
CMI (BSc I)/BVRao Calculus II, Notes3 2014 Third week

A chain rule:

let f : Ω → R be a C1 function. Here Ω ⊂ R2 is an open set. Suppose
ϕ1 and ϕ2 are two real C1 functions defined on an interval (a, b) such that
for every t, the point (ϕ1(t), ϕ2(t)) ∈ Ω. Then it makes sense to define the
composed function.

F (t) = f(ϕ1(t), ϕ2(t)) : (a, b) → R.

Thus the function is a real valued function defined on an interval. Thus given
a real number t, it produces a real number F (t). However, to calculate the
number F (t) we pass through R2. It is natural to expect that this is again a
differentiable function. What is the formula for the derivative at a point?

Theorem (Chain rule): F is C1 and

F ′(t) = f1(ϕ1(t), ϕ2(t)) ϕ
′

1
(t) + f2(ϕ1(t), ϕ2(t)) ϕ

′

2
(t).

The result can be restated in several ways. For example

F ′(t) = ∇f · (ϕ′

1
, ϕ′

2
).

where ∇f is evaluated at the point (ϕ1(t), ϕ2(t)) and the derivatives ϕ′

1
and

ϕ2 are evaluated at the point t.

If we denote the map Φ(t) : (a, b) → R2 by Φ(t) = (ϕ1(t), ϕ2(t)) and make
the convention Φ′(t) = (ϕ′

1
(t), ϕ′

2
(t)) then the formula takes the pleasing

form,
F ′(t) = ∇f(Φ(t)) · Φ′(t).

The reason it is pleasing is that it is the same formula we learnt in one di-
mension. There is nothing new really, is it not?

Here is another way of stating, which uses a different suggestive notation.
The maps ϕ1 and ϕ2 are denoted by x(t) and y(t) respectively. This is
because they denote the x and y coordinates when we proceed to compose
with f . Points in R2 are denoted as (x, y) and the function f is f(x, y). With
this notation,

dF

dt
=

∂f

∂x

dx

dt
+

∂f

∂y

dy

dt
.
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We have used ∂f to remind that f is a fucntion of more than one variable
and we have differentiated w.r.t. one of those variables. On the other hand
we used dF , dx, dy because these are functions of only one variable and
derivative is taken w.r.t. that variable.

Proof is not difficult. But let us see why we are interested in this.

Consider a function f defined on a region Ω ⊂ R2 and a point a ∈ Ω. let
us fix a unit vector u ∈ R2. We want to see if the limit

lim
t→0

f(a+ tu)− f(a)

t

exists and equals ∇f · u. Remember the points a+ tu are on the line in the
direction of u at the point a and this is the derivative at the point a in the
direction u.

This is an immediate consequence of the chain rule. Take Φ to be the
function Φ(t) = a + tu defined on the interval (−1, 1). Do not forget to no-
tice that a, u are vectors but t is a real number. The differentiability of the
composed function at t = 0 is precisely the limit required above and chain
rule says that it exists and equals the claimed quantity. You need to only
note that Φ′(t) = u.

The earlier observation combined with Cauchy-Schwarz inequality leads
to an interesting interpretation of the gradient: it gives the direction in which
the derivative is the largest in modulus, assuming that the gradient is non-
zero vector. This is trivial because

|∇f · u| ≤ ||∇f || ||u||.

equality above holds when and only when u is a multiple of ∇f , assuming
that ∇f is non-zero. If ∇f is zero vector then for any u the quantity above
is zero. Since u is a unit vector, it should be the vector: normalised ∇f .

The chain rule has another interesting consequence, the mean value the-
orem. Suppose Ω ⊂ R2 open a, b ∈ Ω and the line joining the points a and b
is contained in Ω. Then there is some point θ on this line such that

f(b)− f(a) = ∇f(θ) · (b− a). (†)

This is again easy. Consider the composition as above with

φ(t) = tb+ (1− t)a.
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Then F (1) = b and F (0) = a and it is a continuous function on the in-
terval [0, 1] which is differentiable at every point inside the interval. Hence
usual mean value theorem applies to give a number η ∈ (0, 1) such that
F (1)−F (0) = F ′(η). apply chain rule to see this is same as (†) with θ = Φ(η).

The chain rule also leads to Taylor expansion but since it needs higher
derivatives we return to this later. Let us now prove the chain rule. Fix a t0.
Need to show

F ′(t0) = ∇f(Φ(t0)) · Φ′(t).

That is,

f(Φ(t))− f(Φ(t0))

t− t0
−∇f(Φ(t0)) · Φ′(t0) → 0.; as t → t0.

Let ǫ > 0 be any fixed number. We show δ > 0 such that

|t− t0| < δ ⇒
∣

∣

∣

∣

∣

f(Φ(t))− f(Φ(t0))

t− t0
−∇f(Φ(t0)) · Φ′(t0)

∣

∣

∣

∣

∣

< ǫ. (†)

We reduce it two separate simple problems. We show δ1 > 0 such that

|t−t0| < δ1 ⇒
∣

∣

∣

∣

∣

f(Φ(t))− f(Φ(t0))

t− t0
−∇f(Φ(t0)) ·

[

Φ(t)− Φ(t0)

t− t0

]∣

∣

∣

∣

∣

< ǫ/2. (♠)

We show a δ2 > 0 such that

|t−t0| < δ2 ⇒
∣

∣

∣

∣

∣

∇f(Φ(t0)) ·
[

Φ(t)− Φ(t0)

t− t0

]

−∇f(Φ(t0)) · Φ′(t0)]

∣

∣

∣

∣

∣

< ǫ/2. (♣).

Then for |t − t0| < min{δ1, δ2} both inequalities hold; adding them we get
(†) as required.

(♣) is simple. In fact the long expression, by Cauchy-Schwarz inequality,
is at most

||∇f(Φ(t0))||
∥

∥

∥

∥

∥

Φ(t)− Φ(t0)

t− t0
− Φ′(t0)]

∥

∥

∥

∥

∥

Denote 1 + ||∇f(Φ(t0))|| = c. By using definition of derivative (for usual
one variable functions), choose δ2 > 0 so that for |t− t0| < δ2

∣

∣

∣

∣

∣

ϕ1(t)− ϕ1(t0)

t− t0
− ϕ′

1
(t0)]

∣

∣

∣

∣

∣

<
ǫ

2c
;

∣

∣

∣

∣

∣

ϕ2(t)− ϕ2(t0)

t− t0
− ϕ′

2
(t0)]

∣

∣

∣

∣

∣

<
ǫ

2c
.

(I have used mean value theorem here while explaining in the class and you
suggested definition of derivative is enough.) Of course, the choice of δ2
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implies that (t0 − δ2, t0 + δ2) ⊂ (a, b). if you are not able to see, just you can
as well take smaller value of δ2 that satisfies this condition.

Then definition of norm and definition of Φ′ will give you (♣).

To achieve (♠) you do exactly similar thing. Denote Φ(t0) = a. using def-
inition of derivative (that we have learnt now for functions of two variables),
first choose η so that for ||x− a|| < η we have

∣

∣

∣

∣

∣

f(x)− f(a)−∇f(a) · (x− a)

||x− a||

∣

∣

∣

∣

∣

< ǫ/2. (∗)

Just to remind you, here the dot in the neumerator is scalar product. By
using continuity of Φ, that is, continuity of ϕ1 and ϕ2; get δ1 > 0 so that
when |t− t0| < δ1 then ||Φ(t)− Φ(a)|| < η.

Let us see what happens to the right side expression of (♠) when |t−t0| <
δ1. Fix such a t. In case Φ(t) = Φ(t0) then that expression is zero and nothing
for us to do to see the required inequality. Other wise denoting Φ(t) = x,
that expression equals

∣

∣

∣

∣

∣

f(x)− f(a)−∇f(a) · (x− a)

||x− a||

∣

∣

∣

∣

∣

× ||x− a||
|t− t0|.

Here the first quantity is smaller than ǫ/2 by (∗). What about the second
term?

By MVT, of the last semester, applied to the functions ϕ1 and ϕ2, there
are points P1 and P2 in the interval (t0 − δ1, t0 + δ1) so that the second term
in the above display in nothing but norm of the vector 〈ϕ′

1
(P1), ϕ

′

2
(P2)〉. If

c/2 is a bound for these derivatives of ϕ1, ϕ2 over this interval then this norm
is smaller than c. Thus the he second term is smaller that c and hence the
above expression is smaller than cǫ/2.

So it appears that a better choice of δ1 would do, namely, choose your η
so that for ||x− a|| < η we have

∣

∣

∣

∣

∣

f(x)− f(a)−∇f(a) · (x− a)

||x− a||

∣

∣

∣

∣

∣

< ǫ/2c, (∗∗)

instead of (∗) and then chose δ1 for this η.

Yes, if you now go back and choose δ1 for this η the proof seems to work
perfectly. But this argument is faulty because c depended on δ1 (see where
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we got into this c) and δ1 now depends on c. So actually nothing is achieved.
A wise thinking, that involves looking ahead before you take your step, would
help. Here is the precise argument to show that a δ1 can be chosen to satisfy
(♠).

First choose δ′ > 0 so that

[t0 − δ′, t0 + δ′] ⊂ (a, b).

Since ϕ′

1
and ϕ′

2
are continuous functions, they are bounded on this interval

and let c/2 be a bound for these functions. Choose η so that (∗∗) holds.
Choose δ1 exactly as earlier for this η. If necessary, make it smaller so that
δ1 < δ′. This choice would do to show (♠).

I have given the thought process in choosing δ1 as part of the proof. At
the end, if you are confused, ignore the thought process and the faulty argu-
ment we went through. Go to the para where we choose η earlier, replace it
by the above para and then proceed with the argument. You must convince
yourself that (♠) is achieved. You must also convince ourself that the proof
is actually very simple and this was precisely what was done last semester
too for the chin rule; a two step procedure.

Thus we have completed proof of the chain rule. You must understand
what we achieved. We have a given formula to calculate the derivative the
function F from R to R. Then did we not do such things already last
semester? No. Here to get the value of the function you pass through R2.

You can generalise to passing through Rn. This means, you have C1

functions ϕ1, · · · , ϕn on an interval (a, b) and you have a C1 function f : Ω →
R. Here Ω ⊂ Rn is an open set and it includes the vector (ϕ1(t), · · · , ϕn(t))
for very t ∈ (a, b). Then it makes sense to define F : R → R by

F (t) = f(ϕ1(t), · · · , ϕn(t)); a < t < b.

Then F is C1 and

F ′(t) =
∑

fi(ϕ1(t), · · · , ϕn(t))ϕ
′

i(t) =
∑ ∂f

∂xi

(ϕ1(t), · · · , ϕn(t))ϕ
′

i(t).

= ∇f(Φ(t)) · Φ′(t) = f ′(Φ(t)) · Φ′(t).

where
Φ(t) = (ϕ1(t), · · · , ϕn(t)); Φ′(t) = (ϕ′

1
(t), · · · , ϕ′

n(t)).
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Several new problems arise. Suppose ϕ1 and ϕ2 are C1 functions defined
on Ω1 taking values in R. The only difference is that they are not defined on
an interval contained in R. Then you can think of Φ(x) = (ϕ1(x), ϕ2(x)) on
as a function on Ω1 with values in R2, as earlier. Suppose its values fall in
the open set Ω ⊂ R2 on which we have real valued C1 function f . Then it
makes sense to talk about the composition:

F (x) = f(Φ(x)); x ∈ Ω1.

is this differentiable? Is

F ′(x) = f ′(Φ(x)) · Φ′(x).

It should be correct, the only problem is that we do not know the meaning
of Φ′(t) because Φ is a function on R2 to R2. We need to assign meaning to
derivative of function defined on Rm and taking values in Rn.

Let us pause for a moment and see what happened so far. First we had
functions from R to R and we defined derivative at a point and it is a num-
ber. Then we had function from Rn to R and we defined its derivative at a
point and it is a vector. In the previous theorem we had Φ from R to Rn

and we defined Φ′. This was facilitated by the fact that such a function Φ is
made up of n real valued functions, namely, ϕi(t) equals the i-th coordinate
of Φ(t). It turned out that Φ′(t) is also a vector.

There is again some chaos, sometimes we have functions R 7→ R, some-
times R2 7→ R and sometimes R 7→ R2. Now we have functions R2 7→ R2.
Sometimes derivatives are numbers, sometimes they are vectors. What are
they? Some order has to be brought in and a clear understanding has to be
achieved.

Let us go back and see what was the purpose of derivative. We wanted to
make best linear approximation of f at a point a in its domain. That is, we
wanted g(x) = L(x)+β such that g(a) = f(a) and ||f(x)−g(x)||/||x−a|| → 0
as x → a. Thus f(x)− g(x) approaches zero faster than x approaches a. Of
course the only non-trivial thing is L(x) because β = f(a) − L(a) since we
want (or know) ϕ(a) = f(a) .

(a)
If f : R → R, then the derivative at a denoted by the number c has the

property that it determines g. More precisely the linear transformation from
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R to R is the map L(x) = cx.

(b)
If f : R2 → R, then the derivative at a ∈ R2 denoted by the vector

c = ∇f(a) has the property that it determines g. More precisely the linear
transformation from R2 to R is the map L(x) = c · x. Here is another way
of stating the same thing. Even though everything, points in R2 as well as
derivatives are vectors, let us give them proper dress so that we can recognize
them easily. Think of R2 as space of column vectors. That is

x =

(

x1

x2

)

Let us think of the derivative c as row vector. Then the linear transforma-
tion we are talking about is nothing but L(x) = cx. This makes perfect sense
because c is 1× 2 vector and x is 2× 1 vector and so cx is 1× 1 vector, or a
number. Thus the derivative ∇f(a) is actually the row vector. But it is to
be thought of as a linear transformation of R2 to R.

(c)
If f : R → R2, then the derivative at a ∈ R denoted by the vector c has the

property that it determines g. Remember that if f1(t) is the first coordinate
of f(t) and f2(t) is the second coordinate of f(t) then f(t) = (f1(t), f2(t)).
But just now we decided to think of R2 as column vectors. Thus

f(t) =

(

f1(t)
f2(t)

)

More precisely the linear transformation from R to R2 is the map L(x) = cx,
that is,

x ∈ R1 7→ cx =

(

f ′

1
(a)

f ′

2
(a)

)

x ∈ R2.

In other words the derivative of f is the column vector

f ′(a) =

(

f ′

1
(a)

f ′

2
(a)

)

.

again to avoid confusion regarding column and row vectors, let us think of f
as the linear transformation L(x) = cx. This makes sense c is 2 × 1 vector
and x is 1 × 1 and cx makes sense and is 2 × 1 vector, in other words, an
element of R2. This is the linear transformation from R to R2.
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Before proceeding further, we should note one thing here. We have not
defined derivative of f : R → R2 via best linear approximations. We defined
outright f ′(a) = 〈f ′

1
(a), f ′

2
(a)〉. But one can easily show that

||f(t)− f(a)− f ′(a)(t− a)||
|t− a| → 0 as t → a.

This only depends on the fact that a sequence of vectors converges to zero
iff coordinate-wise it so happens.

This brings some order into things. Derivatives are linear operators, no
need to confuse whether it is row vector or column vector or a number and
so on. Elements of Rn are column vectors: x and so row vectors r define
linear maps on them to R : x 7→ rx. again in the notation there is nothing
to tell you whether a symbol is a row vector or column vector.

Taking clue from the above, suppose we have a map f : Rm → Rn and
a ∈ Rm. The best linear approximation of f at a determines the derivative.
We say that a linear transformation L(x) : Rm → Rn is derivative of f at a
if the map ϕ(x) = L(x) + f(a)− L(a) has the property

||f(x)− ϕ(x)||
||x− a|| → 0 as x → a.

In other words

||f(x)− f(a)− L(x− a)||
||x− a|| → 0 as ||x− a|| → 0.

Since linear transformations from Rm to Rn are given by n×m matrices A
via L(x) = Ax we can reformulate the idea of derivative as follows. A n×m
matrix A is derivative at the point a if

||f(x)− f(a)− A(x− a)||
||x− a|| → 0 as ||x− a|| → 0.

Of course there is another way to define the derivative taking a clue from
the adhoc definition we employed earlier. remember if f : R → R2 is a C1

map we defined f ′(a) = (f ′

1
(a), f ′

2
(a)). If

f =













f1
f2
...
fn
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then we can put

f ′(a) =













∇f1(a)
∇f2(a)

...
∇fn(a)













Note that it has n rows each an m-vector. Thus it is n×m matrix.

We shall, as earlier, restrict our attention to only C1 functions and pro-
ceed. But first we need to familiarize ourselves with maps from Rm to Rn.
So you can forget about derivatives for a while.

functions from Rm to Rn:

Elements of Rn are column vectors v. But it takes space to write column
vectors. One way is to think of your symbols v as row vectors and elements of
Rn as their transpose: vt. Again it is a burden in reading and so we shall not
do this either. We just do as we have been doing all along. Do not scratch
unless it itches. When this distinction is specifically needed, then we shall
use it. Otherwise we enjoy being careless, but remember elements of Rn are
column vectors.

Let Ω ⊂ Rm. Suppose we have n real valued functions on Ω. Then we
can cook up a Rn valued function on Ω as

f(x) = (f1(x), f2(x), · · · , fn(x)) x ∈ Ω.

Conversely, every function on Ω taking values in Rn is obtained like this.
More precisely, suppose f : Ω → Rn is given to us, then there are n uniquely
determined real functions f1, f2, · · · , fn on Ω such that

f(x) = (f1(x), f2(x), · · · , fn(x)).

This is obvious, fi(x) must be the i-th coordinate of the point f(x) and this
choice does it.

Let us say that f is continuous if each fi is so. remember we defined
continuity for real valued functions. Of course, the natural way to define is
to say that f(x) should be close to f(a) if x is close to a. Yes, both ideas are
same mathematically.

Theorem: let f = (f1, f2, · · · , fn) : Ω → Rn. Let a ∈ Ω. Then the
following are equivalent.
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(i) Each of the n real valued functions f1, f2, · · · , fn are continuous on Ω.
(ii) Given ǫ > 0, there is a δ > 0 such that

x ∈ Ω, ||x− a|| < δ ⇒ ||f(x)− f(a)|| < ǫ.

(iii) If {xi : i ≥ 1} is a sequence of points in Ω and xi → a then f(xi) → f(a).

We have proved it in class. Try to do so without writing.

The ideas you learnt last semester are powerful to give you theorems
about continuous functions on Rm also. Here is one such. A subset S ⊂ Rm

is bounded if there is a number c such that ||x|| ≤ c for all x ∈ S.

Theorem: Let S ⊂ Rm be a closed bounded set and f be a continuous
function f : S → R. Then f is bounded, that is, there is a number M such
that |f(x)| ≤ M for all x ∈ S. This is also same as saying that the range of
the function f is a bounded subset of R.

There is no new idea. Let us execute it for S ⊂ R2. Since the set S is
bounded get a square R0 = [a, b] × [a, b] which includes S. You only need
to note that if ||x|| ≤ c then x ∈ [−c, c] × [−c, c]. We prove the theorem by
contradiction.

suppose that the function is not bounded. Divide the square into four
parts by cutting each side at the mid point. Then f must be unbounded on
part of S contained in one of these smaller squares. Take one such square,
R1 = [a1, b1]× [c1, d1]. Just be careful, do not be under the impression that
this square is like [c, d]× [c, d] just because the earlier square was [a, b]× [a, b].
That was in your hands, this is not. Do the same to R1 and get R2 and so on.

Thus you get a sequence of squares Rn such that length of each side of
Rn is half length of previous square side. By cantor intersection theorem, we
get a point (a1, a2) common to all these squares. Indeed all the sides [an, bn]
have a point x in common and all sides [cn, dn] have a point y in common.
Since each square Rn contains points of S, we see that (x, y) is a limit point
of S and must be in S because S is closed.

But then continuity of f tells that there is a δ > 0 such that x ∈
S, ||x − a|| < δ implies ||f(x) − f(a)|| < 1, thus ||f(x)|| ≤ ||f(a)) + 1.
In particular, f is bounded by this number at all points of S in this disc.
Now one of your Rn must be contained in this disc, because their lengths are

10



converging to zero. This contradicts the fact that f is not bounded on the
part of S contained in Rn.

This completes the proof.

Let us now consider S ⊂ Rm and f : S → Rn. Say that f is bounded
if there is number M such that ||f(x)|| ≤ M for all x ∈ S. If F =
(f1, f2, · · · , fn) then f is bounded iff each fn is so. This is because, if f is
bounded by M then each fi is also bounded by M and if each fi is bounded
by M then f is bounded by M

√
n.

Say that f : Rm → Rn is a C1 function if each fi is so, Note that fi is
C1 map means that each of its m partial derivatives are continuous functions.

let Ω ⊂ Rm be an open set and F : Ω → Rn be C1 map. Let a ∈ Ω and
let A be the n×m matrix whose i-th row consists of ∇fi(a). In other words,
(i, j)-th entry of A is Djfi(a); the partial derivative of the i-th function fi
w.r.t. the j-th coordinate.

Theorem:

||f(x)− f(a)− A(x− a)||
||x− a|| → 0 as x → a. (♦)

In other words, A confirms to our intuition as a suitable candidate for
being the derivative of f at A. Indeed we define A to be the derivative of
f at a. Of course, what we mean is that the linear map x 7→ Ax of Rm to
Rn is the derivative at the point a. Of course, you can also think of the ma-
trix A itself as the derivative. Then you need to keep track of the confusion
that some times derivatives are numbers, sometimes they are vectors and yet
other times they are matrices.

proof of the above theorem is simple, no work is needed. Note that the
quantity in (♦) is simply norm of a vector. Carefully decipher the notation,
to see that the i-th entry of the above vector is nothing but

fi(x)− fi(a)−∇fi(a) · (x− a)

||x− a||

and by definition of ∇fi this quantity does converge to zero as ||x− a|| → 0.
Hence (♦) is verified.
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Can there be another matrix A1 satisfying (♦)? If so, fix r > 0 so that
B(a, r) ⊂ Ω. Then for h ∈ B(0, r)

||Ah− A1h||
||h|| ≤ ||f(a+ h)− f(a)− Ah||

||h|| +
||f(a+ h)− f(a)− A1h||

||h||

−→ 0.

If you take any non-zero vector v ∈ Rm then for all large integers i, we see
v/i ∈ B(0, r) so that

||A(v/i)− A1(v/i)||
||v/i|| → 0, as i → ∞.

In other words Av−A1v = 0. This is true for every vector v ∈ Rm and hence
the two matrices/linear transformations are same.

Thus our definition of derivative is a good definition. Of, course you can
say that an f is differentiable if (♦) holds for some linear transformation A;
without assuming that f is C1 to begin with. Then also you can show that
such a transformation is unique, by the same argument s above. However,
the derivative may exist but the function f may not be C1. We have already
seen such examples earlier. It is to avoid some pathologies we started re-
stricting to C1 maps.

We denote the derivative of f at a by Df(a) or (Djfi(a))ij or the more
compact notation f ′(a).

examples:

1. Fix a vector u ∈ Rn and consider the map f(x) = u for all x ∈ Rm. This
is a C1 map and f ′(a) ≡ 0. That is, it is the zero linear transformation
or it is the matrix with all entries zero.

2. Fix one n×n matrix A and consider f(x) = Ax+ u. Then for every a,
we have f ′(a) = A.

3. f(x, y) = x+ y from R2 to R. Then f ′(a) = (1, 1).

More generally, if we take the map from Rn to R given by f(x) =
∑

xi,
then it is C1 and f ′(a) is the vector with all entries equal to one.

Or if you take the map R5 to R2 given by

f(x1, x2, · · · , x5) = (x1 + x2 + x3.x4 + x5).
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then it is C1 and

f ′(a) =

(

1 1 1 0 0
0 0 0 1 1

)

.

Or define f from R2n to Rn by f(x, y) = x + y. Note that here we
are denoting point of R2n by (x1, · · · , xn, y1, · · · , yn). then f ′(a, b) =
(I, I)where I is the n× n identity matrix. thus the matrix (I, I) has n
rows and 2n columns.

4. Define from R2 to R; f(x, y) = x.y. Then

f ′(a, b) = (b, a).

For example f ′(3, 4) is the linear transformation given by (4, 3); in other
words L(x, y) = 4x+ 3y.

Consider f(x, y) =
n
∑

1

xiyi from R2n to Rn. Again see how we denoted

points of R2n, not as (xi : 1 ≤ i ≤ 2n) but as (x1, · · · , xn, y1, · · · , yn).
Then

f ′(a1, · · · , an, b1, · · · , bn) = (b1, · · · , bn, a1, · · · , an).

5. Let us consider a symmetric 2× 2 matrix A and consider f(x) = xtAx
a function from R2 to R. Here xt is the transpose of the column vector
x. In other words with usual notation of (x, y) for points of R2

f(x, y) = αx2 + 2βxy + γy2 A =

(

α β
β γ

)

Then f ′(a, b) = (2αa+2βb, 2βa+2γb). Reverting back to the notation
x = (x1, x2) we see f

′(a) = 2Aa. This is pleasing, just like derivative of
x2 at a being 2a.

You can take a symmetric n× n matrix A and define f(x) = xtAx for
x ∈ Rn. Then the same argument as above shows you

f ′(x) = 2Ax, x ∈ Rn.

6. You can think of more complicated functions. For example you can
consider 2× 2 matrix as a point in R4.

(

a11 a12
a21 a22

)

= (a11, a12, a21, a22) ∈ R4.
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You can think of matrix multiplication as a map from R8 to R4

f(a11, a12, a21, a22, b11, b12, b21, b22) =

(

a11 a12
a21 a22

)(

b11 b12
b21 b22

)

= (a11b11 + a12b21, a11b12 + a12b22,−−−,−−−).

Those are not difficult to handle, but we need to wait till we gain
experience and and not get confused easily.

Now let us return to the main problem with which we started, namely,
the chain rule.

Let Ω ⊂ Rm and Ω1 ⊂ Rn be open sets.

Φ : Ω → Rn; f : Ω1 → Rk

be C1 maps. Assume that Φ(x) ∈ Ω1 for all x ∈ Ω. Define the composition

F (x) = f(Φ(x)), x ∈ Ω.

Theorem: F is a C1 map from Ω → Rk. Further

F ′(a) = f ′(Φ(a))Φ′(a).

Note that f ′ is k × n matrix and Φ′ is n ×m matrix and so the product is
k ×m matrix and defines linear transformation from Rm to Rk.

proof is exactly like the earlier situation.

Let a ∈ Ω be fixed. let b = Φ(a). Let f ′(b) = B and Φ′(a) = A. Fic
ǫ > 0. We need to show δ > 0 so that

||x− a|| < δ ⇒ ||F (x)− F (a)− BA(x− a)||
||x− a|| < ǫ.

that is

||x− a|| < δ ⇒ ||f(Φ(x))− f(φ(a))− BA(x− a)||
||x− a|| < ǫ.

We show δ1 > 0 so that

||x− a|| < δ1 ⇒
||f(Φ(x))− f(φ(a))− B[Φ(x)− Φ(a)]||

||x− a|| < ǫ/2.
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We show δ2 > 0 so that

||x− a|| < δ2 ⇒
||B[Φ(x)− φ(a)]− BA(x− a)||

||x− a|| < ǫ/2.

If ||x − a|| < δ = min{δ1.δ − 2} then both the inequalities hold and adding
them gives the desired inequality.

To get δ2:

First note that given any k × n matrix B, there is a number c so that
||Bx|| < c||x|| for any x ∈ Rn. In fact let

M = max{|bi,j : i ≤ k, j ≤ n}

then,
Bx = (

∑

b1jxj,
∑

b2jxj, · · ·
∑

bkjxj)

Since
(
∑

bijxj)
2 ≤ (

∑

|bij||xj|)2 ≤ M2k||x||2.
Here we have used the following fact: if you square the sum, you get square
terms and cross products, but 2αβ ≤ α2+β2. Thus cross products are again
bounded by square terms. This is true for each of the k coordinates of Bx.
Hence

||Bx||2 ≤ k2M2||x||2.
Thus c = kM would do.

Returning to our problem, fix c > 0 as above. Using differentiability of φ
get δ2 > 0 so that

||x− a|| < δ2 ⇒
||Φ(x)− Φ(a)− A(x− a)||

||x− a|| < ǫ/(2c).

This will satisfy requirement of δ2.

To get δ1:

First fix an r > 0 so that the closed ball around a of radius r is contained
in Ω. Since Φ = (Φ1,Φ2, · · · ,Φn) is a C

1 function, we see that∇Φi is bounded
on the closed ball. Now fix M so that

||x− a|| ≤ r ⇒ ||∇Φi(x)|| ≤ M/n, i = 1, 2, · · ·n.
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Using differentiability of f get η > 0 so that

||y − b|| < η ⇒ ||f(y)− f(b)− B(y − b)||
||y − b|| < ǫ/(2M).

Npw choose δ1 > 0 so that ||x− a|| < δ1 implies ||Φ(x)− b|| < η. This is just
by continuity of Φ. By reducing if necessary, we shall assume δ1 < r.

Let now x be such that ||x− a|| < δ1. Need to show

||f(Φ(x))− f(φ(a))− B[Φ(x)− Φ(a)]||
||x− a|| < ǫ/2.

if Φ(x) = Φ(a) there is nothing to be done. Otherwise, denote the point Φ(x)
by y the above expression equals

||f(y)− f(b)− B(y − b)||
||y − b||

||Φ(x)− Φ(a)||
||x− a||

By choice of δ1, we conclude that ||φ(x)− b|| < η so that choice of η tells us
that the first term above is at most ǫ/(2M). The second term is norm of

(

Φi(x)− Φi(a)

||x− a|| : 1 ≤ i ≤ k

)

.

By the mean values theorem, there are points Pi such that this vector is

(

∇Φi(Pi) · (x− a)

||x− a|| 1 ≤ i ≤ k

)

.

Note that we can apply the mean slue theorem, the points x and a are all in
a disc which is contained in ω and hence the lines joining are also contained
in Ω. Since δ1 < r, choice of M tells us, with Cauchy-Schwarz that each
entry of the vector above is at most M/n and hence its norm is at most M .
so the product is at most ǫ/2.

This completes the proof of chain rule.
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