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Normal integral again:

Here is a tricky way of calculating normal integral. Let us put

an =
∫ ∞

0
e−t2/2 tn dt; n = 0, 1, 2, · · · .

We do not know a0 but can explain all others using it. Integration by
parts gives

a1 = 1; an = (n− 1)an−2 n = 2, 3, 4, · · · .
This immediately gives

a2m = (2m− 1)(2m− 3) · · · 1a0.

a2m+1 = 2m(2m− 2) · · · 2 · 1.
Now comes a high school idea. Note that for any λ we have

∫ ∞

0
e−t2/2 tn (λ+ t)2 dt > 0

simply because the integrand is positive. That is, for every λ

an+2 + 2λan+1 + λ2an > 0

Thus
an+1 ≤

√
anan+2.

In particular, for every m we have

a2m <
√
a2m−1a2m+1.

giving us

a0 ≤
√
2m

(2m− 2)(2m− 4) · · · 2 · 1
(2m− 1)(2m− 3) · · · 1

This is true for every m and taking limits and appealing to Walli we get

a0 ≤
√

π/2.

We also have
a2m+1 <

√
a2ma2m+2.
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Analogous to the above, on simplification, this inequality gives us

a0 ≥
√

π/2.

These two inequalities give us

∫ ∞

0
e−t2/2 dt =

√

π

2
.

From this we get
∫ ∞

−∞
e−t2/2 dt = 2

√

π

2
=

√
2π.

Again returning back to the integral on the positive side, we substitute t2/2 =
u so that tdt = du or dt = du/

√
2u we see

∫ ∞

0
e−uu−1/2du =

√
π.

That is
Γ(1/2) =

√
π.

We know that for integers n > 1, Γ(n+1) = n!. We can use the above result
to calculate gamma values of half integers. Recall that

Γ(a+ 1) = aΓ(a).

Thus for example

Γ(3/2) =
1

2
Γ(1/2) =

1

2

√
π.

Volume of unit ball:

Let us consider, for R > 0, the ball

BR =
{

(x1, x2, · · · , xn) :
∑

x2
i ≤ R

}

Let Vn(R) denote the volume of this ball in Rn. That is

Vn(R) =
∫

BR

1 dx1 dx2 · · · dxn.

First let us note one thing.

Vn(R) = RnVn; Vn = Vn(1).

2



This is because the linear transform Tx = Rx takes unit ball onto the R-ball.
To calculate Vn(R) let us integrate the variables (x2, x3, · · · , xn). Clearly

they range over the set

n
∑

3

x2
i ≤ R2 − x2

1 − x2
2.

Thus if you integrate these (n− 2) variables over this set we get

(

√

R2 − x2
1 − x2

2

)n−2

Vn−2.

Note that Vn−2 is a number and does not depend on x1, x2. Now let us
integrate w.r.t. x1, x2. These variables range over

S = {(x1, x2) : x
2
1 + x2

2 ≤ R2}.

Thus

Vn(R) = Vn−2

∫

S

(

R2 − x2
1 − x2

2

)(n−2)/2
dx1dx2.

Changing to polar coordinates

x = r cos θ; y = r sin θ; 0 ≤ r ≤ R; 0 < θ < 2π.

Noting that the Jacobian is r we get

Vn(R) =
∫ R

r=0

∫ 2π

θ=0
(R2 − r2)(n−2)/2r dθ dr.

The presence of r dr allows us the substitution r2 = u and we have

Vn(R) =
2π

n
RnVn =

2πR2

n
Vn−2(R).

Note that V1(R) = 2R and V2(R) = πR2. Thus the above relation gives us

V2k(R) =
πk

k!
R2k

V2k+1 =
2k+1πk

1 · 3 · 5 · · · (2k + 1)
R2k+1.

As far as unit ball is concerned you can combine the even and odd formulae
to get

Vn = πn/2
/

Γ(
n

2
+ 1) .
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It is interesting to note that Vk converges to zero as k → ∞. As the dimen-
sion grows, the volume of any fixed ball shrinks.

You can use the above result to calculate the volume of the ellipse. Fix
strictly positive numbers a1, a2, · · · , an. Consider the region

E = {(x1, x2, · · · , xn) :
∑ x2

i

a2i
≤ 1}.

Clearly the unit ball is mapped onto this by the transformation

(x1, x2, · · · , xn) 7→ (a1x1, a2x2, · · · , anxn).

Thus the Jacobian rule tells us that

|E| = a1a2 · · · anVn.

Dirichlet integral:

We know that
∫ 1

0
xa−1(1− x)b−1dx = β(a, b)

Here and in what follows the parameters a, b or ai are strictly positive num-
bers.

Let
Sn = {(x1, x2, · · · , xn) : xi > 0 ∀ i;

∑

xi < 1}
This is called simplex. Fix numbers a1, a2, · · · , an+1 all strictly positive.

We wish to calculate

In =
∫

Sn

xa1−1
1 xa2−1

2 · · · xan−1
n (1−

∑

xi)
an+1−1 dx.

(see how we changed x1, x2 to x, y and a1, a2, a3 to a, b, c)

Let us consider n = 3.

I3 =
∫

S3

xa−1yb−1(1− x− y)c−1dxdy

=
∫ 1

0
xa−1

[∫ 1−x

0
yb−1(1− x− y)c−1dy

]

dx

If you substitute y = (1− x)u in the y-integral and simplify we get

I3 = β(b, c)β(a, b+ c)
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This is not in recognizable (and symmetric) form. Let us now use a result
proved earlier

β(p, q) =
Γ(p)Γ(q)

Γ(p+ q)
.

We get

I3 =
Γ(a)Γ(b)Γ(c)

Γ(a+ b+ c)
.

You can show by induction

In =
Γ(a1)Γ(a2) · · ·Γ(an+1)

Γ(
∑

ai)
.

This is called Dirichlet integral.

Normal integral again:

Let us define on Rn,

ϕ(x) = (2π)−n/2 ex
tx.

More precisely,

ϕ(x1, x2, · · · , xn) = (2π)−n/2 exp
{

1

2
(x2

1 + x2
2 + · · ·+ x2

n)
}

.

This is called the standard normal density in n variables.
∫

Rn

ϕ(x)dx = 1.

We used the abbreviation dx = dx1 dx2 · · · dxn. This is because the integrand
‘splits’ and allows you to integrate variables one after the other (all integrals
giving you the value one).

You should remember that vectors in Rn are column vectors. Thus xtx
is a number. Suppose we take a vector µ ∈ Rn. Then

∫

Rn

ϕ(x− µ)dx = 1.

That is
∫

Rn

1

(
√
2π)n

e−{(x1−µ1)2+(x2−µ2)2+···}/2dx = 1.

Here again the integral splits. Or you can make change of variable y = x−µ.
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Let us take a symmetric positive definite matrix Σ. Then

∫

Rn

1

(
√
2π)n

√

| detΣ|
ex

tΣ−1x dx = 1.

To prove this you need some matrix theory. You know that there is a
(necessarily non-singular) matrix A such that

A−1ΣA = D; (i.e.) Σ = ADA−1.

where D is diagonal matrix. (You know A−1ΣA = D, I am just renaming.
Let us start with this.

First observe that the above equation says

ΣA = AD

Let v be the first column of A. Then the first column of left side equals
Σv. If λ1 is the first diagonal entry of the diagonal matrix D, then the first
column of the right side equals λ1v.

In other words the jth column, say vj of A, gives you eigen vector for the
eigen value corresponding to j-th diagonal entry of D, say λj . Since A is
invertible these eigen vectors form a basis.

In other words the above representation of Σ gives you the eigen values
and basis of eigen vectors.

Also if λ1 6= λ2 are two distinct eigen values (distinct diagonal entries of
D) then the corresponding columns v1, v2 are orthogonal. Indeed using that
Σ is symmetric,

λ1〈v1, v2〉 = 〈λ1v1, v2〉 = 〈Σv1, v2〉 = 〈v1,Σv2〉 = 〈v1, λ2v2〉 = λ2〈v1, v2〉

Since λ1 6= λ2 we conclude that

〈v1, v2〉 = 0.

If a λ repeats, say λ1, λ3, λ7 are all equal to λ, then v1, v3, v7 gives you
a three dimensional subspace S (remember columns of A form a basis and
hence they are independent vectors). Since for all these vectors Σv = λv
we see that this is true for all vectors in this three dimensional subspace S.
If you replace these vectors by choosing three orthogonal vectors from this
subspace S then the above equation still remains true. Multiply and see.
In other words if you take orthogonal vectors w1, w3, w7 from S and replace
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v1, v3, v7 columns of A by these w’s then the matrix A is still non-singular
and the equation ΣA = AD still remains true.

Finally, if you multiply each column by norm of that vector then also
the equation above remains true. All this amounts to saying that you can
safely assume that the columns of A are orthogonal and each column is a unit
vector. But then a direct multiplication shows that AtA = I, the identity
matrix. In other words we have an orthogonal matrix A with

ΣA = AD; AtA = AAt = I

Define B = A
√
DA−1 where

√
D is the diagonal matrix with entry-wise

square roots. Remember Σ being positive definite, these λ are positive.
In other words Σ is the matrix which sends the vector vj to λjv

j and B

sends vj to
√

λj v
j.

Easy to see that B commutes with Σ. Hence Bt commutes with Σt = Σ.
Also BtB = Σ, multiply and see.

Finally, returning to our integral, if we substitute

x = By

then,
xtΣ−1x = ytBtΣ−1By = yty

where we used that B and Bt commute with Σ and BtB = Σ.

Also the Jacobian dx = |B|dy =
√

|Σ|dy. In other words this integral is
reduced to the previous one without Σ.

We can combine both the processes, namely of introducing µ and Σ. Let
as earlier µ ∈ Rn and Σ be a positive definete matrix. Then

∫

Rn

1

(
√
2π)n

√

| detΣ|
e−(x−µ)tΣ−1(x−µ)/2 dx = 1.

You can do it in two steps. First substitute z = x− µ and then z = By.

volume of simplex:

To find the volume of the region, called simplex,

S = {(x1, x2, · · · , xn) : xi ≥ 0 ∀ i;
∑

xi ≤ 1.}
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This is simple

vn =
∫

S
1dx

Range is

0 ≤ x1 ≤ 1; 0 ≤ x2 ≤ 1− x1; 0 ≤ x3 ≤ 1− x1 − x2; · · ·

0 ≤ xn ≤ 1− x1 − x2 − · · · − xn−1.

You can successively integrate xn and then xn−1 etc to get sucessively

(1−
n−1
∑

1

xi); (1−
n−2
∑

1

xi)
2/2!; (1−

n−3
∑

1

xi)
3/3! · · · · · · 1/n!.

Thus the volume is 1/n! Of course, you use induction.

As suggested by one of you, you can do it neatly using Dirichlet integral.
In a sense, this is special case of the Dirichlet integral where all the ai are one.

You can use the above result to find volume of the following simplex. Fix
strictly positive numbers a1, a2, · · · an. Consider the region,

{(x1, x2, · · · , xn) : ∀ i xi > 0;
∑ xi

ai
≤ 1}.

Higher dimensions:

We started with general Rn norm, convergence of sequences and so on.
Continuity and differentiability were also discussed in general and soon after
those definitions we specialized to R2 and sometimes to R3. This is only
to get a better feel and actually see things. all the results remain true in
general. We shall mention only some.

You should get a full and clear picture. There is no need to be able to
write complete proofs. The philosophy is simple. If you understand R2 and
R3; both results as well as proofs; then you can carry out the details in Rn too.

Inverse function theorem:

suppose Ω ⊂ Rn is an open set and f : Ω → Rn be a C1 function. Let
a ∈ Ω with f ′(a) non-singular. Recall that f(x) being an n-tuple we can
write

f(x) = (f1(x), f2(x), · · · , fn(x))
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f ′(x) is the matrix
















∇f1(x)
∇f2(x)

·
·

∇fn(x)

















or equivalently the matrix

(Djfi(x) : 1 ≤ i, j ≤ n)

Thus the matrix f ′(a) is non-singular. then there is an open set V ⊂ Ω such
that a ∈ V and an open set W ⊂ Rn such that the following is true:

(i) f is one-one on V onto W .
(ii) The inverse map g : W → V is C1 map.
(iii) For y = f(x) ∈ W we have g′(y) = [f ′(x)]−1.
Proof goes along similar lines as in two dimensions.

implicit function theorem:

Suppose Ω ⊂ Rn ×Rm is an open set and f : Ω → Rm is an C1 function.
Let (a, b) ∈ Ω. The notation is a ∈ Rn and b ∈ Rm. suppose that f(a, b) = 0.
suppose that f2(a, b) is non-singular. here f2 is the derivative w.r.t. the last
set of m coordinates.

More precisely, let us write, still using the notation, (x.y) for points of Ω
with the understanding x ∈ Rn and y ∈ Rm;

f(x, y) = (f1(x, y), f2(x, y), · · · , fm(x, y))

Then f2(a, b) is the m×m matrix

















∇yf1(a, b)
∇yf2(a, b)

·
·

∇yfm(a, b)

















Then there is an open set V ⊂ Rn; open set W ⊂ Rm such that
(a, b) ∈ V ×W ⊂ Ω and an C1 function ϕ : V → W such that
f(x, ϕ(x)) = 0 for all x ∈ V .
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In fact matters are so arranged that for each x ∈ V there is just one
y ∈ W such that f(x, y) = 0 and this unique y is defined as ϕ(x).

The proof we saw in the case m = n = 1 is a hands on proof and did
not use the inverse function theorem. However the proof for Rn uses inverse
function theorem.

integration:

We define (rspa) rectangles with sides parallel to the axes to be a set of
the form

Q = [a1, b1]× [a2, b2]× · · · × [an, bn]

These are also called boxes or cubes. Volume of this set is the number

|Q| =
n
∏

1

(bi − ai).

Let f be a bounded function on such a Q. we partition each side [ai, bi] and
take the product partition of Q. Calculate inf and sup in each set of the
partition, multiply by the volume of the set and add up. These are L(π) and
U(π); lower and upper sums. The inf of upper sums and sup of lower sums
are calculated. when they are equal we say f is integrable and this common
value is the integral.

A set is small if you can cover it by countably many rspa with total
volume as small as desired. All the theorems that we had earlier, remain
valid: iterated integration, integrability of continuous functions; relation of
integrability to smallness of the set of discontinuities.

We define volumes of more general sets as integral of the constant func-
tion one and so on. We define integrals over sets more general than Q. The
proofs are nearly same. We say nearly because you need to use induction.

One can then proceed to integrals of unbounded functions or of bounded
functions on an unbounded set or unbounded functions on unbounded sets
etc.

Jacobian rule:

Let T be a non-singular linear transform of Rn to itself. If A is a bounded
set, then TA is bounded. If A is open, then TA is open. Boundaries are pre-
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served, that is, T (∂A) = ∂(TA). If A is small then so is TA.

Thus bounded open sets with small boundaries are transformed to bounded
open sets with small boundaries. and the formula |TV | = |T ||V | remains
valid.

The Jacobian rule remains valid. Here it is.

Let Ω ⊂ Rn be a bounded open set. Let T : Ω → Rn be a one-to-one C1

map with non-singular derivative at every point of Ω.
At every point x ∈ Ω let |T ′(x)| denote the modulus of the determinant

of the derivative matrix. Recall if

T (x) = (T1(x), T2(x), · · · , Tn(x))

T ′(x) = ((DjTi(x)))1≤i,j≤n

Then the following are true:
(i) For any rectangle Q =

∏

[ai, bi] ⊂ Ω; TQ has small boundary and

|TQ| =
∫

Q
|T ′|.

that is
|TQ| =

∫ ∫

Q
|T ′(x)|dx.

Here dx = dx1dx2 · · · dxn.
(ii) (when (i) holds for a T ) For any open set V ⊂ Ω with small boundary;

TV is an open set with small boundary and

|TV | =
∫

V
|T ′|.

that is,

|TV | =
∫ ∫

V
|T ′(x)|.

(iii) (whenever (i) and (ii) hold for a T ) For any bounded continuous
function f on TV ,

∫

TV
f =

∫

V
f |T |

that is,
∫

TV
f(u)du =

∫

V
f(T (x))|T ′(x)|dx.
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