
CMI (BSc I)/BVRao Calculus II, Notes 9 2014

We have learnt the method of substitution for integrating functions of one
variable. We are now in the process of getting an analogue of that method
for functions of two variables. This goes by the name of change of variable
formula or the Jacobian rule. We start with the simplest case.

1.
We shall prove the following:

Theorem (simple Jacobian rule):
Let T be a non-singular linear transformation of R2 to itself. Let |T |

denote the modulus of the determinant of the matrix of the linear transfor-
mation. T . Then the following are true:

(i) For any rectangle Q = [a, b] × [c, d]; TQ has small boundary and
|TQ| = |T ||Q|.

(ii) (when (i) holds for a linear transformation T ) For any bounded open
set V with small boundary; TV is an open set with small boundary and
|TV | = |T ||V |.

(iii) (whenever (i) and (ii) hold for a linear transformation T ) For any
bounded continuous function f on V ,

∫

TV
f =

∫

V
foT |T |

that is,
∫

TV
f(u, v)dudv =

∫

V
f(T (x, y))|T |dxdy.

In other words, if you make the substitution. T (x, y) = (u, v) on the right
side then |T |dxdy = dudv. You get left side. This is like, putting T (x) = u
in one dimensions and saying T ′(x)dx = du. Here observe that the derivative
of the map (x, y) 7→ (u, v) is indeed T .

Having said in part (i) that something is true for every linear transform
T ; we started part (ii) with the phrase ‘whenever (i) is true’. It appears
puzzling. The reason is the following.

It is not that we prove (i) for every T and then prove (ii) for every T etc.
We prove (i) for simple transforms; then (ii) is available for that transform,
we use this (ii) to prove (i) for more general transforms — finally covering
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all linear transforms. That is why it is stated in that fashion.

to put it differently, we consider all linear transformations T for which
(i), (ii) and (iii) hold. We show that for certain basic transformations this
is true. Then we show that if it is true for two transformations, then it is
true for their composition. Then we realize that every linear transformation
is a composition of the basic ones. This is executed in a different order below.

2.
If T is any one of the following linear transformations we showed that

|TQ| = |T ||Q| for any rectangle Q (with sides parallel to the axes). Recall
that |A| denotes area of A.

(i) interchange of coordinates:

T (x, y) = (y, x) or T is given by the matrix

(

0 1
1 0

)

(ii) multiply first coordinate :

T (x, y) = (ax, y) or T is given by the matrix

(

a 0
0 1

)

where a 6= 0.

(iii) Add the second coordinate to the first;

T (x, y) = (x+ y, y) or T is given by the matrix

(

1 1
0 1

)

Keep in mind that R2 consists of column vectors, for typographical rea-

sons we are showing it rows; we do not want to tax our reading by putting
transpose symbol all the time.

3.
We now claim that every non-singular transformation is a composition of

the above three transformations. Here is how. Instead of giving a general
proof that works for every Rn, I give a hands-on proof that works just for
R2. Such proofs are considered bad because you can not generalize quickly.
In what follows T stands for non-singular linear transformation on R2.

Suppose that T is given by the matrix

(

a b
c d

)

, that is

T (x, y) = (ax+ by, cx+ dy)

case (i): All a, b, c, d are non-zero.

(x, y) → (ax, y) → (y, ax) → (by, ax) → (ax, by) → (ax+ by, by)
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→ (cx+ c
b

a
y, by) → (by, cx+

cb

a
y) → ((d− cb

a
)y, cx+

cb

a
y)

→ (cx+ dy, cx+
cb

a
y) → (cx+

cb

a
y, cx+ dy) → (ax+ by, cx+ dy).

case (ii) suppose that exactly one of a, b, c, d is zero. say d = 0 and others
are non-zero. Thus T (x, y) = (ax+ by, cx).

(x, y) → (ax, y) → (y, ax) → (by, ax)

→ (ax+ by, ax) → (ax, ax+ by) → (cx, ax+ by) → (ax+ by, cx).

Similarly, the other cases when exactly one of them is zero is done.

case(iii) Exactly two of them zero. Since T is non singular the only
possibilities are a = d = 0 or b = c = 0. Let us consider the case a = d = 0.
Thus the transformation is T (x, y) = (by, cx).

(x, y) → (cx, y) → (y, cx) → (by, cx).

Since there can not be three zeros this completes all the cases. thus every
non-singular transformation is a composition of the three basic ones.

if you look at the proof closely, you can organise carefully and prove for
linear transformations on Rn with the help of induction.

4.
If U is a bounded open set, then so is its image T (U) and moreover,

T (∂U) = ∂(TU).

Let T =

(

a b
c d

)

Let k = max{|a|, |b|, |c|, |d|}. If (x, y) ∈ U then by Cauchy-Schwarz,

|ax+ by| ≤
√
a2 + b2

√

x2 + y2 ≤
√
2 k ||(x, y)||.

Exactly the same inequality holds for cx+ dy so that

||T (x, y)|| ≤ 2k ||(x, y)||.

Thus if U is bounded then so is TU .

Since T−1 is also linear transformation, it is continuous and thus inverse
image of open sets are open (definition of continuity). In other words TU is

3



open.

To prove the last sentence, let p ∈ ∂U . If you take any open set V con-
taining Tp, then T−1V is an open set containing p and hence has points from
U as well as from U c (definition of boundary point). By looking at their im-
ages and remembering that T is one-one, we conclude that V contains points
from TU as well as from T (U c) = (TU)c. This proves that if p ∈ ∂U then
Tp ∈ ∂(TU).

similarly one argues that if p 6∈ ∂U then Tp 6∈ ∂(TU). This proves
T (∂U) = ∂(TU).

5.
Let us say that a transformation T is good if |TQ| = |T ||Q| for every

rectangle Q with sides parallel to the axes. Let us also abbreviate rspa to
say ‘rectangle with sides parallel to the axes’.

Let U be a bounded open set with small boundary. Then so is its image
T (U) under any good transformation.

The only thing to be proved, in view of the above, is that TU has small
boundary. Since U is bounded, its boundary ∂U is a compact set. since it is
small we can cover it by finitely many rspa {Qi} with total area smaller than
ǫ for any pre-assigned ǫ > 0. We know that their images {TQi} (need not
be rspa) have total area at most |T |ǫ because T is good. Also these images
cover ∂U . Thus ∂U can be covered by sets whose total area is smaller than
any desired quantity. This shows it is small.

We covered ∂(TU) with images of rspa’s. If you are uncomfortable
because we did not cover ∂(TU) with rspa of small total area, you can
proceed as follows. Cover each TQi with rspa having total area at most
2|TQi| = 2|T ||Qi|. (Can you do that? Yes, recall definition of area as inte-
gral of the function 1 and recall integral as inf of upper sums etc. You need
to remember the full story). Consider the collection so obtained and argue.

6.
For any bounded open set V with small boundary, |TV | = |T ||V | under

any good T .

the above discussion says that TV has small boundary too and hence
both V and TV have areas. So the conclusion makes sense. We prove its
truth as follows.
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Recall that area is integral of the function 1. Take ǫ > 0. Put V in a rspa
and get a partition Π = {Qi} with rspa so that

U − L < ǫ; L < |V | < U. (∗)

Since we are integrating the function 1, L is nothing but the sum of areas of
rectangles in Π which are contained in V , denote these by L. On the other
hand, U is sum of areas of rectangles in Π which intersect V , denote these
rectangles by U .

Clearly,
⋃

{TQ : Q ∈ L} ⊂ TV ⊂
⋃

{TQ : Q ∈ U}.
Use the fact that T is good, area is monotone, area is additive for disjoint
sets (we proved this earlier using integral is additive). Since all sets that we
are considering have areas, we conclude

|T |L < |TV | < |T |U, |T |U − |T |L < |T |ǫ. (∗∗)

These inequalities (∗), (∗∗) and the fact that ǫ > 0 is arbitrary will prove the
result.

7.
Every non-singular transformation is good.

We knew that the three basic linear transforms are good and every non-
singular transformation is a composition of these.

We shall now complete the proof of the statement by showing that com-
position of good transforms is again good. so let T1 and T2 be good. Take
any rspa Q. Interior of Q, say V , is a bounded open set with small boundary.
From the results above you conclude that T1V is an bounded open set with
small boundary and so, in turn, T2 being good we conclude that T2(T1V ) is
a bounded open set with small boundary.

Also |T2T1(V )| = |T2||T1||V |. Since determinants multiply under compo-
sition of transforms we have |T2oT1| = |T2||T1|. Denoting T = T2oT1, we thus
have |TV | = |T ||V |. Clearly ∂TV = T (∂V ) and is small. We conclude that

|TQ| = |T ||Q|.

In other words, composition of good transforms is again good. This com-
pletes proof that every non-singular transform is good.
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We know that T2 being good, it transforms rspa nicely. Since T1Q need
not be a rspa (though a quadrilateral), we are forced to use that T2 trans-
forms such sets also nicely. This is precisely, the content of part (ii) of the
there. As soon as you are told T2 is good you can deduce it transforms T1Q
also appropriately. Of course, once we know that the composition T is good,
it transforms not only rspa nicely, but also bounded open sets with small
boundary nicely and the formula for areas holds.

8.
Thus so far we have proved parts (i) and (ii) (7, 6 above) of the theorem

for every non-singular transform. To complete the proof of the theorem, we
need to prove part (iii); integral formula for continuous functions.

Let us first assume that the function is defined on TV . This will allow us
to use uniform continuity etc. Since both V and TV have small boundaries
we know the functions are integrable. That is, f is integrable on TV and
foT is integrable on V . We only need to show the equality of integrals. Let
ǫ > 0 Let f be bounded by M .

By an earlier theorem, there is an δ1 > 0 such that if we take any good
partition of TV with norm smaller than δ1, then upper and lower sums are
close to

∫

TV

f upto ǫ/4.

Denote g = foT on V . This is sensible because, T (V ) = TV . Choose
δ > 0 so that the following two hold: (i) |Tp−Tq| < δ1 whenever |p− q| < δ.
(ii) For any good partition of V with norm smaller than δ1, the upper and
lower sums differ from

∫

V

g by at most ǫ/4.

Now let us take a partition Π of V with ||Π|| < δ. For example you
can take grid of rspa. Then from what had been done so far, we conclude
the following. Firstly, TΠ is a good partition of TV . Secondly norm of this
partition TΠ is at most δ1. Observe that for any set S ∈ Π the sup of g over
S is same as sup of f over TS ∈ TΠ. similarly for inf. Denote by L,U the
upper and lower sums of g on V for the partition Π. Similarly L1 and U1 for
the similar sums for f on TV for the partition TΠ on TV . Then we have

L ≤
∫

V
g ≤ U ; U − L < ǫ/4; L1 ≤

∫

TV
f ≤ U1; U1 − L1 < ǫ/4.

U1 = |T |U ; L1 = |T |L.
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These inequalities are good enough to conclude

|T |
∫

V
foT =

∫

TV
f.

Since |T | is a number, you can put it inside integral too.

This completes proof of the theorem.

Thus the theorem is proved when f is defined on TV , in fact, when f is
uniformly continuous on TV .

There are several ways of deducing the result for bounded continuous
functions from the above. Here is a way. Fix any ǫ > 0; get finitely many
rspa {Qi} whose interiors cover boundary of TV and have total area smaller
than ǫ/M (Recall, M is the bound for f). Set

W1 = TV − ∪{Qi}; V1 = T−1W1

Then, V1 is a bounded open set with small boundary; TV1 = W1; Restrict f
to W1; apply the earlier result. Convince yourself that the difference between
this and original integrals are small.

9
We shall prove the following which generalizes the above result. This goes

by the name of Jacobian rule. This is very useful in evaluating integrals.

Theorem (Jacobian rule):
Let Ω ⊂ R2 be a bounded open set. Let T : Ω → R2 be a one-to-one C1

map with non-singular derivative at every point of Ω.
At every point (x, y) ∈ Ω let |T ′(x, y)| denote the modulus of the deter-

minant of the derivative matrix.
Then the following are true:
(i) For any rectangle Q = [a, b]× [c, d] ⊂ Ω; TQ has small boundary and

|TQ| =
∫

Q
|T ′|.

that is
|TQ| =

∫ ∫

Q
|T ′(x, y)|dxdy.

(ii) (when (i) holds for a T ) For any open set V with V ⊂ Ω with small
boundary; TV is an open set with small boundary and

|TV | =
∫

V
|T ′|.
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that is,

|TV | =
∫ ∫

V
|T ′(x, y)|dxdy.

(iii) (whenever (i) and (ii) hold for a T ) Let V be as above. For any
continuous function f on TV = TV ,

∫

TV
f =

∫

V
foT |T ′|

that is,
∫

TV
f(u, v)dudv =

∫

V
f(T (x, y))|T ′(x, y)|dxdy.

If you feel uncomfortable with function given on closure TV but integrals
on open set TV , you can take integral too over TV . It makes no difference
as we saw earlier once.

Note that when T is a linear transform defined on all of R2, this theorem
reduces to the earlier one because the derivative is now the same matrix at
every point, namely, T .

10
We first deal with two special cases. Then we argue that the statement

remains true under compositions. Finally show any map is composition of
maps of the special kind. This last step is true only ‘locally’. Then a ‘patch-
ing’ will prove general case without much work.

Here is a special case, y-coordinate is not changed by T .
Suppose Q = [a, b]× [c, d] is an rspa. Let g(x, y) be a real C1 function on

Q such that
ϕ(x, y) = (g(x, y), y)

is a one one function on Q with non-singular derivative.

ϕ′(x, y) =

(

g1 g2
0 1

)

Thus non-singular derivative, simply means that g1 is not zero.

We show

|ϕQ| =
∫ d

c

∫ b

a
|ϕ′|.

There is just one subtle point. We always talked about derivatives at
points in an open set. Here we started with a closed rectangle. Since any
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way the present theorem is not our main focus, we want to apply this for rect-
angles contained in Ω, you can as well pretend that g is defined on an open
set containing this rectangle. You can make other interpretations too (that
do not look outside the rectangle), but let us not get distracted by this point.

Note that |ϕ′| = |g1|. Since g1 is continuous and Q is convex, mean value
theorem implies that g1 keeps same sign through out Q. We shall assume
that g1 > 0. Thus |g1| = g1 and we need to show

|ϕQ| =
∫ d

c

∫ b

a
g1.

We can actually identify ϕ(Q). You should draw the picture.

The line [a, b]× {c} is mapped in an increasing manner (because g1 > 0)
to the line segment {(g(x, c), c) : a ≤ x ≤ b}. Note that continuity forces
that the image is a line segment and since y-coordinate is unchanged, the
image is part of the horizontal line y = c.

The line [a, b]× {d} is mapped to the line segment
{(g(x, d), d) : a ≤ x ≤ b}.

The line {a}× [c, d] is mapped to the curve {(g(a, y), y) : c ≤ y ≤ d} and
the line {b} × [c, d] is mapped to the curve {(g(b, y), y) : c ≤ y ≤ d}

By the the theorem on iterated integration,
∫

ϕ(Q)
1 =

∫ d

c

∫ g(b,y)

g(a,y)
dxdy =

∫ d

c
[g(b, y)− g(a, y)]dy.

∫

Q
g1 =

∫ d

c

(

∫ b

a
g1dx

)

dy =
∫ d

c
[g(b, y)− g(a, y)]dy.

and hence they are equal. for the second integral we used the fundamental
theorem of Calculus. For each fixed y, g as a function of x is a primitive for g1.

11.
Let Q = [a, b]× [c, d] be as above. Let h(x, y) be a real C1 function on Q

such that
ϕ(x, y) = (x, h(x, y))

is a one one function on Q with non-singular derivative.

ϕ′(x, y) =

(

1 0
h1 h2

)
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Thus non-singular derivative, simply means that h2 is not zero.

We can show exactly as above

|ϕQ| =
∫ d

c

∫ b

a
|h2|.

12.
Let now Ω be an bounded open set and

ϕ(x, y) = (ξ(x, y), η(x, y))

be a one-to-one C1 function on Ω with derivative non-singular at every point.

ϕ′(x, y) =

(

ξ1(x, y) ξ2(x, y)
η1(x, y) η2(x, y)

)

|ϕ′| is the modulus of the determinant of the above derivative matrix. The
matrix above is referred to as Jacobian. We show that for any rectangle
Q = [a, b]× [c, d] ⊂ Ω

|ϕQ| =
∫

Q
|ϕ′|. (♠)

The main idea is that ϕ is ‘locally’ a composition of the above two kinds.
Here is the precise statement.

Step 1: For every point x there is an open set V containing x such that
(♠) holds for rectangles contained in V .

Step 2: Step 1 implies the full (♠).

First let us argue step 2. Let Q = [a, b] × [c, d] ⊂ V be any rectangle.
for each p ∈ Q there is a Vp as above. We can take the Vp to be a rspa
with p at its centre. Let Wp be the rectangle with sides consisting of the
middle halfs of sides of Vx. Take finitely many of these, say {Wi} such that
they cover Q; Remember Q is compact. Note that these {Wi} and the Q
determine a partition of Q into rspa. Since each of these sets of the parti-
tion is contained in one single Vi we can apply the result coming from step 1
and add up. Remember areas add up over disjoint regions and so do integrals.

We shall execute step 1.
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Take a point (x0, y0) ∈ Ω. Since ϕ′(x0, y0) is non-singular, its first col-
umn can not be zero. We must have either ξ1(x0, y0) 6= 0 or η1(x0, y0) 6= 0.
There is no loss to assume that ξ1(x0, y0) 6= 0. Otherwise you need to apply
interchange of coordinates in the range space. If you think about it you will
see. But first just assume this and proceed.

Since ξ1 is a continuous function, there is no loss to assume that in a ball
around (x0, y0) it is strictly positive. If it is negative, similar proof applies.
consider the map

Ψ(x, y) = (ξ(x, y), y)

Then

Ψ′ =

(

ξ1 ξ2
0 1

)

is clearly non-singular in this ball and hence there is an open set, say V ,
containing (x0, y0) such that Ψ maps this onto an open set W and the in-
verse map Ψ∗ is differentiable etc. This is by the inverse function theorem.
Note that Ψ changes only one coordinate, namely, the first coordinate. Also
observe

|Ψ′| = |ξ1| = ξ1. (•)
Now define on the open set W ∗ the following map;

ζ(a, b) = (a, η(Ψ∗(a, b))); (a, b) ∈ W

Thus ζ changes only one coordinate, namely the second coordinate.

Let us see what is the composition ζ(Ψ(x, y)) on V . Observe Ψ(x, y) =
(ξ(x, y), y). Since ζ does not change the first coordinate we see that first
coordinate of the composition, namely ζ(Ψ(x, y)) is ξ(x, y).

Regarding second coordinate of the composition, to calculate ζ of this
point (a, b) we need to apply Ψ∗ which is inverse of Ψ and so you get back
(x, y), that is, (x, y) with Ψ(x, y) = (a, b) and then you should look at eta of
this, you get η(x, y). Thus second coordinate of the composition ζoΨ is η.
Thus

ζ(Ψ(x, y)) = (ξ(x, y), η(x, y)) = ϕ(x, y).

Let us also note that

ζ ′(a, b) =

(

1 0
? ??

)

(†)
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where the second row is ∇ηoΨ∗ and so by chain rule

(?, ??) = η′(Ψ∗(a, b))(Ψ∗)′(a, b)

= (η1(Ψ
∗(a, b)), η2(Ψ

∗(a, b))) [Ψ′(Ψ∗(a, b))]
−1

But

Ψ′(P ) =

(

ξ1(P ) ξ2(P )
0 1

)

[Ψ′(P )]
−1

=





1/ξ1(P ) −ξ2(P )/ξ1(P )

0 1





So
(?, ??) =

(η1(Ψ
∗(a, b)), η2(Ψ

∗(a, b)))





1/ξ1(Ψ
∗(a, b)) −ξ2(Ψ

∗(a, b))/ξ1(Ψ
∗(a, b))

0 1





(††)

Since both Ψ and ζ change only one coordinate, they are good, that is
we can use theorem for them. Note that (i) of the theorem holds for each of
them and hence the other parts too. Thus if you take any rspa Q ⊂ V then
Ψ(Q) ⊂ W . We can no longer say that this later set is a rectangle. However
(ii) and (iii) of the theorem can be used. Thus

|ϕ(Q)| = |ζ[ΨQ]| =
∫

ΨQ
|ζ ′(u, v)|dudv

by part (ii) of the theorem applied to the transform ζ and the set ΨQ. We
now apply part (iii) to the transform Ψ and the integrand |ζ ′| to see

|ϕ(Q)| =
∫

Q
|ζ ′(Ψ(x, y))||Ψ′(x, y)|dxdy.

To calculate the first term in the integrand, we use (†) and (††). Remember
Ψ∗ is inverse of Ψ and evaluate (††) at (a, b) = Ψ(x, y) substitute in (†) to
get

|ζ ′(Ψ(x, y))| =
∣

∣

∣

∣

∣

η1(x, y)ξ2(x, y)

ξ1(x, y)
− η2(x, y)

∣

∣

∣

∣

∣

From (•)
|Ψ′(x, y)| = ξ1(x, y)
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Substituting these two in the above integral we get

|ϕQ| =
∫

Q
|η1ξ2 − η2ξ1| =

∫

Q
|ϕ′|.

This completes the proof of (♠). What the above shows is that (♠) holds
for all rectangles contained in the open set V that we have exhibited. Thus
around every point there is a open set such that this holds for all rspa con-
tained in that open set. As argued in step 2, this is enough.

Remember the above proof used the fact that (a) the result is true for
transformations which change only one coordinate and (b) when part (i) of
the theorem is proved for a transformation then you can use other parts for
that transformation. The result (a) has already been proved earlier.

13.
Thus we should now prove parts (ii) and (iii) of the theorem assuming (i)

holds.

Let V be an open set with small boundary. The inverse function theorem
already assures that the image TV is an open set. To show it has small
boundary, we repeat the same argument that we had when T is a linear
transformation (item (5) above). We cover ∂V with finitely many rspa of
small total area and use the fact that |T ′| is bounded on compact sets to get
an estimate for the area of the image.

14.
We shall now prove part (iii) of the theorem assuming part (ii) for T .

I have avoided Riemann sums so far in two dimensions. It is better to
have them handy now, to avoid a nuisance.

Let f be a bounded function defined on S = V . In the following; partition
Π of S is either with rspa or a good partition. We defined upper and lower
sums. We now define Riemann sums. A selection ξ for Π is a selection of one
point pA from each set A of the partition. Given a partition and selection we
define the Riemann sum

R(Π, ξ) =
∑

A∈Π

f(pA)|A|.

Thus instead of taking inf or sup over a set we evaluate the function at a
point in that set. These Riemann sums also converge to the integral. More
precisely,
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Given ǫ > 0 there is a δ > 0 such that the following holds:

||Π|| < δ good; ξ selection for Π ⇒
∣

∣

∣

∣

R(Π, ξ)−
∫

f
∣

∣

∣

∣

< ǫ. (†)

Integral is over V . There is nothing new in this. We already knew of a δ so
that the upper sum, lower sum, integral are close as soon as ||Π|| < δ. It is
obvious that the Riemann sum is in between the lower and upper sums and
hence the above conclusion holds for it, no matter what the selection is.

We shall slightly generalise the notion of above Riemann sum when we
have a product function. Suppose we have two continuous functions f and
g on V . We want to integrate the product fg. Let Π be a good partition of
V and a selection ξ for it. We make an interesting Riemann sum. For a set
A of the partition, instead of taking the term fg(pA)|A| = f(pA)g(pA)|A| we
take f(pA)

∫

A g. After all, if the set A is small, value of g at any point of A is
close to g(pA) and so the integral is indeed close to g(pA)|A|. Thus we define

R1(Π, ξ) =
∑

A∈Π

f(pA)
∫

A
g.

This makes sense because our partition is good and g is continuous bounded.
We claim that, as ||Π|| → 0, these sums also converge to the integral

∫

fg.
More precise statement is the following.

Given ǫ > 0 there is a δ > 0 such that

||Π|| < δ good; ξ selection for Π ⇒
∣

∣

∣

∣

R1(Π, ξ)−
∫

fg
∣

∣

∣

∣

< ǫ. (††)

This is proved as follows. fix ǫ > 0. Let M be a bound for |f | on V .
Choose δ > 0 such that

||Π|| < δ good; ξ selection;⇒
∣

∣

∣

∣

R(fg,Π, ξ)−
∫

V
fg
∣

∣

∣

∣

< ǫ/4.

and
p, q ∈ V ; ||p− q|| < δ ⇒ |g(p)− g(q)| < ǫ/(4M |V |).

Now take any good partition Π; with ||Π|| < δ and any selection ξ. Let
A ∈ Π.

p, q ∈ A ⇒ ||p− q|| < δ ⇒ |g(p)− g(q)| < ǫ/c; c = 4M |V |.

So
∣

∣

∣

∣

g(pA)|A| −
∫

A
g
∣

∣

∣

∣

=
∣

∣

∣

∣

∫

A
[g − g(pA)]

∣

∣

∣

∣

≤ ǫ|A|
c

.
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hence
∣

∣

∣

∣

f(pA)g(pA)|A| − f(pA)
∫

A
g

∣

∣

∣

∣

≤ ǫM |A|
c

=
ǫM

4M |V | |A|

so that
∣

∣

∣

∣

∣

∑

A

f(pA)g(pA)|A| −
∑

A

f(pA)
∫

A
g

∣

∣

∣

∣

∣

≤
∑

A

ǫ

4|V | |A| =
ǫ

4
.

Thus
|R−R1| < ǫ/4.

But by choice of δ

|R−
∫

fg| < ǫ/4.

combining these last two inequalities we have
∣

∣

∣

∣

R1 −
∫

fg
∣

∣

∣

∣

< ǫ/2

as required. this completes the proof of the claim.

Let us now return to our problem. We want to show
∫

TV
f =

∫

V
foT |T ′|. (∗∗)

Let ǫ > 0 be fixed. We show that the difference between the two quantities
above is at most ǫ.

Use (†) with the set TV and function f and ǫ/4. Get δ > 0 so that

||Π|| < δ good for TV ; ξ selection for Π ⇒
∣

∣

∣

∣

R(Π, ξ)−
∫

TV
f

∣

∣

∣

∣

< ǫ/4 (•)

Use (††) with the set V ; function f as foT and function g as |T ′| and
ǫ/4. Get δ1 > 0 so that

||Π|| < δ1 good for V ; ξ selection for Π ⇒
∣

∣

∣

∣

R1(Π, ξ)−
∫

V
foT |T ′|

∣

∣

∣

∣

< ǫ/4 (••)

Take δ1 smaller if necessary so that the following holds

p, q ∈ V ; ||p− q|| < δ1 ⇒ ||Tp− Tq|| < δ/2. (• • •)

Now let us take a good partition Π of V with ||Π|| < δ1 and a selection ξ for
it. Let TΠ be the partition of TV given by {TA : A ∈ Π}. Let Tξ be the
selection for it given by pTA = TpA.
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It is not difficult to show that TΠ is a good partition of TV . By (• • •)
we see ||TΠ|| < δ and so by (•) we have

∣

∣

∣

∣

R(TΠ, T ξ, f) −
∫

TV
f
∣

∣

∣

∣

< ǫ/4.

Also
∣

∣

∣

∣

R1(Π, ξ, foT |T ′|) −
∫

V
foT |T ′|

∣

∣

∣

∣

< ǫ/4

For any set A ∈ Π, we already know from part (ii) of the theorem that
|TA| = ∫

A |T ′| so that it is easy to see that

R(TΠ, T ξ, f) = R1(Π, ξ, foT |T ′|)

Hence the two inequalities show that

∣

∣

∣

∣

∫

V
foT |T ′| −

∫

TV
f

∣

∣

∣

∣

< ǫ/2.

This completes proof of (∗∗) and thus proof of part (iii) of the theorem.

This completes proof of all the three parts of the theorem.

15.
We have completed the proof the Jacobian formula as stated.

it appears unsatisfactory. Would have been nice if part (iii) is stated
for any bounded continuous function on Ω rather than for open sets V with
V ⊂ Ω. Actually this is how I stated in the classes starting with Ω which is
bounded open set with small boundary. But I proved only this much.

Yes, it is also true if you started with Ω bounded open set with small
boundary. Proof is simple. You ‘approximate’ U with sets V as above. This
can be made precise as follows. Cover ∂Ω with finitely many open rspa, take
their closures and take V to be the part of Ω outside these finitely many
closed rectangles. Since you can make total area of these rectangles as small
as you please you ken get the result for Ω too.

However once you understand the main ideas, certain beautifications you
can do yourself. At this stage you need not bother (unless you wish to).

16.
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Improper integrals are dealt with as in the one dimensional case. This
is a long but routine route and would appear boring if spelt out with all
details. You may have a bounded region but the function is unbounded like
1/||x||. Or the function may be bounded but the region is unbounded, like
exp{−||x||2} on R2.

Just to give you a feel let us discuss the case of a function f given on R2.
We say that the integral

∫

R2

f

exists if whenever you take a sequence of rspa Qn ↑ R2 the numbers

∫

Qn

f

converge to a limit and the limit is independent of the sequence of rectangles
taken. Then this common value is called the value of the integral.

For example, if

sup
n

∫

[−n,n]×[−n,n]

|f(x, y)|dxdy < ∞

Then f is integrable. In other words there is a number c such that no matter
what rectangles (or regions) you take which increase to R2, your integrals
converge to c.

We shall work out some examples rather than developing the theory of
improper integrals.
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