
Programming Language Concepts: Lecture 1

Madhavan Mukund

Chennai Mathematical Institute

madhavan@cmi.ac.in

http://www.cmi.ac.in/~madhavan/courses/pl2009

PLC 2009, Lecture 1, 12 January 2009

madhavan@cmi.ac.in
http://www.cmi.ac.in/~madhavan/courses/pl2009


Data and datatypes

◮ Programs manipulate data

◮ Basic built in data types

◮ Int, Float, Char, . . .

◮ Built in collective datatypes

◮ Arrays, lists, . . .
◮ Choice depends on underlying architecture

◮ Random access arrays for traditional von Neumann machines
◮ Lists for functional programming

◮ Many useful data structures

◮ Stacks, queues, trees, . . .

◮ Programming language cannot anticipate all requirements



User defined datatypes

◮ Stack in C

int s[100];

int tos = 0; /* points to top of stack */

◮ Should not be able to access s[5] if tos == 7

◮ Abstract datatype

◮ Data organization in terms of how the data in the data
structure can be manipulated

◮ Implementation should not allow user to circumvent this



User defined datatypes

◮ Stack in C

int s[100];

int tos = 0; /* points to top of stack */

◮ Should not be able to access s[5] if tos == 7

◮ Abstract datatype

◮ Data organization in terms of how the data in the data
structure can be manipulated

◮ Implementation should not allow user to circumvent this

◮ Can we enforce this rather than depend on programmer
discipline?



Class

Classes, [Simula, 1967]

◮ The word “class” is not very significant



Class

Classes, [Simula, 1967]

◮ The word “class” is not very significant

Class definition has two parts

◮ How the data is stored in this type.

◮ What functions are available to manipulate this data.



Stack as a class

class stack {

int values[100]; /* values stored in an array */

int tos = 0; /* top of stack, initially 0 */

push (int i, ...){ /* push i onto stack */

values[tos] = i;

tos = tos+1; /* Should check tos < 100!! */

}

int pop (...){ /* pop and return top of stack */

tos = tos - 1; /* Should check tos > 0!! */

return values[tos];

}

bool is_empty (...){ /* is the stack empty? */

return (tos == 0); /* yes iff tos is 0 */

}

}



Classes

◮ Traditionally, we pass data to functions

◮ push(s,i) /* stack s, data i */



Classes

◮ Traditionally, we pass data to functions

◮ push(s,i) /* stack s, data i */

◮ Instead, instantiate classes as objects, each with a private
copy of functions

stack s,t; /* References to stack */

s = new stack; /* Create one stack ... */

t = new stack; /* ... and another */

s.push(7);



Classes

◮ Traditionally, we pass data to functions

◮ push(s,i) /* stack s, data i */

◮ Instead, instantiate classes as objects, each with a private
copy of functions

stack s,t; /* References to stack */

s = new stack; /* Create one stack ... */

t = new stack; /* ... and another */

s.push(7);

◮ This creates only one object with two “names”

s = new stack; /* Create one stack ... */

t = s; /* ... assign another name */



Classes . . .

◮ In our class definition, the data to be passed to a function is
implicit

◮ Each function is implicitly attached to an object, and works
on that object

i = s.pop();

if (t.is_empty()) {...}



No ... in arguments to functions

class stack {

int values[100]; /* values stored in an array */

int tos = 0; /* top of stack, initially 0 */

push(int i){ /* push i onto stack */

values[tos] = i;

tos = tos+1; /* Should check tos < 100!! */

}

int pop(){ /* pop and return top of stack */

tos = tos - 1; /* Should check tos > 0!! */

return values[tos];

}

bool is_empty(){ /* is the stack empty? */

return (tos == 0); /* yes iff tos is 0 */

}

}



Classes and objects

◮ An object is an instance of a class

◮ Traditionally, functions are more “fundamental” than data

◮ Here, functionality is implicitly tied to data representation



Classes and objects

◮ An object is an instance of a class

◮ Traditionally, functions are more “fundamental” than data

◮ Here, functionality is implicitly tied to data representation

◮ OO terminology

◮ Internal variables — instance variables, fields
◮ Functions — methods



Public vs private

◮ Implementation details should be private



Public vs private

◮ Implementation details should be private

class date {

int day, month, year;

}

◮ How do we read and set values for date objects?

◮ Functions getdate and setdate

◮ Accessor and mutator methods



Public vs private

◮ Implementation details should be private

class date {

int day, month, year;

}

◮ How do we read and set values for date objects?

◮ Functions getdate and setdate

◮ Accessor and mutator methods

◮ Programmers are lazy!

◮ Allow access to internal variables of an object

if (s.tos == 0){ ... }



Public vs private

◮ To restore data integrity, classify internals as public or
private

class stack{

private int values[100];

private int tos = 0;

...

}



Public vs private

◮ To restore data integrity, classify internals as public or
private

class stack{

private int values[100];

private int tos = 0;

...

}

◮ Should private variables be visible to other objects of the same
class?



Public vs private

◮ To restore data integrity, classify internals as public or
private

class stack{

private int values[100];

private int tos = 0;

...

}

◮ Should private variables be visible to other objects of the same
class?

◮ Does it make sense to have private methods?



Private methods?

class stack {

...

push (int i){ /* push i onto stack */

if (stack_full){

extend_stack();

}

... /* Code to add i to stack * /

}

extend_stack(){

... /* Code to get additional space for stack data *

}

...

}



Static components

◮ All functions defined in classes

◮ Classes have to be instantiated

◮ Where does computation begin?



Static components

◮ All functions defined in classes

◮ Classes have to be instantiated

◮ Where does computation begin?

◮ Need functions that exist without instantiating a class

◮ static functions

◮ Also useful for library functions

◮ IO.read(), IO.write(...)



Static components

◮ All functions defined in classes

◮ Classes have to be instantiated

◮ Where does computation begin?

◮ Need functions that exist without instantiating a class

◮ static functions

◮ Also useful for library functions

◮ IO.read(), IO.write(...)

◮ Also static fields

class Math {

public static double PI = 3.1415927;

public static double E = 2.7182818;

public static double sin(double x) { ... }

...

}



Private static?

Does a combination of private and static make sense?

class interest-rate {

private static double base_rate = 7.32;

private double deposit-amount;

public double sixmonth-yield(){ ... }

/* uses base-rate and deposit-amount */

public double oneyear-yield(){ ... }

/* uses base-rate and deposit-amount */

...

}



Static fields and methods

◮ Static entities exist before any objects are created

◮ Static fields are shared across objects



Static fields and methods

◮ Static entities exist before any objects are created

◮ Static fields are shared across objects

class stack {

...

private static int num_push = 0;

/* number of pushes across all stacks */

push (int i, ...){

...

num_push++; /* update static variable */

...

}

...

}



Static fields and methods

◮ Static entities exist before any objects are created

◮ Static fields are shared across objects

class stack {

...

private static int num_push = 0;

/* number of pushes across all stacks */

push (int i, ...){

...

num_push++; /* update static variable */

...

}

...

}

◮ Static methods should not refer to non-static fields



Constants

class Math {

public static double PI = 3.1415927;

...

}

User can modify PI!



Constants

class Math {

public static double PI = 3.1415927;

...

}

User can modify PI!
Declare PI to be final

class Math {

public static final double PI = 3.1415927;

...

}

What could it mean for a function to be final?



Java basics

◮ Java program : collection of classes

◮ Each class xyz in a separate file xyz.java



Java basics

◮ Java program : collection of classes

◮ Each class xyz in a separate file xyz.java

◮ To start the computation: one class must have a static
method

public static void main(String[] args)

◮ void is the return type
◮ String[] args refers to command line arguments



Java basics

◮ Java program : collection of classes

◮ Each class xyz in a separate file xyz.java

◮ To start the computation: one class must have a static
method

public static void main(String[] args)

◮ void is the return type
◮ String[] args refers to command line arguments

◮ Java programs are usually interpreted on Java Virtual
Machine



Java basics

◮ Java program : collection of classes

◮ Each class xyz in a separate file xyz.java

◮ To start the computation: one class must have a static
method

public static void main(String[] args)

◮ void is the return type
◮ String[] args refers to command line arguments

◮ Java programs are usually interpreted on Java Virtual
Machine

◮ javac compiles Java into bytecode for JVM
◮ javac xyz.java creates “class” file xyz.class



Java basics

◮ Java program : collection of classes

◮ Each class xyz in a separate file xyz.java

◮ To start the computation: one class must have a static
method

public static void main(String[] args)

◮ void is the return type
◮ String[] args refers to command line arguments

◮ Java programs are usually interpreted on Java Virtual
Machine

◮ javac compiles Java into bytecode for JVM
◮ javac xyz.java creates “class” file xyz.class

◮ java xyz interprets and runs bytecode in class file



Hello world

class helloworld{

public static void main(String[] args){

System.out.println("Hello world!");

}

}



Hello world

class helloworld{

public static void main(String[] args){

System.out.println("Hello world!");

}

}

◮ Store in helloworld.java



Hello world

class helloworld{

public static void main(String[] args){

System.out.println("Hello world!");

}

}

◮ Store in helloworld.java

◮ javac helloworld.java to compile to bytecode

◮ Creates helloworld.class



Hello world

class helloworld{

public static void main(String[] args){

System.out.println("Hello world!");

}

}

◮ Store in helloworld.java

◮ javac helloworld.java to compile to bytecode

◮ Creates helloworld.class

◮ java helloworld to execute



Hello world

class helloworld{

public static void main(String[] args){

System.out.println("Hello world!");

}

}

◮ Store in helloworld.java

◮ javac helloworld.java to compile to bytecode

◮ Creates helloworld.class

◮ java helloworld to execute

◮ Note:

◮ javac requires extension .java
◮ java should not be provided .class
◮ javac automatically follows dependencies and compiles all

classes required


