n
∏

i=1

f(xi) −∞ < x1 < . . . < xn < ∞. (6.3)

Proof: The transformation from X1, . . . , Xn to (X(1), . . . , X(n)) is not one-to-one.
For any set of n values x1, . . . , xn, there are n! possible arrangements of x1, . . . , xn in increasing
order of magnitude. This implies there are n! inverses to the transformation. Therefore,

fX(1),...,X(n)
(x1, . . . , xn) = n!

n
∏

i=1

f(xi) −∞ < x1 < . . . < xn < ∞.

�

Theorem 6.1.3. The marginal pdf of X(r) is given by

fX(r)
(xr) =

n!

(r − 1)!(n− r)!
[FX(xr)]

r−1[1− FX(xr)]
n−rfX(xr). (6.4)

Proof: We have

fX(r)
(xr) = n!fX(xr)

∫ xr

−∞

∫ xr−1

−∞

. . .

∫ x2

−∞
∫ ∞

xr

∫ ∞

xr+1

. . .

∫ ∞

xn−1

∏

i 6=r

fX(xi)dxn . . . dxr+1dx1 . . . dxr−1

= n!fX(xr)
[1− FX(xr)]

n−r

(n− r)!

∫ xr

−∞

∫ xr−1

−∞

. . .

∫ x2

−∞

r−1
∏

i=1

fX(xi)dxi

=
n!

(r − 1)!(n− r)!
fX(xr)[FX(xr)]

r−1[1− FX(xr)]
n−r.

�

Theorem 6.1.4. The joint pdf of X(j) and X(k), 1 ≤ j < k ≤ n is given by

fX(j),X(k)
(xj, xk) =

n!

(j − 1)!(k − j − 1)!(n− k)!
[FX(xj)]

j−1[FX(xk)− FX(xj)]
k−j−1

[1− FX(xk)]
n−kfX(xj)fX(xk), xj < xk. (6.5)

�
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Example: Let X1, . . . , Xn be iid U(0, 1). We have

F (x) =

∫ x

0

dt = x.

Therefore

fX(j)
(x) =

n!

(j − 1)!(n− j)!
xj−1(1− x)n−j x ∈ (0, 1),

which is the pdf of a Beta random variable. Therefore

X(j) ∼ Beta(j, n− j + 1).

Let R = X(n) −X(1) be the range, and V = (X(1) +X(n))/2 be the midrange.
The joint pdf of X(1) and X(n) is

fX(1),X(n)
(x1, xn) = n(n− 1)[xn − x1]

n−2 0 < x1 < xn < 1.

The inverse transformations are

X(1) = V −
R

2
X(n) = V +

R

2
,

and the Jacobian is 1. We know that 0 < r < 1. We have the following inequalities

v − r/2 > 0 ⇒ v > r/2.

v + r/2 < 1 ⇒ v < 1− r/2.

This implies r/2 < v < 1− r/2. Therefore

fR,V (r, v) = n(n− 1)rn−2 0 < r < 1, r/2 < v < 1− r/2.

The marginal pdf of R is

fR(r) =

∫ 1−r/2

r/2

n(n− 1)rn−2dv = n(n− 1)rn−2(1− r) 0 < r < 1.

To find the pdf of V , we consider the two cases: If v < 1/2, then 0 < r < 2v. If v > 1/2, then
0 < r < 2(1− v). Therefore,

fV (v) =

{

n(2v)n−1, 0 < v < 1/2;
n[2(1− v)]n−1, 1/2 < v < 1.

�

Example: Let X1, . . . , Xn be iid with cdf

F (x) = xα 0 < x < 1, α > 0.
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Show that
X(i)

X(n)
, i = 1, . . . , n− 1 and X(n) are independent.

�
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