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One step reduction

» Can have other reduction rules like (3

» Observe that Ax.(Mx) and M are equivalent with respect to
[-reduction

» New reduction rule 7

Ax.(Mx) —, M

» Given basic rules 3, 1, ..., we are allowed to use them “in
any context”

» Define a one step reduction relation — inductively
M —, M’ M — M M — M N— N

M— M XM — IxM MN — M'N  MN — MN'
xe{B,n,...}
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Normal forms

» Computation — a maximal sequence of reduction steps

> “Values” are expressions that cannot be further reduced:
normal forms

» Allow reduction in any context = multiple expressions may
qualify for reduction in one step

Natural questions

» Does every term reduce to a normal form?

» Can a term reduce to more than one normal form, depending
on order reduction strategy?

» If a term has a normal form, can we always find it?
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Normal forms ...

Can a term reduce to more than one normal form, depending on
order reduction strategy?

» Consider (False)Q = (A\yz.z)((Ax.xx)(Ax.xx))

» Outermost reduction:
(Ayz.z)((Ax.xx)(Ax.xx)) — Az.z

» Innermost reduction:

(Ayz.z)((Ax.xx)(Ax.xx)) — (Ayz.z)((Ax.xx)(Ax.xx)) — - -

» Choice of reduction strategies may determine whether a
normal form is reached ...

> ...but the question is, can more than one normal form be
reached?
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Normal forms . ..

If a term has a normal form, can we always find it?

» We have seen how to encode recursive functions in A-calculus

» Given a recursive function f and an argument n, we cannot
determine, in general, if computation of f(n) terminates

» Computing f(n) is equivalent to asking if (f)(n) achieves a
normal form
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Normal forms ...

Can a term reduce to more than one normal form, depending on
order reduction strategy?

» Define an equivalence relation < on A-terms

M — N iff 3P. P —-* M, P —* N

M « N if both M and N can be obtained by reduction from a
common “ancestor’ P

» <« is the symmetric transitive closure of —*

M—-*N M<N MeNN—P
Me—N  N—M M~ P

» In general, for any reflexive, transitive relation R, can define

. . R
the symmetric, transitive closure <
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Church-Rosser Theorem

Diamond property or Church-Rosser property

> Let R be any reflexive, transitive relation (such as —*)

» R has the diamond property if, whenever X R Y and X R Z
there is W such that Y R W and Z R W

Theorem [Church-Rosser|

Let R be Church-Rosser. Then M £ N implies there
exists Z, MR Z and N R Z

Proof By induction on the definition of &
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Church-Rosser Theorem

Corollary [Church-Rosser]

Let R be a reduction relation that is Church-Rosser.
Then a term can have at most one normal form with
respect to R

Proof By picture
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Church-Rosser Theorem

Is —* Church-Rosser?
Consider (Ax.xx)((Ax.x)(Ax.x))

Two possible reductions

> (Ax.xx)((Ax.x)(Ax.x)) —
((Axx)(Axx))((Ax.x)(Ax.x)) (Outermost)

> (Axxx)((Ax.x)(Ax.x)) — ((Ax.xx)(Ax.x) (Innermost)

From second option, in one step we get
(Ax.xx)(Ax.x) — ((Ax.x)(Ax.x))

Can reach this term from the first option as well, but it requires
two steps!
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Church-Rosser Theorem

Solution: Define a new notion of one step reduction — such that

» This new reduction is Church-Rosser.

> lIts reflexive, transitive closure is equal to —*.

Define — as follows.

M — M
M- M -
- MM — Ax. M’
M- M N - N M- M N - N

MN = M'N (Ax.M)N = M'{x — N'}

» —» combines nonoverlapping — reductions into one parallel
step



Recursive definitions

Suppose F = Axyx ... x,E, where where E contains an occurrence
of F

» Choose a new variable f
» Convert E to E* replacing every F in E by ff
» If Eis of the form ---F---F .- then E*is---(ff)---(ff)---.

Now write

G = Maxa...xp.E*
= Mxaxa...xp.o (FF)---(ff)---

Then
GG = Mxax2...%p. -+ (GG) -+ (GG) - -

» GG satisfies the equation defining F
> Write F = GG, where G = \fxqxo ... x,.E*.
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Fixed point combinator

» Consider recursive definition F = Ax.x(Fx)

v

Can use the GG trick to get a \-expression of F

F = GG,where G = Ax.x(ffx)
Mx.x (A x () A .x(ffx)x)

v

Note that FX = X(FX) for any term X

v

Fixed point : Given Z, M such that ZM = M.

v

F Z is a fixed point for Z

v

Due to Turing — ©
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Terms without normal forms

Are all terms without normal forms equally “meaningless”?

Can we define an equivalence ~ on A-terms such that:

> (AXM)N ~ M{x < N}—that is, ~ the equivalence induced
by the (3 reduction.

» If M and N do not have normal forms, then M = N.

» Functions that are equated by ~ yield equivalent results for
the same arguments. That is, if M ~ N then for all R,
MR ~ NR.
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Terms without normal forms

Consider the function F defined by

Fxb = if b then x else (Fxb)

If we unravel FF, we get
F = GG, where G = M\xb.( if b then x else (ffxb))

Consider FX(true) and FX(false)
» FX(true) — if (T) then X else (FX(true)) — X.

» FX(false) — if (F) then X else (FX(false)) — FX(false).
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Terms without normal forms

FZ (Axb.(if b then x else (Fxb)))Z
Ab.(if b then Z else (FZb))
Ab.(if b then Z else G),where G =if b then Z else (fZB)

Ab.(if b then Z else (if b then Z else G))

Ll

» [Z does not terminate for any Z = FX ~ FY for all X, Y
» FX ~ FY implies FXM ~ FYM for all M
> FX(true) ~ FY (true)



Terms without normal forms

FZ — (Axb.(if b then x else (Fxb)))Z
—  Ab.(if b then Z else (FZb))
—  Ab.(if b then Z else G),where G =if b then Z else (fZB)
—  Ab.(if b then Z else (if b then Z else G))
— ...
» [Z does not terminate for any Z = FX ~ FY for all X, Y

» FX ~ FY implies FXM ~ FYM for all M
FX(true) ~ FY (true)
» FZ(true) — Z for all Z, so X ~ Y for all X and Y!

v



