
Programming Language Concepts: Lecture 18

Madhavan Mukund

Chennai Mathematical Institute

madhavan@cmi.ac.in

http://www.cmi.ac.in/~madhavan/courses/pl2009

PLC 2009, Lecture 18, 30 March 2009

madhavan@cmi.ac.in
http://www.cmi.ac.in/~madhavan/courses/pl2009

One step reduction

◮ Can have other reduction rules like β

One step reduction

◮ Can have other reduction rules like β

◮ Observe that λx .(Mx) and M are equivalent with respect to
β-reduction

One step reduction

◮ Can have other reduction rules like β

◮ Observe that λx .(Mx) and M are equivalent with respect to
β-reduction

◮ New reduction rule η

λx .(Mx)→η M

One step reduction

◮ Can have other reduction rules like β

◮ Observe that λx .(Mx) and M are equivalent with respect to
β-reduction

◮ New reduction rule η

λx .(Mx)→η M

◮ Given basic rules β, η, . . . , we are allowed to use them “in
any context”

One step reduction

◮ Can have other reduction rules like β

◮ Observe that λx .(Mx) and M are equivalent with respect to
β-reduction

◮ New reduction rule η

λx .(Mx)→η M

◮ Given basic rules β, η, . . . , we are allowed to use them “in
any context”

◮ Define a one step reduction relation → inductively

M →x M ′

M → M

′

x ∈ {β, η, . . .}

M → M ′

λx .M → λx .M ′

M → M ′

MN → M ′N

N → N ′

MN → MN ′

Normal forms

◮ Computation — a maximal sequence of reduction steps

Normal forms

◮ Computation — a maximal sequence of reduction steps

◮ “Values” are expressions that cannot be further reduced:
normal forms

Normal forms

◮ Computation — a maximal sequence of reduction steps

◮ “Values” are expressions that cannot be further reduced:
normal forms

◮ Allow reduction in any context ⇒ multiple expressions may
qualify for reduction in one step

Normal forms

◮ Computation — a maximal sequence of reduction steps

◮ “Values” are expressions that cannot be further reduced:
normal forms

◮ Allow reduction in any context ⇒ multiple expressions may
qualify for reduction in one step

Natural questions

Normal forms

◮ Computation — a maximal sequence of reduction steps

◮ “Values” are expressions that cannot be further reduced:
normal forms

◮ Allow reduction in any context ⇒ multiple expressions may
qualify for reduction in one step

Natural questions

◮ Does every term reduce to a normal form?

Normal forms

◮ Computation — a maximal sequence of reduction steps

◮ “Values” are expressions that cannot be further reduced:
normal forms

◮ Allow reduction in any context ⇒ multiple expressions may
qualify for reduction in one step

Natural questions

◮ Does every term reduce to a normal form?

◮ Can a term reduce to more than one normal form, depending
on order reduction strategy?

Normal forms

◮ Computation — a maximal sequence of reduction steps

◮ “Values” are expressions that cannot be further reduced:
normal forms

◮ Allow reduction in any context ⇒ multiple expressions may
qualify for reduction in one step

Natural questions

◮ Does every term reduce to a normal form?

◮ Can a term reduce to more than one normal form, depending
on order reduction strategy?

◮ If a term has a normal form, can we always find it?

Normal forms . . .

Does every term reduce to a normal form?

◮ Consider (λx .xx)(λx .xx)

Normal forms . . .

Does every term reduce to a normal form?

◮ Consider (λx .xx)(λx .xx)

◮ (λx .xx)(λx .xx) →β (λx .xx)(λx .xx)

◮ Reduction never terminates

Normal forms . . .

Does every term reduce to a normal form?

◮ Consider (λx .xx)(λx .xx)

◮ (λx .xx)(λx .xx) →β (λx .xx)(λx .xx)

◮ Reduction never terminates

◮ Call this term Ω

Normal forms . . .

Does every term reduce to a normal form?

◮ Consider (λx .xx)(λx .xx)

◮ (λx .xx)(λx .xx) →β (λx .xx)(λx .xx)

◮ Reduction never terminates

◮ Call this term Ω

Normal forms . . .

Can a term reduce to more than one normal form, depending on
order reduction strategy?

◮ Consider 〈False〉Ω = (λyz .z)((λx .xx)(λx .xx))

Normal forms . . .

Can a term reduce to more than one normal form, depending on
order reduction strategy?

◮ Consider 〈False〉Ω = (λyz .z)((λx .xx)(λx .xx))

◮ Outermost reduction:
(λyz .z)((λx .xx)(λx .xx)) → λz .z

Normal forms . . .

Can a term reduce to more than one normal form, depending on
order reduction strategy?

◮ Consider 〈False〉Ω = (λyz .z)((λx .xx)(λx .xx))

◮ Outermost reduction:
(λyz .z)((λx .xx)(λx .xx)) → λz .z

◮ Innermost reduction:
(λyz .z)((λx .xx)(λx .xx)) → (λyz .z)((λx .xx)(λx .xx)) → · · ·

Normal forms . . .

Can a term reduce to more than one normal form, depending on
order reduction strategy?

◮ Consider 〈False〉Ω = (λyz .z)((λx .xx)(λx .xx))

◮ Outermost reduction:
(λyz .z)((λx .xx)(λx .xx)) → λz .z

◮ Innermost reduction:
(λyz .z)((λx .xx)(λx .xx)) → (λyz .z)((λx .xx)(λx .xx)) → · · ·

◮ Choice of reduction strategies may determine whether a
normal form is reached . . .

Normal forms . . .

Can a term reduce to more than one normal form, depending on
order reduction strategy?

◮ Consider 〈False〉Ω = (λyz .z)((λx .xx)(λx .xx))

◮ Outermost reduction:
(λyz .z)((λx .xx)(λx .xx)) → λz .z

◮ Innermost reduction:
(λyz .z)((λx .xx)(λx .xx)) → (λyz .z)((λx .xx)(λx .xx)) → · · ·

◮ Choice of reduction strategies may determine whether a
normal form is reached . . .

◮ . . . but the question is, can more than one normal form be
reached?

Normal forms . . .

If a term has a normal form, can we always find it?

Normal forms . . .

If a term has a normal form, can we always find it?

◮ We have seen how to encode recursive functions in λ-calculus

Normal forms . . .

If a term has a normal form, can we always find it?

◮ We have seen how to encode recursive functions in λ-calculus

◮ Given a recursive function f and an argument n, we cannot
determine, in general, if computation of f (n) terminates

Normal forms . . .

If a term has a normal form, can we always find it?

◮ We have seen how to encode recursive functions in λ-calculus

◮ Given a recursive function f and an argument n, we cannot
determine, in general, if computation of f (n) terminates

◮ Computing f (n) is equivalent to asking if 〈f 〉〈n〉 achieves a
normal form

Normal forms . . .

Can a term reduce to more than one normal form, depending on
order reduction strategy?

◮ Define an equivalence relation ↔ on λ-terms

M ↔ N iff ∃P . P →∗ M,P →∗ N

M ↔ N if both M and N can be obtained by reduction from a
common “ancestor” P

Normal forms . . .

Can a term reduce to more than one normal form, depending on
order reduction strategy?

◮ Define an equivalence relation ↔ on λ-terms

M ↔ N iff ∃P . P →∗ M,P →∗ N

M ↔ N if both M and N can be obtained by reduction from a
common “ancestor” P

◮ ↔ is the symmetric transitive closure of →∗

M →∗ N

M ↔ N

M ↔ N

N ↔ M

M ↔ N,N ↔ P

M ↔ P

Normal forms . . .

Can a term reduce to more than one normal form, depending on
order reduction strategy?

◮ Define an equivalence relation ↔ on λ-terms

M ↔ N iff ∃P . P →∗ M,P →∗ N

M ↔ N if both M and N can be obtained by reduction from a
common “ancestor” P

◮ ↔ is the symmetric transitive closure of →∗

M →∗ N

M ↔ N

M ↔ N

N ↔ M

M ↔ N,N ↔ P

M ↔ P

◮ In general, for any reflexive, transitive relation R , can define

the symmetric, transitive closure
R
↔

Church-Rosser Theorem

Diamond property or Church-Rosser property

◮ Let R be any reflexive, transitive relation (such as →∗)

◮ R has the diamond property if, whenever X R Y and X R Z

there is W such that Y R W and Z R W

Church-Rosser Theorem

Diamond property or Church-Rosser property

◮ Let R be any reflexive, transitive relation (such as →∗)

◮ R has the diamond property if, whenever X R Y and X R Z

there is W such that Y R W and Z R W

Theorem [Church-Rosser]

Let R be Church-Rosser. Then M
R
↔ N implies there

exists Z , M R Z and N R Z

Church-Rosser Theorem

Diamond property or Church-Rosser property

◮ Let R be any reflexive, transitive relation (such as →∗)

◮ R has the diamond property if, whenever X R Y and X R Z

there is W such that Y R W and Z R W

Theorem [Church-Rosser]

Let R be Church-Rosser. Then M
R
↔ N implies there

exists Z , M R Z and N R Z

Proof By induction on the definition of
R
↔

Church-Rosser Theorem

Corollary [Church-Rosser]

Let R be a reduction relation that is Church-Rosser.

Then a term can have at most one normal form with

respect to R

Church-Rosser Theorem

Corollary [Church-Rosser]

Let R be a reduction relation that is Church-Rosser.

Then a term can have at most one normal form with

respect to R

Proof By picture

Church-Rosser Theorem

Is →∗ Church-Rosser?

Church-Rosser Theorem

Is →∗ Church-Rosser?

Consider (λx .xx)((λx .x)(λx .x))

Church-Rosser Theorem

Is →∗ Church-Rosser?

Consider (λx .xx)((λx .x)(λx .x))

Two possible reductions

◮ (λx .xx)((λx .x)(λx .x)) →
((λx .x)(λx .x))((λx .x)(λx .x)) (Outermost)

◮ (λx .xx)((λx .x)(λx .x)) → ((λx .xx)(λx .x) (Innermost)

Church-Rosser Theorem

Is →∗ Church-Rosser?

Consider (λx .xx)((λx .x)(λx .x))

Two possible reductions

◮ (λx .xx)((λx .x)(λx .x)) →
((λx .x)(λx .x))((λx .x)(λx .x)) (Outermost)

◮ (λx .xx)((λx .x)(λx .x)) → ((λx .xx)(λx .x) (Innermost)

From second option, in one step we get

(λx .xx)(λx .x) → ((λx .x)(λx .x))

Church-Rosser Theorem

Is →∗ Church-Rosser?

Consider (λx .xx)((λx .x)(λx .x))

Two possible reductions

◮ (λx .xx)((λx .x)(λx .x)) →
((λx .x)(λx .x))((λx .x)(λx .x)) (Outermost)

◮ (λx .xx)((λx .x)(λx .x)) → ((λx .xx)(λx .x) (Innermost)

From second option, in one step we get

(λx .xx)(λx .x) → ((λx .x)(λx .x))

Can reach this term from the first option as well, but it requires
two steps!

Church-Rosser Theorem

Solution: Define a new notion of one step reduction ։ such that

◮ This new reduction is Church-Rosser.

◮ Its reflexive, transitive closure is equal to →∗.

Church-Rosser Theorem

Solution: Define a new notion of one step reduction ։ such that

◮ This new reduction is Church-Rosser.

◮ Its reflexive, transitive closure is equal to →∗.

Define ։ as follows.

M ։ M
M ։ M ′

λx .M ։ λx .M ′

M ։ M ′,N ։ N ′

MN ։ M ′N ′

M ։ M ′,N ։ N ′

(λx .M)N ։ M ′{x ← N ′}

◮ ։ combines nonoverlapping → reductions into one parallel
step

Recursive definitions

Suppose F = λx1x2 . . . xnE , where where E contains an occurrence
of F

◮ Choose a new variable f

◮ Convert E to E ∗ replacing every F in E by ff

◮ If E is of the form · · ·F · · ·F · · · then E ∗ is · · · (ff) · · · (ff) · · ·.

Now write

G = λfx1x2 . . . xn.E
∗

= λfx1x2 . . . xn. · · · (ff) · · · (ff) · · ·

Then
GG = λx1x2 . . . xn. · · · (GG) · · · (GG) · · ·

◮ GG satisfies the equation defining F

◮ Write F = GG , where G = λfx1x2 . . . xn.E
∗.

Fixed point combinator

◮ Consider recursive definition F = λx .x(Fx)

Fixed point combinator

◮ Consider recursive definition F = λx .x(Fx)

◮ Can use the GG trick to get a λ-expression of F

F = GG ,where G = λfx .x(ffx)
= λfx .x(λfx .x(ffx)λfx .x(ffx)x)

Fixed point combinator

◮ Consider recursive definition F = λx .x(Fx)

◮ Can use the GG trick to get a λ-expression of F

F = GG ,where G = λfx .x(ffx)
= λfx .x(λfx .x(ffx)λfx .x(ffx)x)

◮ Note that FX = X (FX) for any term X

Fixed point combinator

◮ Consider recursive definition F = λx .x(Fx)

◮ Can use the GG trick to get a λ-expression of F

F = GG ,where G = λfx .x(ffx)
= λfx .x(λfx .x(ffx)λfx .x(ffx)x)

◮ Note that FX = X (FX) for any term X

◮ Fixed point : Given Z , M such that ZM = M.

Fixed point combinator

◮ Consider recursive definition F = λx .x(Fx)

◮ Can use the GG trick to get a λ-expression of F

F = GG ,where G = λfx .x(ffx)
= λfx .x(λfx .x(ffx)λfx .x(ffx)x)

◮ Note that FX = X (FX) for any term X

◮ Fixed point : Given Z , M such that ZM = M.

◮ F Z is a fixed point for Z

Fixed point combinator

◮ Consider recursive definition F = λx .x(Fx)

◮ Can use the GG trick to get a λ-expression of F

F = GG ,where G = λfx .x(ffx)
= λfx .x(λfx .x(ffx)λfx .x(ffx)x)

◮ Note that FX = X (FX) for any term X

◮ Fixed point : Given Z , M such that ZM = M.

◮ F Z is a fixed point for Z

◮ Due to Turing — Θ

Terms without normal forms

Are all terms without normal forms equally “meaningless”?

Can we define an equivalence ≈ on λ-terms such that:

◮ (λxM)N ≈ M{x ← N}—that is, ≈ the equivalence induced
by the β reduction.

Terms without normal forms

Are all terms without normal forms equally “meaningless”?

Can we define an equivalence ≈ on λ-terms such that:

◮ (λxM)N ≈ M{x ← N}—that is, ≈ the equivalence induced
by the β reduction.

◮ If M and N do not have normal forms, then M ≡ N .

Terms without normal forms

Are all terms without normal forms equally “meaningless”?

Can we define an equivalence ≈ on λ-terms such that:

◮ (λxM)N ≈ M{x ← N}—that is, ≈ the equivalence induced
by the β reduction.

◮ If M and N do not have normal forms, then M ≡ N .

◮ Functions that are equated by ≈ yield equivalent results for
the same arguments. That is, if M ≈ N then for all R ,
MR ≈ NR .

Terms without normal forms

Consider the function F defined by

Fxb = if b then x else (Fxb)

Terms without normal forms

Consider the function F defined by

Fxb = if b then x else (Fxb)

If we unravel FF , we get

F = GG , where G = λfxb.(if b then x else (ffxb))

Terms without normal forms

Consider the function F defined by

Fxb = if b then x else (Fxb)

If we unravel FF , we get

F = GG , where G = λfxb.(if b then x else (ffxb))

Consider FX 〈true〉 and FX 〈false〉

Terms without normal forms

Consider the function F defined by

Fxb = if b then x else (Fxb)

If we unravel FF , we get

F = GG , where G = λfxb.(if b then x else (ffxb))

Consider FX 〈true〉 and FX 〈false〉

◮ FX 〈true〉 → if 〈T 〉 then X else (FX 〈true〉)→ X .

Terms without normal forms

Consider the function F defined by

Fxb = if b then x else (Fxb)

If we unravel FF , we get

F = GG , where G = λfxb.(if b then x else (ffxb))

Consider FX 〈true〉 and FX 〈false〉

◮ FX 〈true〉 → if 〈T 〉 then X else (FX 〈true〉)→ X .

◮ FX 〈false〉 → if 〈F 〉 then X else (FX 〈false〉)→ FX 〈false〉.

Terms without normal forms

FZ → (λxb.(if b then x else (Fxb)))Z
→ λb.(if b then Z else (FZb))
→ λb.(if b then Z else G),where G = if b then Z else (fZB)
→ λb.(if b then Z else (if b then Z else G))
→ . . .

Terms without normal forms

FZ → (λxb.(if b then x else (Fxb)))Z
→ λb.(if b then Z else (FZb))
→ λb.(if b then Z else G),where G = if b then Z else (fZB)
→ λb.(if b then Z else (if b then Z else G))
→ . . .

◮ FZ does not terminate for any Z ⇒ FX ≈ FY for all X ,Y

Terms without normal forms

FZ → (λxb.(if b then x else (Fxb)))Z
→ λb.(if b then Z else (FZb))
→ λb.(if b then Z else G),where G = if b then Z else (fZB)
→ λb.(if b then Z else (if b then Z else G))
→ . . .

◮ FZ does not terminate for any Z ⇒ FX ≈ FY for all X ,Y

◮ FX ≈ FY implies FXM ≈ FYM for all M

Terms without normal forms

FZ → (λxb.(if b then x else (Fxb)))Z
→ λb.(if b then Z else (FZb))
→ λb.(if b then Z else G),where G = if b then Z else (fZB)
→ λb.(if b then Z else (if b then Z else G))
→ . . .

◮ FZ does not terminate for any Z ⇒ FX ≈ FY for all X ,Y

◮ FX ≈ FY implies FXM ≈ FYM for all M

◮ FX 〈true〉 ≈ FY 〈true〉

Terms without normal forms

FZ → (λxb.(if b then x else (Fxb)))Z
→ λb.(if b then Z else (FZb))
→ λb.(if b then Z else G),where G = if b then Z else (fZB)
→ λb.(if b then Z else (if b then Z else G))
→ . . .

◮ FZ does not terminate for any Z ⇒ FX ≈ FY for all X ,Y

◮ FX ≈ FY implies FXM ≈ FYM for all M

◮ FX 〈true〉 ≈ FY 〈true〉

◮ FZ 〈true〉 → Z for all Z , so X ≈ Y for all X and Y !

