
CMI (BSc I)/BVRao Calculus II, Notes4 2014 Fourth week

Taylor:

The chain rule will now be applied to derive Taylor formula for function
of several variables. This will be exactly same as the one you learnt last
semester. There is absolutely no change. First let us recall the Taylor we
know.

Let f be a function on an open interval I which is n times continuously
differentiable. Let a, b ∈ I, Then

f(b) =
n−1
∑

k=0

f (k)(a)

k!
(b− a)k +

∫ b

a
f (n)(t)

(b− t)n−1

(n− 1)!
dt.

If we have functions defined on R2 and a and b are points in R2, then the
integral term above is a little tricky. so let us reformulate the above equation.
We change the variable of integration to

t = ub+ (1− u)a.

The beauty is that as t goes from a to b, the variable u goes from zero to
one. It is beautiful because the range of integration no longer depends on
the points a and b.

Note that dt = (b− a)du and (b− t) = (b− a)(1− u). Thus

f(b) =
n−1
∑

k=0

f (k)(a)

k!
(b− a)k +

∫ 1

0
f (n)(ub+ (1− u)a)(b− a)n

(1− u)n−1

(n− 1)!
du.

Let us use convenient notation. We use D for derivative.

Thus [D]f means the function f ′. And [D]f(a) means the earlier function
evaluated at the point a, namely the number f ′(a).

[4D]f means the function 4f ′. And [4D]f(a) means the earlier function
evaluated at the point a, namely the number 4f ′(a).

[(b− a)D]f means the function (b− a)f ′. And [(b− a)D]f(13) means the
earlier function evaluated at the point 13, namely the number (b− a)f ′(13).
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In particular, [(b− a)D]f(a) means the number (b− a)f ′(a).

Symbols can be operated again and again. For example [(b − a)D]5f
means the function (b− a)5D5f = (b− a)5f (5). Recall f (5) is the fifth deriva-
tive of the function f . Thus [(b − a)D]5f(13) means you need to evaluate
this function at 13, thus you get the number (b− a)5f (5)(13).

In general if we say [(b − a)D]kf means it is the function (b − a)kf (k);
namely, The k-th derivative multiplied by the number (b− a)k.

Thus [(b− a)D]kf(a) means the number (b− a)kf (k)(a).

We can rewrite Taylor as follows:

f(b) =
n−1
∑

k=0

[(b− a)D]kf(a)

k!
+

∫ 1

0
[(b− a)D]nf(ub+ (1− u)a)

(1− u)n−1

(n− 1)!
du. (♠)

The Taylor formula we shall prove is the following.

Theorem: Let Ω ⊂ R2 be an open set. Let a, b ∈ Ω. Assume that the line
joining these points is contained in Ω. Let f be a real valued Cn function
defined on Ω. Then

f(b) =
n−1
∑

k=0

[(b− a) ·D]kf(a)

k!
+

∫ 1

0
[(b− a) ·D]nf(ub+ (1− u)a)

(1− u)n−1

(n− 1)!
du. (♣)

You see that this formula is exactly same as the earlier one. We only need
to explain the notation. you will see that proof of the theorem is itself not
difficult. In fact it is trivial from what you already know in the one variable
case and the chain rule.

A function f is C1 if the partial derivatives f1 and f2 are continuous
functions on Ω. such a statement means that the partial derivatives at each
point exist and the function so obtained on Ω is continuous. We met this
notation earlier before defining the concept of derivative.

We say that f is C2 if these functions f1 and f2 are also C1. In other
words, f11, f12, f21, f22 are continuous functions. Remember that when this
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happens we already know that the functions f12 and f21 are same. Thus
there are three second order derivatives.

In general, proceeding to define by induction, we say that f is Cn, if f1
and f2 are Cn−1. Let us use an earlier notation. D1g stands for g1 and D2g
stands for g2, the partial derivatives.

With this notation, f ∈ Cn is same as saying the following: whenever
you take a sequence ǫ1, ǫ2, · · · , ǫn consisting of ones and twos, the function

DǫnDǫn−1
· · ·D2D1f

should exist and is continuous.

Using equality of mixed derivatives that we proved, it is a joy to show the
following. When the above happens, the function so obtained depends not on
the exact sequence, but only on the number of ones and twos in the sequence!

To continue with the notation, we use D for the vector (D1, D2). Of
course, you should not get worried because, so far, vectors are something like
(4, 3) and so on consisting of numbers. Here this vector we have introduced
has symbols. Let it be. We shall do more symbolic operations.

Observe (b− a) ∈ R2, is a vector. By (b− a) ·D we mean inner product
between these vectors. Again, you should not get worried. We only mean
that (b− a) ·D stands for the symbol

(b1 − a1)D1 + (b2 − a2)D2.

Of course, what is the meaning of this symbol? Just as the symbolD1 applied
to a function f gives you a new function D1f = f1 so is this symbol.

[(b− a) ·D]f = [(b1 − a1)D1 + (b2 − a2)D2]f

= (b1 − a1)f1 + (b2 − a2)f2.

Thus if you want to calculate this function at a point, say, (4, 3) you get

[(b− a) ·D]f(4, 3) == (b1 − a1)f1(4, 3) + (b2 − a2)f2(4, 3).

More symbolic things would follow. When we say [(b− a) ·D]2 we under-
stand exactly the same thing as in the one dimensional case above.

[(b− a) ·D]2 == [(b1 − a1)D1 + (b2 − a2)D2]
2
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= (b1 − a1)
2D2

1 + 2(b1 − a1)(b2 − a2)D2D1 + (b2 − a2)
2D2

2.

Thus

[(b− a) ·D]2f = (b1 − a1)
2f11 + 2(b1 − a1)(b2 − a2)f12 + (b2 − a2)

2f22.

More specifically, if you want to evaluate the function at any point you can
do so

[(b− a) ·D]2f(a) =

(b1 − a1)
2f11(a) + 2(b1 − a1)(b2 − a2)f12(a) + (b2 − a2)

2f22(a).

If you have got a feeling, then

[(b− a) ·D]k =
k
∑

j=0

(

k

j

)

(b1 − a1)
j(b2 − a2)

k−jDk−j
2 Dj

1.

Or

[(b− a) ·D]kf =
k
∑

j=0

(

k

j

)

(b1 − a1)
j(b2 − a2)

k−jDf1j2k−j .

For example f1324 means f1112222. Still more specifically, if you want to cal-
culate the function above at the point a,

[(b− a) ·D]kf(a) =
k
∑

j=0

(

k

j

)

(b1 − a1)
j(b2 − a2)

k−jDf1j2k−j(a).

Now let us go back to the simple chain rule and calculate higher order
derivatives of composed function in a special case. The special case is the
following. We have an open set Ω ⊂ R2 and a real valued c2 function on Ω
and two points a, b ∈ Ω. We have an open interval I ⊂ R. Define

Φ(u) = ub+ (1− u)a.

We consider the real valued function F (u) = f(Φ(u)) defined on I. By earlier
chain rule

F ′(u) = f ′(Φ(u)) · Φ′(u) = [(b− a) ·D]f(Φ(u)). (∗)

Recall that to compare with earlier notation, here we have

Φ(u) = (ϕ1(u), ϕ2(u))

ϕ1(u) = ub1 + (1− u)a1; ϕ2(u) = ub2 + (1− u)a2.

Φ′ = (b1 − a1, b2 − a2)
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Thus (∗) is a consequence of earlier chain rule. Now let us consider this
function F ′ as a sum of two composed function.

F ′(u) = f1(Φ(u))(b1 − a1) + f2(Φ(u))(b2 − a2).

Exactly the same argument applied to f1 and f2 in place of fgives

[f1(Φ(u)]
′ = f11(Φ(u))(b1 − a1) + f12(b2 − a2).

[f2(Φ(u)]
′ = f21(Φ(u))(b1 − a1) + f22(b2 − a2).

Substituting above and simplifying we get

F ′′(u) = [(b− a) ·D]2f(u). (∗∗)

If you have understood the argument of arriving at (∗∗) from (∗), you should
have no problem in arriving at the following, assuming that f is C3.

F (3)(u) = [(b− a) ·D]3f(Φ(u)). (∗ ∗ ∗)

Thus, by induction, one has

F (k)(u) = [(b− a) ·D]kf(Φ(u)).

Proof of Taylor:

Finally, we return to proof of (♣). Since the line joining a and b is
contained in Ω and Omega is open, you can easily see that there is a an
ǫ > 0 so that

Φ(u) = ub+ (1− u)a

defined on (−ǫ, 1 + ǫ) has range contained in Ω. Now consider the function

F (u) = f(Φ(u))

on this interval. all the above argument shows that when f is Cn then so is
F and gives a formula to calculate its derivatives.

Expand F (1) around zero. This means apply the usual one variable Tay-
lor, namely (♠), to F with b = 1 and a = 0.

f(1) =
n−1
∑

k=0

[D]kF (0)

k!
+
∫ 1

0
[D]nF (u)

(1− u)n−1

(n− 1)!
du.
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That is,

F (1) =
n−1
∑

k=0

F (k)(0)

k!
+
∫ 1

0
F (n)(u)

(1− u)n−1

(n− 1)!
du.

Observe
F (1) = f(b); F (k)(0) = [(b− a) ·D]kf(a).

This completes proof.

Again, this can be stated differently

f(b) =
n−1
∑

k=0

[(b− a) ·D]kf(a)

k!
+

[(b− a) ·D]nf(θ)

n!
;

where θ is a point on the line joining a to b. This follows from the version
proved above by noting that the integral is between c/n! and C/n! where c
and C are bounds for [(b− a) ·D]nf(θ) as θ runs on the line.

It is also customary to state the Taylor with x instead of b

f(x) =
n−1
∑

k=0

[(x− a) ·D]kf(a)

k!
+

∫ 1

0
[(x− a) ·D]nf(ux+ (1− u)a)

(1− u)n−1

(n− 1)!
du.

But there is a subtle scope for confusion in understanding this and so I did
not state it this way.

Exact the same formula holds in dimensions more than two as well. Now
(b− a) and D are of that dimension. But formula is the same and so is the
proof.

Though we do not have much use of this formula, we shall see one im-
portant consequence of this formula. But it is satisfying to realise that the
ideas of last semester are indeed very powerful to let the same formulae to
hold even in higher dimensions.

Extrema:

Let Ω ⊂ R2 be open and f be a real valued C1 function on Ω. Let
a ∈ Ω. We say a is a point of local maximum if there is an r > 0 such that
f(x) ≤ f(a) for all x ∈ B(a, r). call it strict local maximum if the inequality
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is strict for every x in the ball different from a.

Similarly we say that a is a point of local minimum if there is an r > 0
such that f(x) ≥ f(a) for all x ∈ B(a, r). A point which is a local minimum
or local maximum is called a local extremum.

Let a be a local maximum. If a = (a1, a2) then clearly, x 7→ f(x, a2) has
local maximum at x = a1 and y 7→ f(a1, y) has local maximum at y = a2.
Thus

f1(a) = 0 = f2(a).

Same holds even if a is a local minimum.

Just like in one dimensions here too, the above equations would not guar-
antee either a maximum or minimum. For example f(x, y) = x3 has both
derivatives at (0, 0) but f has neither a max nor min at that point. This is
not surprising.

However, now something spectacular may also happen. The point may
be maximum in several directions and minimum in several other directions
at that point! For example,

f(x, y) = x2 − y2

has derivatives zero at the point (0, 0). There are several lines passing
through the origin such that if you restrict f to that line it has a max at this
point and for several other lines it is a point of minimum.

In one dimensions the strict positivity of the second derivative at a would
ensure that a is a local minimum. Same is true here too.

Assume that f is C2. Recall there are now four (actually three distinct)
second derivatives. Let us temporarily, only for this section, denote by f ′′

the following 2× 2 matrix.

f ′′(a) =

(

f11 f12
f12 f22

)

.

Just to draw your attention to the fact that the matrix is symmetric, we have
written, in the first entry of second row, f12 instead of the expected f21 = f12.
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Let A be a 2× 2 symmetric matrix.

A =

(

a11 a12
a12 a22

)

.

Let us say that A is positive definite or simply positive if vtAv > 0 for
every non-zero vector v. That is

a11v
2
1 + 2a12v1v2 + a22v

2
2 > 0.

We write this as A ≫ 0. We shall need matrix theory, but no deep results.
Here is a fact to which we shall return later.

A≫ 0 ↔ a11 > 0; a11a22 − a212 > 0.

Here is a criterion for local minimum.

Theorem: Let f be a C2 function on an open set Ω ⊂ R2 and a ∈ Ω. If
f ′(a) = 0 and f ′′ ≫ 0 the a is a point of strict local minimum.

Proof is simple. Consider the two functions: f11 and f11f22 − f 2
12. These

are continuous and are strictly positive at the point a. So fix r > 0 so that
they are strictly positive for all x ∈ B(a, r). Now take any point b in this
ball, use Taylor

f(b) = f(a) + [(b− a) ·D]f(a) +
[(b− a) ·D]2f(θ)

2!
;

where θ is a point on the line joining a to b. But whatever it be, the positive
definiteness of f ′′ says that the last term on the right side is positive. The
second term is zero. Thus f(b) > f(a). This completes the proof.

Similarly, we have a criterion for local minimum too. Say that A is
negative definite if for all non-zero vectors vtAv < 0. We write A≪ 0.

A≪ 0 ↔ a11 < 0; a11a22 − a212 > 0.

The same proof as earlier shows that If f ′′ ≪ 0 at a point a, then it is so
in a ball around the point a.

functions without formula:

So far what we have been doing is just imitation of the development of
calculus we learnt last semester. of course, this statement does not mean
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it is a trivial job. It has taken us rather too far. We can now differentiate
functions defined on any Euclidean space (Rk) and taking values in any Eu-
clidean space (Rn).

If you think about it, the achievement is really spectacular. Imagine,
n×n matrix is nothing but a point in n2-dimensional euclidean space. Since
determinant is a continuous function of the entries of the matrix (it is a
polynomial), the set of non-singular matrices is an open set (determinant
non zero). Thus you can define a function on this open set of n2 dimensional
space to itself, namely, the matrix inverse map. We know how to differentiate
this function!

This is all fine. But is there anything we can do now about functions of
one variables (we learnt last semester) which we could not do last semester?
Yes, there are several things that we can do now even for functions of one
variable. Just because this course is functions of several variables, you should
not be under any wrong impression.

Let us start with a simple example. Consider the function y = ϕ(x)
defined by the formula x2 + y2 − 1 = 0. Of course you might ask if there is
such a function at all. This is a happy situation, you can explicitly solve the
equation. There are two functions defined on the open interval (−1,= 1) by
the formula

ϕ(x) = +
√
1− x2; ψ(x) = −

√
1− x2.

Just a word about notation: I do not have to put + sign in describing ϕ
because by convention a square root is always taken positive. However we
did so to draw your attention.

ϕ′(x) = − x√
1− x2

.

Here is another way of arriving at the answer. Consider the function

f(x, y) = x2 + y2 − 1

on R2 and F (x) = f(x, ϕ(x)). Then we know that F ≡ 0 and hence F ′(x) ≡
0. But by chain rule

F ′(x) = (1, ϕ′(x)) · (2x, 2y) = 2x+ 2yϕ′(x) ≡ 0.

This gives

ϕ′(x) = −x
y
= − x√

1− x2
.
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Of course what is the purpose of using the chain rule when you can get ex-
plicit formula for your function and calculate using expertise of last semester.
As far as this example is concerned this is just another way of doing it. But
sometimes this may be the only way of doing it! This happens especially
when you are not lucky to get a formula in your hand.

Let us now consider another example.

Consider the function y = ϕ(x) on the interval (1, ∞) defined by the
formula

y = log(x+ y).

is there such a function? Yes, consider the equation

x = ey − y.

The right side as a function of y starts off at 1 when y = 0; derivative be-
ing positive it strictly increases towards infinity as y becomes large. Thus it
assumes all values between one and infinity exactly once as y travels from
zero to infinity. Thus given any number x > 1 there is exactly one y > 0
satisfying the above equation. This is the number ϕ(x).

Is this function differentiable? We do not have explicit formula. suppose
it is differentiable. What is ϕ′? Again as above consider the function

f(x, y) = y − log(x+ y)

so that
F (x) = f(x, ϕ(x)) ≡ 0.

Thus

F ′(x) = (1, ϕ′(x)) · ( 1

x+ y
, 1− 1

x+ y
) = 0.

giving

ϕ′(x) =
1

x+ y

x+ y

x+ y − 1
=

1

x+ y − 1
.

Thus without any explicit formula for our function, we have been able to
differntiate.

Of course, you can still avoid two variable calculus. You can say, consider

ψ(y) = ey − y : (0,∞) → (1,∞)
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Thus ϕ(x) is precisely inverse of this map and we know

ϕ′(x) =
1

ψ′(ϕ(x))
=

1

ey − 1
=

1

x+ y − 1
.

But many times even such a recognition is not possible. Then we need to
use the method outlined above.

Such functions are called ‘implicit functions’. That is, functions that are
there already in the relation you want to be satisfied. They may have explicit
formula or may not.

But as soon as you know that you have a differentiable function y = ϕ(x)
satisfying the relation f(x, y) ≡ 0 then the above argument tells us that

ϕ′(x) = −f1(x, ϕ(x))
f2(x, ϕ(x))

.

Thus we need to understand the problem: given a relation to be satisfied
between x and y is there a function ϕ(x) so that when you take y = ϕ(x)
then (x, y) satisfies your relation. Is such a function differentiable? This is
precisely the question answered by the ‘implicit function theorem’.

Imagine starting with the relation x2 + y2 + 1 = 0, so that,

f(x, y) = x2 + y2 + 1

and the above formula gives

ϕ′(x) = −x
y
.

But this is non-sense because there is no function at all!

So let us take a point (x0, y0) satisfying the given relation. You can see
from the formula for the derivative of y = ϕ, we need f2(x0, y0) 6= 0). Sur-
prisingly this condition is enough.

Theorem (Implicit function theorem)
Let f : Ω ⊂ R2 → R be a C1 function. Suppose (a, b) ∈ Ω Suppose

f(a, b) = 0 and f2(a, b)] 6= 0. Then
(i) there is a rectangle Q = (a− δ, a+ δ)× (b−η, b+η) ⊂ Ω and a unique

function ϕ defined on the interval (a− δ, a+ δ) whose graph is contained in
the rectangle Q and such that f(x, ϕ(x)) ≡ 0.
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(ii) This function is differentiable.
(iii)

ϕ′(x) = −f1(x, ϕ(x))
f2(x, ϕ(x))

.
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