
Programming Language Concepts: Lecture 23

Madhavan Mukund

Chennai Mathematical Institute

madhavan@cmi.ac.in

http://www.cmi.ac.in/~madhavan/courses/pl2009

PLC 2009, Lecture 23, 20 April 2009

madhavan@cmi.ac.in
http://www.cmi.ac.in/~madhavan/courses/pl2009

Quicksort in Prolog

◮ How we describe a sorting algorithm in a logic program?

Quicksort in Prolog

◮ How we describe a sorting algorithm in a logic program?

% quicksort(Xs, Ys) :- Ys is a sorted permutation of Xs

quicksort([], []).

quicksort([X | Xs], Ys) :-

partition(X, Xs, Littles, Bigs),

quicksort(Littles, Ls),

quicksort(Bigs, Bs),

append(Ls, [X | Bs], Ys).

Quicksort in Prolog

◮ How we describe a sorting algorithm in a logic program?

% quicksort(Xs, Ys) :- Ys is a sorted permutation of Xs

quicksort([], []).

quicksort([X | Xs], Ys) :-

partition(X, Xs, Littles, Bigs),

quicksort(Littles, Ls),

quicksort(Bigs, Bs),

append(Ls, [X | Bs], Ys).

where

% partition(X, Xs, Ls, Bs) :-

% Ls : list of elements of Xs that are < X

% Bs : list of elements of Xs that are >= X

partition(_, [], [], []).

partition(X, [Y | Xs], [Y | Ls], Bs) :-

X > Y, partition(X, Xs, Ls, Bs).

partition(X, [Y | Xs], Ls, [Y | Bs]) :-

X =< Y, partition(X, Xs, Ls, Bs).

Quicksort in Prolog

Two issues that arise in quicksort.

Quicksort in Prolog

Two issues that arise in quicksort.

◮ Wasteful recomputations in last clause of partition

...

partition(X, [Y | Xs], [Y | Ls], Bs) :-

X > Y, partition(X, Xs, Ls, Bs).

partition(X, [Y | Xs], Ls, [Y | Bs]) :-

X =< Y, partition(X, Xs, Ls, Bs).

◮ Consider ?- partition(7,[9,8,1,5],Ls,Bs).

Quicksort in Prolog

Two issues that arise in quicksort.

◮ Wasteful recomputations in last clause of partition

...

partition(X, [Y | Xs], [Y | Ls], Bs) :-

X > Y, partition(X, Xs, Ls, Bs).

partition(X, [Y | Xs], Ls, [Y | Bs]) :-

X =< Y, partition(X, Xs, Ls, Bs).

◮ Consider ?- partition(7,[9,8,1,5],Ls,Bs).

◮ append(Ls, [X | Bs], Ys).

◮ As in functional programming, complexity of append is

proportional to length of Ls

◮ Can this be avoided?

Backtracking in Prolog

Consider rules

G :- P1,P2,P3.

G :- P4,P5,P6.

◮ First try G.

◮ If P3 fails, backtrack and retry P2.

Backtracking in Prolog

Consider rules

G :- P1,P2,P3.

G :- P4,P5,P6.

◮ First try G.

◮ If P3 fails, backtrack and retry P2.

◮ If P2 fails, backtrack and retry P1.

Backtracking in Prolog

Consider rules

G :- P1,P2,P3.

G :- P4,P5,P6.

◮ First try G.

◮ If P3 fails, backtrack and retry P2.

◮ If P2 fails, backtrack and retry P1.

◮ If P1 fails, try second rule.

◮ Second rule is tried after all possible ways of satisfying first

rule fail.

Backtracking in Prolog . . .

Goal p(X), rules of the form if B then S else T

p(x) :- B,S.

p(X) :- not B, T.

◮ not B succeeds if B fails.

◮ Can we avoid recomputing B?

Cut

◮ Special goal !, called cut

p(x) :- B, !, S.

p(x) :- T.

Cut

◮ Special goal !, called cut

p(x) :- B, !, S.

p(x) :- T.

◮ ! always succeeds

Cut

◮ Special goal !, called cut

p(x) :- B, !, S.

p(x) :- T.

◮ ! always succeeds

◮ Discard alternative ways of computing B

Cut

◮ Special goal !, called cut

p(x) :- B, !, S.

p(x) :- T.

◮ ! always succeeds

◮ Discard alternative ways of computing B

◮ Discard second rule p(x) :- T.

Cut

◮ Special goal !, called cut

p(x) :- B, !, S.

p(x) :- T.

◮ ! always succeeds

◮ Discard alternative ways of computing B

◮ Discard second rule p(x) :- T.

More generally, if we have

p(s1) :- A1 .

. . .

p(si) :- B,!,C.

. . .

p(sk) :- Ak .

B is not retried and clauses i+1 to k are discarded.

Cut . . .

◮ Cut is typically used for efficiency, avoid recomputing

conditions.

Cut . . .

◮ Cut is typically used for efficiency, avoid recomputing

conditions.

% partition(X, Xs, Ls, Bs) :-

% Ls : list of elements of Xs that are < X

% Bs : list of elements of Xs that are >= X

partition(_, [], [], []).

partition(X, [Y | Xs], [Y | Ls], Bs) :-

X > Y, !, partition(X, Xs, Ls, Bs).

partition(X, [Y | Xs], Ls, [Y | Bs]) :-

partition(X, Xs, Ls, Bs).

Control structures

◮ call(X) invokes X as a goal.

Control structures

◮ call(X) invokes X as a goal.

once(G) :- call(G),!.

Control structures

◮ call(X) invokes X as a goal.

once(G) :- call(G),!.

for(0,G) :- !.

for(N,G) :- N > 0, call(G), M is N-1, for(M,G),!.

Control structures

◮ call(X) invokes X as a goal.

once(G) :- call(G),!.

for(0,G) :- !.

for(N,G) :- N > 0, call(G), M is N-1, for(M,G),!.

if_then_else(B, S, T) :- call(B),!,call(S).

if_then_else(B, S, T) :- call(T).

Control structures

◮ call(X) invokes X as a goal.

once(G) :- call(G),!.

for(0,G) :- !.

for(N,G) :- N > 0, call(G), M is N-1, for(M,G),!.

if_then_else(B, S, T) :- call(B),!,call(S).

if_then_else(B, S, T) :- call(T).

Use with care. Destroys declarative structure!

Control structures

◮ Goal fail always fails

Control structures

◮ Goal fail always fails

not(G) :- call(G),!,fail

not(_).

◮ Use not with care

◮ To generate all members of a list that are not 1

◮ member(X, Ls), not(X = 1).
◮ not(X = 1), member(X, Ls).

Control structures

◮ Goal fail always fails

not(G) :- call(G),!,fail

not(_).

◮ Use not with care

◮ To generate all members of a list that are not 1

◮ member(X, Ls), not(X = 1).
√

◮ not(X = 1), member(X, Ls). ×

◮ Should only use not when term is already instantiated

Control structures

◮ Goal fail always fails

not(G) :- call(G),!,fail

not(_).

◮ Use not with care

◮ To generate all members of a list that are not 1

◮ member(X, Ls), not(X = 1).
√

◮ not(X = 1), member(X, Ls). ×

◮ Should only use not when term is already instantiated

?- not(X = 1).

no

Difference lists

◮ Represent a list in terms of front and back

L1 L2

| |

| --

------*----| |

| | | --

a b c

Difference lists

◮ Represent a list in terms of front and back

L1 L2

| |

| --

------*----| |

| | | --

a b c

◮ Unify L1 with [a,b,c|Z] and L2 with Z

Difference lists

◮ Represent a list in terms of front and back

L1 L2

| |

| --

------*----| |

| | | --

a b c

◮ Unify L1 with [a,b,c|Z] and L2 with Z

◮ L2 points to a “hole” that can be instantiated by another term

Difference lists . . .

◮ Suppose we want to append L1 and L3

L1 L2 L3 L4

| | | |

| -- | --

------*----| | *---*---| |

| | | -- | | --

a b c d e

Difference lists . . .

◮ Suppose we want to append L1 and L3

L1 L2 L3 L4

| | | |

| -- | --

------*----| | *---*---| |

| | | -- | | --

a b c d e

◮ app(L1,L2,L3,L4,X,Y) succeeds when difference lists

(L1,L2) and (L3,L4) combine to form difference list (X,Y)

Difference lists . . .

◮ Suppose we want to append L1 and L3

L1 L2 L3 L4

| | | |

| -- | --

------*----| | *---*---| |

| | | -- | | --

a b c d e

◮ app(L1,L2,L3,L4,X,Y) succeeds when difference lists

(L1,L2) and (L3,L4) combine to form difference list (X,Y)

◮ Single goal

app(L1,L2,L2,L4,L1,L4).

◮ Normally, difference lists are denoted L1-L2.

◮ If X is a difference list, unify with Y-[] to rectify it

Flatten

◮ Flatten an arbitrarily nested list into an linear list

Flatten

◮ Flatten an arbitrarily nested list into an linear list

flatten(X,Y) :- flatpair(X,Y-[]).

flatpair([],L-L).

flatpair([H,T],L1-L3) :- flatpair(H,L1-L2), flatpair(T,L2-L3).

flatpair(X,[X|Z]-Z).

