
Programming Language Concepts: Lecture 20

Madhavan Mukund

Chennai Mathematical Institute

madhavan@cmi.ac.in

http://www.cmi.ac.in/~madhavan/courses/pl2009

PLC 2009, Lecture 20, 06 April 2009

madhavan@cmi.ac.in
http://www.cmi.ac.in/~madhavan/courses/pl2009

“Simply typed” λ-calculus

A separate set of variables Vars for each type s

Define Λs , expressions of type s, by mutual recursion

◮ For each type s, every variable x ∈ Vars is in Λs

◮ If M ∈ Λt and x ∈ Vars then (λx .M) ∈ Λs→t.

◮ If M ∈ Λs→t and N ∈ Λs then (MN) ∈ Λt .

◮ Note that application must be well typed

“Simply typed” λ-calculus

A separate set of variables Vars for each type s

Define Λs , expressions of type s, by mutual recursion

◮ For each type s, every variable x ∈ Vars is in Λs

◮ If M ∈ Λt and x ∈ Vars then (λx .M) ∈ Λs→t.

◮ If M ∈ Λs→t and N ∈ Λs then (MN) ∈ Λt .

◮ Note that application must be well typed

β rule as usual

◮ (λx .M)N →β M{x ← N}

◮ We must have λx .M ∈ Λs→t and N ∈ Λs for some types s, t

◮ Moreover, if λx .M ∈ Λs→t, then x ∈ Vars , so x and N are
compatible

“Simply typed” λ-calculus . . .

◮ Extend →β to one-step reduction →, as usual

◮ The reduction relation →∗ is Church-Rosser

◮ In fact, →∗ is strongly normalizing

◮ M is normalizing : M has a normal form.

◮ M is strongly normalizing : every reduction sequence leads to a
normal form

◮ No infinite computations!

Type checking

◮ Syntax of simply typed λ-calculus permits only well-typed
terms

◮ Converse question; Given an arbitrary term, is it well-typed?

Theorem

The type-checking problem for the simply typed

λ-calculus is decidable

Type checking

◮ Syntax of simply typed λ-calculus permits only well-typed
terms

◮ Converse question; Given an arbitrary term, is it well-typed?

Theorem

The type-checking problem for the simply typed

λ-calculus is decidable

◮ Principal type scheme of a term M — unique type s such that
every other valid type is an “instance” of s

Theorem

We can always compute the principal type scheme for

any well-typed term in the simply typed λ-calculus.

System F

◮ Add type variables, a, b, . . .

◮ Use i , j , . . . to denote concrete types

◮ Type schemes

s ::= a | i | s → s | ∀a.s

System F

Syntax of second order polymorphic lambda calculus

◮ Every variable and (type) constant is a term.

◮ If M is a term, x is a variable and s is a type scheme, then
(λx ∈ s.M) is a term.

◮ If M and N are terms, so is (MN).

◮ Function application does not enforce type check

◮ If M is a term and a is a type variable, then (Λa.M) is a term.

◮ Type abstraction

◮ If M is a term and s is a type scheme, (Ms) is a term.

◮ Type application

System F

Example A polymorphic identity function

Λa.λx ∈ a.x

Two β rules, for two types of abstraction

◮ (λx ∈ s.M)N →β M{x ← N}

◮ (Λa.M)s →β M{a← s}

System F

◮ System F is also strongly normalizing

◮ . . . but type inference is undecidable!

◮ Given an arbitrary term, can it be assigned a sensible type?

Type inference in System F

Notation
If A is a list of assumptions, A + {x : s} is the list where

◮ Assumption for x in A (if any) is overridden by the new
assumption x : s.

◮ For any variable y 6= x , assumption does not change

A + {x : s} ⊢ M : t

A ⊢ (λx ∈ s.M) : s → t

A ⊢ M : s → t, A ⊢ N : s

A ⊢ (MN) : t

A ⊢ M : s

A ⊢ (Λa.M) : ∀a.s

A ⊢ M : ∀a.s

A ⊢ Mt : s{a← t}

Type inference in System F

◮ Type inference is undecidable for System F

◮ . . . but we have type-checking algorithms for Haskell, ML, . . . !

◮ Haskell etc use a restricted version of polymorphic types
◮ All types are universally quantified at the top level

◮ When we write map :: (a -> b) -> [a] -> [b], we
mean that the type is

map :: ∀a, b. (a→ b)→ [a]→ [b]

◮ Also called shallow typing

◮ System F permits deep typing

∀a. [(∀b. a→ b)→ a→ a]

Type inference as equation solving

What is the type of twice f x = f (f x)?

◮ Generically, twice :: a -> b -> c

Type inference as equation solving

What is the type of twice f x = f (f x)?

◮ Generically, twice :: a -> b -> c

◮ We then reason as follows

a = d -> e (because f is a function)

Type inference as equation solving

What is the type of twice f x = f (f x)?

◮ Generically, twice :: a -> b -> c

◮ We then reason as follows

a = d -> e (because f is a function)
b = d (because f is applied to x)

Type inference as equation solving

What is the type of twice f x = f (f x)?

◮ Generically, twice :: a -> b -> c

◮ We then reason as follows

a = d -> e (because f is a function)
b = d (because f is applied to x)
e = d (because f is applied to (f x))

Type inference as equation solving

What is the type of twice f x = f (f x)?

◮ Generically, twice :: a -> b -> c

◮ We then reason as follows

a = d -> e (because f is a function)
b = d (because f is applied to x)
e = d (because f is applied to (f x))
c = e (because output of twice is f (f x))

Type inference as equation solving

What is the type of twice f x = f (f x)?

◮ Generically, twice :: a -> b -> c

◮ We then reason as follows

a = d -> e (because f is a function)
b = d (because f is applied to x)
e = d (because f is applied to (f x))
c = e (because output of twice is f (f x))

◮ Thus b = c = d = e and a = b -> b

Type inference as equation solving

What is the type of twice f x = f (f x)?

◮ Generically, twice :: a -> b -> c

◮ We then reason as follows

a = d -> e (because f is a function)
b = d (because f is applied to x)
e = d (because f is applied to (f x))
c = e (because output of twice is f (f x))

◮ Thus b = c = d = e and a = b -> b

◮ Most general type is twice :: (b -> b) -> b -> b

Unification

◮ Start with a system of equations over terms

Unification

◮ Start with a system of equations over terms

◮ Find a substitution for variables that satisfies the equation

Unification

◮ Start with a system of equations over terms

◮ Find a substitution for variables that satisfies the equation

◮ Least constrained solution : most general unifier (mgu)

Terms

◮ Fix a set of function symbols and constants : signature

◮ Each function symbol as an arity

◮ Constants are functions with arity 0

Terms

◮ Fix a set of function symbols and constants : signature

◮ Each function symbol as an arity

◮ Constants are functions with arity 0

◮ Terms are well formed expressions, including variables

Terms

◮ Fix a set of function symbols and constants : signature

◮ Each function symbol as an arity

◮ Constants are functions with arity 0

◮ Terms are well formed expressions, including variables

◮ Every variable is a term.

Terms

◮ Fix a set of function symbols and constants : signature

◮ Each function symbol as an arity

◮ Constants are functions with arity 0

◮ Terms are well formed expressions, including variables

◮ Every variable is a term.

◮ If f is a k-ary function symbol in the signature and t1, t2, . . . ,
tk are terms, then f (t1, t2, . . . , tk) is a term.

Terms

◮ Fix a set of function symbols and constants : signature

◮ Each function symbol as an arity

◮ Constants are functions with arity 0

◮ Terms are well formed expressions, including variables

◮ Every variable is a term.

◮ If f is a k-ary function symbol in the signature and t1, t2, . . . ,
tk are terms, then f (t1, t2, . . . , tk) is a term.

◮ Notation

◮ a, b, c , f , . . . , x , y , . . . are function symbos

◮ A, B, C , F , . . . ,X , Y , . . . are variables

Unification

Example

f (X) = f (f (a))
g(Y) = g(Z)

Unification

Example

f (X) = f (f (a))
g(Y) = g(Z)

◮ Substitution: assigns a term to each variable X , Y , Z

Unification

Example

f (X) = f (f (a))
g(Y) = g(Z)

◮ Substitution: assigns a term to each variable X , Y , Z

◮ Unifier: substitution that satisfies equations

Unification

Example

f (X) = f (f (a))
g(Y) = g(Z)

◮ Substitution: assigns a term to each variable X , Y , Z

◮ Unifier: substitution that satisfies equations

◮ For instance, {X ← f (a),Y ← g(a),Z ← g(a)}

Unification

Example

f (X) = f (f (a))
g(Y) = g(Z)

◮ Substitution: assigns a term to each variable X , Y , Z

◮ Unifier: substitution that satisfies equations

◮ For instance, {X ← f (a),Y ← g(a),Z ← g(a)} = θ

Unification

Example

f (X) = f (f (a))
g(Y) = g(Z)

◮ Substitution: assigns a term to each variable X , Y , Z

◮ Unifier: substitution that satisfies equations

◮ For instance, {X ← f (a),Y ← g(a),Z ← g(a)} = θ

◮ tθ: apply substitution θ to term t

Unification

Example

f (X) = f (f (a))
g(Y) = g(Z)

◮ Substitution: assigns a term to each variable X , Y , Z

◮ Unifier: substitution that satisfies equations

◮ For instance, {X ← f (a),Y ← g(a),Z ← g(a)} = θ

◮ tθ: apply substitution θ to term t (not θ(t)!)

Unification

Example

f (X) = f (f (a))
g(Y) = g(Z)

◮ Substitution: assigns a term to each variable X , Y , Z

◮ Unifier: substitution that satisfies equations

◮ For instance, {X ← f (a),Y ← g(a),Z ← g(a)} = θ

◮ tθ: apply substitution θ to term t (not θ(t)!)

◮ Apply substitution in parallel

◮ t = g(p(X), q(f (Y)))

Unification

Example

f (X) = f (f (a))
g(Y) = g(Z)

◮ Substitution: assigns a term to each variable X , Y , Z

◮ Unifier: substitution that satisfies equations

◮ For instance, {X ← f (a),Y ← g(a),Z ← g(a)} = θ

◮ tθ: apply substitution θ to term t (not θ(t)!)

◮ Apply substitution in parallel

◮ t = g(p(X), q(f (Y)))

◮ γ = {X ← Y , Y ← f (a)}

Unification

Example

f (X) = f (f (a))
g(Y) = g(Z)

◮ Substitution: assigns a term to each variable X , Y , Z

◮ Unifier: substitution that satisfies equations

◮ For instance, {X ← f (a),Y ← g(a),Z ← g(a)} = θ

◮ tθ: apply substitution θ to term t (not θ(t)!)

◮ Apply substitution in parallel

◮ t = g(p(X), q(f (Y)))

◮ γ = {X ← Y , Y ← f (a)}

◮ tγ = g(p(Y), q(f (f (a))))

Unification

Example

f (X) = f (f (a))
g(Y) = g(Z)

◮ Substitution: assigns a term to each variable X , Y , Z

◮ Unifier: substitution that satisfies equations

◮ For instance, {X ← f (a),Y ← g(a),Z ← g(a)} = θ

◮ tθ: apply substitution θ to term t (not θ(t)!)

◮ Apply substitution in parallel

◮ t = g(p(X), q(f (Y)))

◮ γ = {X ← Y , Y ← f (a)}

◮ tγ = g(p(Y), q(f (f (a))))

◮ g(p(Y)) does not become g(p(f (a)))!

Unification

f (X) = f (f (a))
g(Y) = g(Z)

◮ Many solutions are possible:

◮ θ = {X ← f (a), Y ← g(a), Z ← g(a)}
◮ θ′ = {X ← f (a), Y ← a, Z ← a}
◮ θ′′ = {X ← f (a), Y ← Z}

Unification

f (X) = f (f (a))
g(Y) = g(Z)

◮ Many solutions are possible:

◮ θ = {X ← f (a), Y ← g(a), Z ← g(a)}
◮ θ′ = {X ← f (a), Y ← a, Z ← a}
◮ θ′′ = {X ← f (a), Y ← Z}

◮ θ′′ is the “least constrained”

Unification

f (X) = f (f (a))
g(Y) = g(Z)

◮ Many solutions are possible:

◮ θ = {X ← f (a), Y ← g(a), Z ← g(a)}
◮ θ′ = {X ← f (a), Y ← a, Z ← a}
◮ θ′′ = {X ← f (a), Y ← Z}

◮ θ′′ is the “least constrained”

◮ Any solution γ breaks up into two steps, first of which is θ′′

◮ θ is θ′′ followed by {Y ← g(a)}

Unification

f (X) = f (f (a))
g(Y) = g(Z)

◮ Many solutions are possible:

◮ θ = {X ← f (a), Y ← g(a), Z ← g(a)}
◮ θ′ = {X ← f (a), Y ← a, Z ← a}
◮ θ′′ = {X ← f (a), Y ← Z}

◮ θ′′ is the “least constrained”

◮ Any solution γ breaks up into two steps, first of which is θ′′

◮ θ is θ′′ followed by {Y ← g(a)}

◮ Least constrained solution: most general unifier

Unification

Obstacles to unification

Unification

Obstacles to unification

◮ Equations of the form p(. . .) = q(. . .)

◮ Outermost function symbols don’t agree

◮ No substitution can make the terms equal

Unification

Obstacles to unification

◮ Equations of the form p(. . .) = q(. . .)

◮ Outermost function symbols don’t agree

◮ No substitution can make the terms equal

◮ Equations of the form X = f (. . . X . . .)

◮ Any substitution for X also applies to X nested in f

Unification

Obstacles to unification

◮ Equations of the form p(. . .) = q(. . .)

◮ Outermost function symbols don’t agree

◮ No substitution can make the terms equal

◮ Equations of the form X = f (. . . X . . .)

◮ Any substitution for X also applies to X nested in f

◮ These are the only two reasons why unification can fail!

A unification algorithm

◮ Start with equations

t l
1

= tr
1

t l
2

= tr
2

...
t l
n = tr

n

◮ Perform a sequence of transformations on these equations till
no more transformations apply

Unification algorithm : transformations

1. t = X , t is not a variable ❀ X = t.

Unification algorithm : transformations

1. t = X , t is not a variable ❀ X = t.

2. Erase equations of form X = X .

Unification algorithm : transformations

1. t = X , t is not a variable ❀ X = t.

2. Erase equations of form X = X .

3. Let t = t ′ where t = f (. . .), t ′ = f ′(. . .)

Unification algorithm : transformations

1. t = X , t is not a variable ❀ X = t.

2. Erase equations of form X = X .

3. Let t = t ′ where t = f (. . .), t ′ = f ′(. . .)

◮ f 6= f ′ ❀ terminate : unification not possible

Unification algorithm : transformations

1. t = X , t is not a variable ❀ X = t.

2. Erase equations of form X = X .

3. Let t = t ′ where t = f (. . .), t ′ = f ′(. . .)

◮ f 6= f ′ ❀ terminate : unification not possible

◮ Otherwise, f (t1, t2, . . . , tk) = f (t ′
1
, t ′

2
, . . . , t ′

k
)

Replace by k new equations

t1 = t ′
1
, t2 = t ′

2
, . . . , tk = t ′

k

Unification algorithm : transformations

1. t = X , t is not a variable ❀ X = t.

2. Erase equations of form X = X .

3. Let t = t ′ where t = f (. . .), t ′ = f ′(. . .)

◮ f 6= f ′ ❀ terminate : unification not possible

◮ Otherwise, f (t1, t2, . . . , tk) = f (t ′
1
, t ′

2
, . . . , t ′

k
)

Replace by k new equations

t1 = t ′
1
, t2 = t ′

2
, . . . , tk = t ′

k

4. X = t, X occurs in t ❀ terminate: unification not possible

Unification algorithm : transformations

1. t = X , t is not a variable ❀ X = t.

2. Erase equations of form X = X .

3. Let t = t ′ where t = f (. . .), t ′ = f ′(. . .)

◮ f 6= f ′ ❀ terminate : unification not possible

◮ Otherwise, f (t1, t2, . . . , tk) = f (t ′
1
, t ′

2
, . . . , t ′

k
)

Replace by k new equations

t1 = t ′
1
, t2 = t ′

2
, . . . , tk = t ′

k

4. X = t, X occurs in t ❀ terminate: unification not possible

5. X = t, X does not occur in t, X occurs in other equations
❀ Replace all occurrence of X in other equations by t.

Unification algorithm : Examples

f (X) = f (f (a))
g(Y) = g(Z)

Unification algorithm : Examples

f (X) = f (f (a))
g(Y) = g(Z)

X = f (a)
g(Y) = g(Z)

Unification algorithm : Examples

f (X) = f (f (a))
g(Y) = g(Z)

X = f (a)
g(Y) = g(Z)

X = f (a)
Y = Z

Unification algorithm : Examples

f (X) = f (f (a))
g(Y) = g(Z)

X = f (a)
g(Y) = g(Z)

X = f (a)
Y = Z

mgu is {X ← f (a),Z ← Y }

Unification algorithm : Examples . . .

g(Y) = X

f (X , h(X),Y) = f (g(Z),W ,Z)

Unification algorithm : Examples . . .

g(Y) = X

f (X , h(X),Y) = f (g(Z),W ,Z)

X = g(Y)
f (X , h(X),Y) = f (g(Z),W ,Z)

Unification algorithm : Examples . . .

g(Y) = X

f (X , h(X),Y) = f (g(Z),W ,Z)

X = g(Y)
f (X , h(X),Y) = f (g(Z),W ,Z)

X = g(Y)
X = g(Z)
h(X) = W

Y = Z

Unification algorithm : Examples . . .

g(Y) = X

f (X , h(X),Y) = f (g(Z),W ,Z)

X = g(Y)
f (X , h(X),Y) = f (g(Z),W ,Z)

X = g(Y)
X = g(Z)
h(X) = W

Y = Z

g(Z) = g(Y)
X = g(Z)
h(g(Z)) = W

Y = Z

Unification algorithm : Examples . . .

g(Y) = X

f (X , h(X),Y) = f (g(Z),W ,Z)

X = g(Y)
f (X , h(X),Y) = f (g(Z),W ,Z)

X = g(Y)
X = g(Z)
h(X) = W

Y = Z

g(Z) = g(Y)
X = g(Z)
h(g(Z)) = W

Y = Z

Unification algorithm : Examples . . .

Z = Y

X = g(Z)
h(g(Z)) = W

Y = Z

Unification algorithm : Examples . . .

Z = Y

X = g(Z)
h(g(Z)) = W

Y = Z

Z = Z

X = g(Z)
h(g(Z)) = W

Y = Z

Unification algorithm : Examples . . .

Z = Y

X = g(Z)
h(g(Z)) = W

Y = Z

Z = Z

X = g(Z)
h(g(Z)) = W

Y = Z

X = g(Z)
W = h(g(Z))
Y = Z

Unification algorithm : Examples . . .

Z = Y

X = g(Z)
h(g(Z)) = W

Y = Z

Z = Z

X = g(Z)
h(g(Z)) = W

Y = Z

X = g(Z)
W = h(g(Z))
Y = Z

Unification algorithm : Examples . . .

Z = Y

X = g(Z)
h(g(Z)) = W

Y = Z

Z = Z

X = g(Z)
h(g(Z)) = W

Y = Z

X = g(Z)
W = h(g(Z))
Y = Z

Equations : g(Y) = X , f (X , h(X),Y) = f (g(Z),W ,Z)
mgu : {X ← g(Z),W ← h(g(Z)),Y ← Z}

Unification algorithm : Correctness

1. t = X , t is not a variable ❀ X = t.

2. Erase equations of form X = X .

3. Let t = t ′ where t = f (. . .), t ′ = f ′(. . .)

◮ f 6= f ′ ❀ terminate : unification not possible

◮ Otherwise, f (t1, t2, . . . , tk) = f (t ′
1
, t ′

2
, . . . , t ′

k
)

Replace by k new equations

t1 = t ′
1
, t2 = t ′

2
, . . . , tk = t ′

k

4. X = t, X occurs in t ❀ terminate: unification not possible

5. X = t, X does not occur in t, X occurs in other equations
❀ Replace all occurrence of X in other equations by t.

Unification algorithm : Correctness

◮ The algorithm terminates

◮ Rules 1–4 can be used only a finite number of times without
using Rule 5

◮ Rule 5 can be used at most once for each variable

Unification algorithm : Correctness

◮ The algorithm terminates

◮ Rules 1–4 can be used only a finite number of times without
using Rule 5

◮ Rule 5 can be used at most once for each variable

◮ When the algorithm terminates, all equations are of the form
Xi = ti . This defines a substitution

{X1 ← t1,X2 ← t2, . . . ,Xn ← tn}

Unification algorithm : Correctness

◮ The algorithm terminates

◮ Rules 1–4 can be used only a finite number of times without
using Rule 5

◮ Rule 5 can be used at most once for each variable

◮ When the algorithm terminates, all equations are of the form
Xi = ti . This defines a substitution

{X1 ← t1,X2 ← t2, . . . ,Xn ← tn}

◮ This substitution is a unifier

◮ Every transformation preserves the set of unifiers

Unification algorithm : Correctness

◮ The algorithm terminates

◮ Rules 1–4 can be used only a finite number of times without
using Rule 5

◮ Rule 5 can be used at most once for each variable

◮ When the algorithm terminates, all equations are of the form
Xi = ti . This defines a substitution

{X1 ← t1,X2 ← t2, . . . ,Xn ← tn}

◮ This substitution is a unifier

◮ Every transformation preserves the set of unifiers

◮ This substitution is an mgu

◮ More complicated, omit

Type inference with shallow types

Syntax

◮ Built-in types i , j , k, . . .

Type inference with shallow types

Syntax

◮ Built-in types i , j , k, . . .

◮ A set of constants Ci for each built-in type i

◮ e.g., i = Char, Ci = {’a’,’b’,. . . }

Type inference with shallow types

Syntax

◮ Built-in types i , j , k, . . .

◮ A set of constants Ci for each built-in type i

◮ e.g., i = Char, Ci = {’a’,’b’,. . . }

◮ λ-terms

Λ = c | x | λx .M | MN

Type inference with shallow types

◮ M = c ∈ Ci ❀ M :: i

Type inference with shallow types

◮ M = c ∈ Ci ❀ M :: i

◮ M = x ❀ M :: α for a fresh type variable α

Type inference with shallow types

◮ M = c ∈ Ci ❀ M :: i

◮ M = x ❀ M :: α for a fresh type variable α

◮ M = λx .M ′
❀ M :: α→ β for fresh type variables α, β.

Type inference with shallow types

◮ M = c ∈ Ci ❀ M :: i

◮ M = x ❀ M :: α for a fresh type variable α

◮ M = λx .M ′
❀ M :: α→ β for fresh type variables α, β.

◮ Inductively, x :: γ in M ′

Type inference with shallow types

◮ M = c ∈ Ci ❀ M :: i

◮ M = x ❀ M :: α for a fresh type variable α

◮ M = λx .M ′
❀ M :: α→ β for fresh type variables α, β.

◮ Inductively, x :: γ in M ′

◮ Add equation α = γ

Type inference with shallow types

◮ M = c ∈ Ci ❀ M :: i

◮ M = x ❀ M :: α for a fresh type variable α

◮ M = λx .M ′
❀ M :: α→ β for fresh type variables α, β.

◮ Inductively, x :: γ in M ′

◮ Add equation α = γ

◮ M = M ′N ′
❀ M :: β for fresh type variables β.

Type inference with shallow types

◮ M = c ∈ Ci ❀ M :: i

◮ M = x ❀ M :: α for a fresh type variable α

◮ M = λx .M ′
❀ M :: α→ β for fresh type variables α, β.

◮ Inductively, x :: γ in M ′

◮ Add equation α = γ

◮ M = M ′N ′
❀ M :: β for fresh type variables β.

◮ Inductively, M ′ :: α→ β, N ′ :: γ

Type inference with shallow types

◮ M = c ∈ Ci ❀ M :: i

◮ M = x ❀ M :: α for a fresh type variable α

◮ M = λx .M ′
❀ M :: α→ β for fresh type variables α, β.

◮ Inductively, x :: γ in M ′

◮ Add equation α = γ

◮ M = M ′N ′
❀ M :: β for fresh type variables β.

◮ Inductively, M ′ :: α→ β, N ′ :: γ

◮ Add equation α = γ

Type inference with shallow types

Consider

applypair f x y = (f x,f y)

Type inference with shallow types

Consider

applypair f x y = (f x,f y)

Is the following expression well typed, where id z = z?

applypair id 7 ’c’ = (id 7, id ’c’) = (7,’c’)

Type inference with shallow types

Consider

applypair f x y = (f x,f y)

Is the following expression well typed, where id z = z?

applypair id 7 ’c’ = (id 7, id ’c’) = (7,’c’)

We have to unify the following set of constraints

id :: a -> a

7 :: Int

’c’ :: Char

a = Int (from id 7)

a = Char (from id ’c’)

Type inference with shallow types

Consider

applypair f x y = (f x,f y)

Is the following expression well typed, where id z = z?

applypair id 7 ’c’ = (id 7, id ’c’) = (7,’c’)

We have to unify the following set of constraints

id :: a -> a

7 :: Int

’c’ :: Char

a = Int (from id 7)

a = Char (from id ’c’)

Not possible! Haskell compiler says

applypair :: (a -> b) -> a -> a -> (b,b)}

Type inference with shallow types

In the λ-calculus, we have

λfxy .pair (fx)(fy), where pair ≡ λxyz .(zxy)

Type inference with shallow types

In the λ-calculus, we have

λfxy .pair (fx)(fy), where pair ≡ λxyz .(zxy)

When we pass a value for f , it has to unify with types of both x

and y

Type inference with shallow types

In the λ-calculus, we have

λfxy .pair (fx)(fy), where pair ≡ λxyz .(zxy)

When we pass a value for f , it has to unify with types of both x

and y

Suppose, we write, instead

applypair x y = (f x,f y) where f z = z

Type inference with shallow types

In the λ-calculus, we have

λfxy .pair (fx)(fy), where pair ≡ λxyz .(zxy)

When we pass a value for f , it has to unify with types of both x

and y

Suppose, we write, instead

applypair x y = (f x,f y) where f z = z

Now, we have

applypair :: a -> b -> (a,b)

Type inference with shallow types

In the λ-calculus, we have

λfxy .pair (fx)(fy), where pair ≡ λxyz .(zxy)

When we pass a value for f , it has to unify with types of both x

and y

Suppose, we write, instead

applypair x y = (f x,f y) where f z = z

Now, we have

applypair :: a -> b -> (a,b)

What’s going on?

Type inference with shallow types

Extend λ-calculus with “local” definitions, like where

Λ = Ci | x | λx .M | MN | let f = e in M

Type inference with shallow types

Extend λ-calculus with “local” definitions, like where

Λ = Ci | x | λx .M | MN | let f = e in M

Here is the λ-term for the second version of applypair

let f = λz .z in λxy .pair (fx)(fy)

Type inference with shallow types

Extend λ-calculus with “local” definitions, like where

Λ = Ci | x | λx .M | MN | let f = e in M

Here is the λ-term for the second version of applypair

let f = λz .z in λxy .pair (fx)(fy)

In fact, Haskell allows both

let f z = z in applypair x y = (f x,f y)

and

applypair x y = (f x,f y) where f z = z

Type inference with shallow types

◮ let f = e in λx .M and (λfx .M)e are equivalent with respect
to β-reduction

Type inference with shallow types

◮ let f = e in λx .M and (λfx .M)e are equivalent with respect
to β-reduction

◮ . . . but type inference works differently for the two

Type inference with shallow types

◮ let f = e in λx .M and (λfx .M)e are equivalent with respect
to β-reduction

◮ . . . but type inference works differently for the two

◮ One may be typeable while the other is not

◮ (λI .(II))(λx .x)

◮ let I = λx .x in (II)

