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◮ A notation for computable functions

◮ Alonzo Church

◮ How do we describe a function?

◮ By its graph — a binary relation between domain and
codomain

◮ Single-valued

◮ Extensional — graph completely defines the function

◮ An extensional definition is not suitable for computation

◮ All sorting functions are the same!

◮ Need an intensional definition

◮ How are outputs computed from inputs?
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◮ Assume a set Var of variables

◮ Set Λ of lambda expressions is given by

Λ = x | λx .M | MM ′

where x ∈ Var , M,M ′ ∈ Λ.

◮ λx .M : Abstraction

◮ A function of x with computation rule M .

◮ “Abstracts” the computation rule M over arbitrary input
values x

◮ Like writing f (x) = e without assigning a name f

◮ MM ′ : Application

◮ Apply the function M to the argument M ′
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λ-calculus: syntax . . .

◮ Can write expressions such as xx — no types!

◮ What can we do without types?

◮ Set theory as a basis for mathematics

◮ Bit strings in memory

◮ In an untyped world, some data is meaningful

◮ Functions manipulate meaningful data to yield meaningful
data

◮ Can also apply functions to non-meaningful data, but the
result has no significance
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The computation rule β

◮ Basic rule for computing (rewriting) is called β

(λx .M)M ′ →β M{x ← M ′}

◮ M{x ← M ′} : substitute free occurrences of x in M by M ′

◮ This is the normal rule we use for functions:

f (x) = 2x2 + 3x + 4

f (7) = 2 · 72 + 3 · 7 + 4 = (2x2 + 3x + 4){x ← 7}.

◮ β is the only rule we need!

◮ MM ′ is meaningful only if M is of the form λx .M ′′

◮ Cannot do anything with expressions like xx
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Variable capture

◮ Consider (λx .(λy .xy))y

◮ β yields λy .yy

◮ The y substituted for inner x has been “confused” with the y

bound by λy

◮ Rename bound variables to avoid capture

(λx .(λy .xy))y = (λx .(λz .xz))y →β λz .yz

◮ Renaming bound variables does not change the function

◮ f (x) = 2x + 5 vs f (z) = 2z + 5
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Variable capture

Formally, bound and free variables are defined as

◮ FV (x) = {x}, for any variable x

◮ FV (λx .M) = FV (M)− {x}

◮ FV (MM ′) = FV (M) ∪ FV (M ′)

◮ BV (x) = ∅, for any variable x

◮ BV (λx .M) = BV (M) ∪ {x}

◮ BV (MM ′) = BV (M) ∪ BV (M ′)

When we apply β to MM ′, assume that we always rename the
bound variables in M to avoid “capturing” free variables from M ′.
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Encoding arithmetic

In set theory, use nesting depth to encode numbers

◮ Encoding of n: 〈n〉

◮ 〈n〉 = {〈0〉, 〈1〉, . . . , 〈n−1〉}

Thus

0 = ∅
1 = {∅}
2 = {∅, {∅}}
3 = {∅, {∅}, {∅, {∅}}}
. . .

In λ-calculus, encode n by number of times we apply a function
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Church numerals . . .

〈2〉 = λfx .f (〈1〉fx) = λfx .(f (λfx .(fx)fx)
︸ ︷︷ ︸

apply β

)→β λfx .(f (fx))

so,

〈2〉gy →β λx .(g(gx))y = g(gy)

◮ Let gky denote g(g(. . . (gy))) with k applications of g to y

◮ Show by induction that

〈n〉 = λfx .f (〈n−1〉fx)→β . . .→β λfx .(f nx)
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