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1. Suppose f and g are continuous functions on an interval [a, b]. Suppose
that g(x) ≥ 0 for every x. Show that there is a number θ ∈ (a, b) such
that

∫ b

a
f(x)g(x)dx = f(θ)

∫ b

a
g(x)dx.

[In case
∫

g = 0 argue that g ≡ 0 and any theta would do. If not, con-
sider the ratio of the two integrals and intermediate value theorem for
f . Remember to show a < θ < b.] This is called mean value theorem

for integrals.

Let f be a function on an interval [a, b] which is n times continuously
differentiable. Show that for a ≤ x ≤ b,

f(x) =
n−1
∑

k=0

f (k)(a)

k!
(x− a)k +

∫ x

a
f (n)(t)

(x− t)n−1

(n− 1)!
dt. (♠)

[integration by parts]

The above equality is stated as follows

f(x) =
n−1
∑

k=0

f (k)(a)

k!
(x− a)k +Rn;

where

Rn =
∫ x

a
f (n)(t)

(x− t)n−1

(n− 1)!
dt.

Rn is called the remainder term. Thus (♠) is called Taylor expansion

with integral form of remainder.

Use appropriate g in the mean value theorem to show

f(x) =
n−1
∑

k=0

f (k)(a)

k!
(x− a)k + f (n)(θ)

(x− a)n

n!
.

Here θ is a number between a and x. This is called Taylor expansion

with Lagrange form of remainder.
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Use appropriate g in mean value theorem (♠) to show

f(x) =
n−1
∑

k=0

f (k)(a)

k!
(x− a)k + f (n)(θ)

(x− θ)n−1

(n− 1)!
(x− a).

Here θ is a number between a and x. This is called Taylor expansion

with Cauchy form of remainder.

2. Consider R3.

Can you imagine the set of points

{(x, y, z) : x
2

4
+
y2

9
+ z2 = 1}.

For each fixed z, its (x, y)-section is either an ellipse or a single point
or empty set depending on whether |z| < 1 or |z| = 1 or |z| > 1. (hold
on, what is section?) This is called an ellipsoid. More generally, for
fixed numbers a, b, c (none zero) the set of points satisfying (x/a)2 +
(y/b)2 + (z/c)2 = 1 is called an ellipsoid.

Can you imagine the set of points

{(x, y, z) : x
2

4
+
y2

9
− z2 = 1}.

For each fixed z, its (x, y)-section is an ellipse. It is smallest when z = 0,
keeps on becoming bigger as |z| increases. This is called a hyperboloid
of one sheet. More generally, for fixed numbers a, b, c (none zero) the set
of points satisfying (x/a)2+(y/b)2− (z/c)2 = 1 is called a hyperboloid
of one sheet.

Can you imagine the set of points

{(x, y, z) : x
2

4
+
y2

9
− z2 = −1}.

For each fixed z its (x, y)-section is either an ellipse or a single point
or empty set depending on whether |z| > 1 or |z| = 1 or |z| < 1.
In particular the set is in two parts, one in the region (z ≥ 1) and
another in the region (z ≤ −1). This is called hyperboloid of two
sheets. More generally, for fixed numbers a, b, c (none zero) the set of
points satisfying (x/a)2 + (y/b)2 − (z/c)2 = −1 is called a hyperboloid
of two sheets.
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3. Define the function f on R2 as follows. If x and y have same sign then
f(x, y) = xy and otherwise f(x, y) is zero. Understand the function.
What is its value at (0, 5)? at (−3, 0)?

is this a continuous function?

Where is the function f(x, y) =
√
x −√

y defined? is it continuous at
those points?

Let f(x, y) equal 1 on the two axes and zero for points not on the axes.
Where is this function continuous?

f(x, y) = (x2 + y2)/(x2 − y2). Where is this defined? Is it continuous
there?

f(x1, x2, x3, x4) = sin x1 cos x2 − x4e
x3 is a continuous function on R4.

4. Let A be an n × n matrix. Define f on Rn by f(x) = Ax. Is it
continuous?

Let us think of points in Rn as column vectors and let xt denote trans-
pose of x; so xt is a row vector. Define f(x) = xtAx. is it continuous
function?

5. Let S ⊂ Rn. Let C(S) denote the set of all real valued continuous
functions on S. Sow that this is a linear space. show that product of
two continuous functions is again continuous.

Suppose that I have n2 continuous functions on S denoted as fij for
1 ≤ i, j ≤ n. Define f(x) to be the determinant of the matrix ((fij(x)))
for each x ∈ S. Show that f is a continuous function on S.

Let f be a continuous function on Rn. Let π be a permutation of the
set {1, 2, · · · , n}. Define a function g on Rn by

g(x1, x2, · · · , xn) = f(xπ(1), xπ(2), · · · , xπ(n)).
Show g is continuous.

Let f be a continuous function on Rn. Let f1, · · · , fn be continuous
functions on R to R. Define g on Rn by

g(x1, x2, · · · , xn) = f(f1(x1), f2(x2), · · · fn(xn)).
then g is a continuous function on Rn. More generally, let f1, f2, · · · , fm
be continuous functions on Rn and f be a continuous function on Rm.
Define g on Rn by

g(x) = f(f1(x), f2(x), · · · , fm(x)); x ∈ Rn.

Show g is continuous on Rn.
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6. Suppose f is a continuous function on R5. Let us fix 2 real numbers
a1, a2. Define a function on R3 by

g(x1, x2, x3) = f(x1, a1, x2, x3, a2).

Show that g is a continuous function on R3. do you think the numbers
3 and 5 are special or they an be replaced by any integers 1 ≤ m < n.
How does such a generalization read?

7. Suppose f is a function on R3 and g is a function on R4. We define a
function h on R7 as follows (think of it as external product).

h(x1, x2, · · · x7) = f(x1, x2, x3)g(x4, · · · , x7).

Show that h is a continuous function on R7. do you think 3 and 4 are
special or you can replace them by any integers m ≥ 1 and n ≥ 1. How
does such a generalization read?

8. This problem concerns the way of thinking of our spaces themselves.

Let (x, y) ∈ R2 and
√
x2 + y2 = 1. Show that there is a number

θ ∈ [0, 2π) such that cos θ = x; sin θ = y.

Show that every non-zero vector (x, y) ∈ R2 can be uniquely repre-
sented as (r, θ) ∈ (0,∞)×[0, 2π) via x = r cos θ, y = r sin θ. These num-
bers (r, θ) are called the polar coordinates of the point whose Cartesian
coordinates are (x, y).

Show that every non-zero vector (x, y, z) ∈ R3 can be uniquely repre-
sented as (r, θ, z) ∈ (0,∞)×[0, 2π)×R via x = r cos θ, y = r sin θ, z = z.
These numbers (r, θ, z) are called cylindrical coordinates of the point
(x, y, z).

Show that every non-zero vector (x, , y, z) ∈ R3 can be uniquely repre-
sented as (r, θ, φ) ∈ (0,∞)× [0, π]× [0, 2π) via

x = r cosφ sin θ; y = r sinφ sin θ; z = r cos θ.

These numbers (r, θ, φ) are called spherical coordinates of (x, y, z).
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9. Last time we said that behind the norm is the ‘linear’ inner product.
Let us verify that inner product is actually linear (actually bilinear or
linear in each argument).

Show 〈cx, y〉 = c〈x, y〉 = 〈x, cy〉.
Show that 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉 and 〈x, y + z〉 = 〈x, y〉+ 〈x, z〉
Show the polarisation identity:

||x+ y||2 − ||x− y||2
4

= 〈x, y〉.

10. Argue rigorously that the following set is an open set.

{x ∈ Rd : ||x− a|| < r}.

Here a ∈ Rd and r > 0.

11. Let A ⊂ Rd (you think of R2 and proceed till the finish and then look
back).

Given a point x ∈ Rd there are exactly three possibilities:

either there is an r > 0 such that B(x, r) ⊂ A,

or there is an r > 0 such that B(x, r) ⊂ Ac,

or B(x, r) intersects both A and Ac for ever r > 0.

In the first case say that x is an interior point of A, in the second case
say that x is an exterior point of A, in the third case say that x is a
boundary point of A.

Show that the set Ao of interior points of A is an open set. Show that
it is the largest open set contained in A.

Show that the set of exterior points of A is an open set. It is the largest
open set disjoint with A.

Show that the set ∂A of boundary points of A is a closed set.

Show that A = A ∪ ∂A is a closed set. Show that it is the smallest
closed set containing A. This is called closure of A.
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12. If A ⊂ R is the set of rational numbers, calculate Ao and ∂A.

Do the same if A = {(x, y) : x2 + y2 < 1} ⊂ R2.

Do the same if A = {(x, y) : x > 0, y > 0} ⊂ R2.

13. I have a closed subset of the real line. I know that every rational
number is in my set. What do you think my set could be?

14. Let f : R2 → R. Suppose that f(x, y1) = f(x, y2) for any three real
numbers x, y1, y2.

Show that there is a function g : R → R such that f(x, y) = g(x) for
every (x, y).

15. Let f(x, y) be one or zero according as y is rational or not. Does f1
exist? what is it? Is f continuous at any point?

16. Find derivatives of the following functions.

f(x, y) = xy defined on {(x, y) : x > 0, y > 0}.
f(x, y, z) = x(y

z) defined on {(x, y, z) : x > 0, y > 0, z > 0}.
f(x, y, z) = (xy)z defined on {(x, y, z) : x > 0, y > 0, z > 0}.
f(x, y, z) = x(y+z) defined on {(x, y, z) : x > 0, y > 0, z > 0}.
f(x, y, z) = (x+ y)z defined on {(x, y, z) : x > 0, y > 0, z > 0}.
f(x, y) = sin(x cos y).

f(x, y, z) = sin(x cos[y sin z]).

f(x, y, z) = sin(xyz)

f(x, y, z) = sin x+ sin y + sin z.

17. Let n ≥ 3. Put

f(x1, x2, · · · , xn) =
1

(x21 + x22 + · · ·+ x2n)
(n−2)/2

.

Show
f11 + f22 + · · ·+ fnn ≡ 0.

18. Let
f(x, y) = ex cos y; g(x, y) = ex sin y.

Show f11 + f22 ≡ 0 and similar for g.
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19. Find if limit as (x, y) → (0, 0) exists for the following and find when
the limit exists.

f(x, y) =
sin(x2 + y2)

x2 + y2
; g(x, y) =

sin(x4 + y4)

x2 + y2

f(x, y) =
sin(x2 + y2)

x4 + y4
; g(x, y) =

e−1/(x2+y2)

x4 + y4

20. Suppose that ξ and η are C1 functions on R to R. Find the derivatives
of the following.

f(x, y) = ξ(x+ y); g(x, y) = η(xy).

f(x, y) = ξ(x)η(y); g(x, y) = η(x).

21. f : R2 → R. Assume that the two partial derivatives exist and f1 ≡ 0
and f2 ≡ 0. Show that f is a constant.
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[sometimes I feel that some of you are not serious and are violating the trust put

on you by the Institute. If it persists, and if you use your freedom not to attend

classes, I would have to use my freedom not to allow you to sit for my exam. But

let us hope sense prevails and I do not have to do this.]

We have finally changed our attitude towards derivative, it is not a
number, not a vector, but a linear transformation — the best that you
can think of for your function near your point of interest. It takes time
to get used to this idea. Do not worry. But what you should realize
is that we came to the conclusion in order to bring some order in a
chaotic situation. I am not giving many problems in this set so that
you have time to settle down to the new ideas.

22. The following functions have the interesting property that they are
continuous ‘along any line’ at (0, 0), but they are not continuous at
(0, 0).

f(x, y) =
x4y4

(x2 + y4)3
, (x, y) 6= (0, 0); f(0, 0) = 0.

g(x, y) =
x2

x2 + y2 − x
, (x, y) 6= (0, 0); f(0, 0) = 0.

(I have not defined the phrase ‘along any line’; what could it mean?)

23. Sometimes a function can be expressed both in cartesian coordinates
and also in polar coordinates. for example the function u(x, y) = x2+y2

is ‘same as’ u(r, θ) = r2. It would be confusing at first sight, using the
same notation u. But let us indulge in such a confusion.

Express cartesian coordinate derivatives in terms of polar coordinate
derivatives:

ux = ur cos θ − uθ
sin θ

r
.

uy = ur sin θ + uθ
cos θ

r
.

u2x + u2y = u2r +
1

r2
u2θ.
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uxx = urr cos
2 θ + uθθ

sin2 θ

r
− 2urθ

cos θ sin θ

r
+

ur
sin2 θ

r
+ 2uθ

cos θ sin θ

r2
.

uyy = urr sin
2 θ + uθθ

cos2 θ

r
+ 2urθ

cos θ sin θ

r
+

ur
cos2 θ

r
− 2uθ

cos θ sin θ

r2
.

uxy = urr cos θ sin θ − uθθ
cos θ sin θ

r2
+ urθ

cos2 θ − sin2 θ

r
−

ur
sin θ cos θ

r
+ uθ

sin2 θ − cos2 θ

r2
.

uxx + uyy = urr + uθθ
1

r2
= ur

1

r
.

=
1

r2

{

r
∂

∂r

(

r
∂u

∂r

)

+
∂2u

∂θ2

}

.

Here is how you express polar coordinate derivatives in tees of cartesian
coordinate derivatives.

ur = ux cos θ + uy sin θ.

uθ = −uxr sin θ + uyr cos θ.

24. f and g are two C2 functions on R. Put h(x, y) = f(x− y) + g(x+ y).

Show hxx − hyy = 0.

25. When coordinates x, y are changed to

ξ = a+ αx+ βy; η = b− βx+ αy;

where α2 + β2 = 1; the function u(x, y) is changed to U(ξ, η). Show

UξξUηη − U2
ξη = uxuyy − u2xy.
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As I keep on mentioning, it is the ideas and the ability to think and
grasp what is going on that plays crucial role. The mathematics is
not difficult, probably imitation (with proper notation) of one variable
results. This is so at the initial stages of the development but gradually
it changes we will have things that are not imitations of one variable
results.

Though most of the problems below are stated for Rn. It is alright if
you do not solve it for general n. But you should work out the two cases
n = 2 and n = 3 and also get a feel. However, you must understand
what it says for n.

26. There are two C1 functions f : R → Rn and g : R → Rn. Define

h(t) = 〈f(t), g(t)〉; t ∈ R.

Calculate h′(t).

27. Let f be a C1 function from R to Rn. Suppose ||f(t)|| = 1 for each t.
Show that f ′(t) · f(t) ≡ 0

In other words the function is orthogonal to its gradient at every point.

For example, f(t) = (cos t, sin t) is such a function.

28. Suppose f is a real valued C1 function of two variables; g, h are real
valued C1 functions of one variable, then I define real valued function
of three variables:

F (x, y, z) = f(g(x+ y), h(y + z)).

Calculate F ′.

29. I have three real valued C1-functions: f is a function of one variable, g
is a function of two variables, h is a function of three variables. I have
a C1 function ϕ of four variables. I define a function of three variables;

F (x, y, z) = ϕ(x, f(x), g(x, y), h(x, y, z))

find F ′.
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30. Suppose I have n2 many C1 functions fij(t) defined on R to R. Here
1 ≤ i ≤ n and 1 ≤ j ≤ n.

I consider the n× n matrix A(t) = ( fij(t) ). Consider the real valued
function F (t) defined on the real line by the formula

F (t) = DetA(t).

Show that F is C1 function and F ′(t) is sum of determinants of n
matrices {Ai :≤ i ≤ n} where Ai is obtained by replacing the i-th row
of A(t) by derivative of that row; more precisely, replace the i-th row
of A(t) by

(f ′
i1(t), f

′
i2(t), · · · , f ′

in(t)).

31. This exercise is long. Take fifteen/twenty minutes to understand. To
solve, you need five minutes.

It is difficult to keep on writing Rn2

all the time. Let us use an abbre-
viation just for this exercise: d = n

2.

The space of n × n matrices can be thought of as Rd in the following
way: First row followed by second row etc. More precisely if A is n×n
matrix (aij) then it is the point in Rd defined as

(a11, a12, · · · , a1n, a21, a22, · · · , a2n, · · · , an1, an2, · · · , ann).

We regard Rd as column vectors, but for this exercise and for typo-
graphical considerations imagine rows. It is possible to stick to column
vectors but that will confuse you.

When you read a matrix, you read first row and then second row etc.
This is precisely how we identified it as a point of Rd.

Let me say it differently to familiarize you. If you have matrix with
rows r1, r2, · · · , rn then the point of Rd to which it corresponds is

(r1, r2, · · · , rn).

Be careful. Here ri is not a number it is an n-tuple of numbers, the
i-th row of A, thus all these n many n-tuples of numbers make up an
n2-tuple.

Similarly, if you have a point x of Rd it corresponds to the matrix whose
first row is the first n entries of x, second row is the next n entries of
x and so on. Define

F (x) = Det(x); x ∈ Rd.
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Thus when we wrote Det, we are regarding the x as a n × n matrix.
Then show that F is C1 (defined on Rd to R).

If you take a point a ∈ Rd, then the derivative of F at a is a linear
transformation F ′(a) : Rd → R. What is it? If you take x ∈ Rd then
value of the linear transformation F ′(a) at the point x is the sum of
n determinants of matrices A1, A2, · · ·An where Ai has all rows except
the i row same as those of a, but the i-th row is the i-th row of x.

To say differently, if

a = (a1, a2, · · · , an); x = (x1, x2, · · · , xn) ∈ Rd

(pause, do you understand what are these a’s and x’s?) then

F ′(a)(x) =
n
∑

1

Det(a1, · · · , ai−1, xi, ai+1 · · · , an).

32. z is a function of two variables (x, y) and I know xy + yz − zx ≡ 2.

Using implicit function rules calculate z1 and z2, the partial derivatives.
Also explicitly solve for the function z and calculate.

33. Find a number θ such that 0 < θ < 1 and

f
(

1,
1

2
,
1

3

)

= fx

(

θ,
θ

2
,
θ

3

)

+
1

2
fy

(

θ,
θ

2
,
θ

3

)

+
1

3
fz

(

θ,
θ

2
,
θ

3

)

when
f(x, y, z) = xyz.

f(x, y, z) = xy + yz + zx.
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34. Let Ω ⊂ R2 be a region which has the following property:

(x, y) ∈ Ω;λ > 0 ⇒ (λx, λy) ∈ Ω.

For example any quadrant or all of R2 satisfies this condition. If you
do not like this, think of R2. Let n be an integer.

A function f : R2 → R is homogeneous of degree n if the following
holds:

(x, y) ∈ Ω;λ > 0 ⇒ f(λx, λy) = λnf(x, y).

Show that the following functions are homogeneous and find the order.

f(x, y) = ||(x, y)||; Ω = R2.

f(x, y) = log(y/x); First quadrant, axes not included

f(x, y) = ax2 + bxy + cy2.

Let f be real valued C1 function on R2.

If f homogeneous of degree n, show that xf1 + yf2 = nf .

(Hint: differentiate w.r.t. λ, the equation that defines homogeneity.)

If xf1 + yf2 = nf then show that f is homogeneous of degree n.

(Hint: show ϕ(λ) = f(λa, λb) satisfies λϕ′(λ) = nϕ(λ) and ϕ(λ)λ−n is
a constant.)

35. Find derivative of

f(x) =
∫ x3

x2

1

x+ t
dt.

Evaluate integral and differentiate and also do by using the formula
derived by us.

f(x) =
∫ x

−x

1

x2 + t+ 1
dt. f(x) =

∫ −sinx

x2

extdt.

f(x) = log

(

∫ x2

0

sin xt

t
dt

)
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36. Calculate f1(x, y) and f2(x, y)

f(x, y) =
∫ x2+y

xy

sin(t+ y)

t2 + y2
dt.

37. Calculate

lim
x→0

1

x3

∫ x

0
(x− t)2f(t)dt.

38. This is something we should have done last semester. Recall, we showed
that the integral

∫ 1

0
tx−1(1− t)y−1dt

is finite for x > 0; y > 0. Value of the integral was denoted by β(x, y).
show

β(x, y) =
∫ ∞

0

tx−1

(1 + t)x+y
dt.

(Put t/(1 + t) = u)

Show

β(x, y) = 2
∫ π/2

0
(sin t)2x−1(cos t)2y−1 dt.

Show that for any two integers x ≥ 1 and y ≥ 1

β(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
.

Actually this is true for any x, y > 0 but its proof should wait till we
develop integration of functions of two variables.

39.
∂nexy

∂xm∂yn−m
(0, 0) =

{

0 if 2m 6= n
m! if 2m = n

40. Consider the complement of the closed fourth quadrant in R2, that is
U = complement of the set {(x, y) : x ≥ 0, y ≤ 0}.
Let f be be a real valued continuous function on U such that both
partial derivatives are zero. Show f is a constant.

Suppose that U is the set of all points (x, y) such that both x, y are
strictly positive or bot are strictly negative. Show that U is an open
set. Suppose that both partial derivatives are zero. Can you conclude
that f is a constant function?
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41. suppose that U is an open set in R2 and f : U → R2 is a C1 function.
Assume that f is C1, f is one-to-one, f ′)(x is non-singular for all x.

Show that range of f is again an open set. In fact show that whenever
V ⊂ U is an open set then f(V ) is an open set.

42. This exercise is simple but you should work out fully.

We consider R2. In my mind I think of (x, y) as x+ iy where i =
√
−1.

So what?

Define addition on R2 as usual

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2).

We define multiplication on R2 as follows.

(x1, y1)× (x2, y2) = (x1x2 − y1y2, x1y2 + x2y1).

We made it clear in the class that you can not divide one vector by
another vector when you are considering Rn with n ≥ 2. There is go-
ing to be confusion and chaos if we keep on using the same symbol R2.
Let use the symbol C to denote the same set R2 when we consider the
above multiplication.

Thus as a set C is same as R2, but when we use C it means that we
are allowed to use the operation of multiplication. We then refer to
elements of C as complex numbers. If z = (x, y) is a complex number
we also refer to x as the real part of z and y as the imaginary part of
z (instead of calling them as first and second coordinates of z).

Show the following in C. Let z1 = (x1, y1) z2 = (x2, y2) and z3 =
(x3, y3).

z1 × z2 = z2 × z1.

Thus multiplication is commutative.

z1(z2 + z3) = z1z2 + z1z3.

Thus multiplication is distributive w.r.t. addition. Let e stand for the
complex number (1, 0). Of course 0 stands for (0, 0).

z × e = z ∀z.

15



Thus e is the identity element for multiplication.

(∀z, z 6= 0) (∃! w) zw = e.

Thus every non-zero complex number has an (multiplicative) inverse.

We define modulus |z| of a complex number z = (x, y) as norm of (x, y),
more precisely, |z| =

√
x2 + y2. Show that the usual rules hold:

|z1 + z2| ≤ |z1|+ |z2|; |z1 × z2| = |z1||z2|.

We want to identify a complex number whose imaginary part is zero
with real number, namely, the real part of that number. In other
words the x-axis is identified with real numbers. Thus when we write
‘the complex number 5’ we mean (5, 0).

Show that the complex multiplication we defined above, when restricted
to x-axis coincides with usual multiplication of real numbers.
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43. In the following repeated integrals, draw a picture of the region in
R2 where the integration is being carried out. Change the order of
integration. There is nothing for you to evaluate.

∫ 1

0

[
∫ 1

x2

f(x, y)dy
]

dx.
∫ 1

−2

[

∫ x2

x
f(x, y)dy

]

dx.

∫ 2/3

1/3

[

∫

√
y

y2
f(x, y)dx

]

dy.

44. Show
∫ b

a

[
∫ x

a
f(x, y)dy

]

dx =
∫ b

a

[

∫ b

y
f(x, y)dx

]

dy.

This is called Dirichlet’s formula.

Show

2!
∫ b

a
f(x)

[

∫ b

x
f(y)dy

]

dx =

[

∫ b

a
f(x)dx

]2

.

Expressing this repeated integral as double integral will help.

45. Consider the solid bounded by the planes z = x + a; z = −x− a; and
the cylinder x2 + y2 = a2. Express its volume as a double integral.

Consider the tetrahedron with vertices (0, 0, 0), (a, 0, 0), (0, b, 0), (0, 0, c)
where a, b, c are positive numbers. Express its volume as a double in-
tegral and evaluate.

46. You are given n points {(xi, yi) : 1 ≤ i ≤ n} in R2. You should fit the
best straight line. That is straight line y = ax+ b so that

f(a, b) =
n
∑

1

(axi + b− yi)
2

is minimum. This is called method of least squares.

47. f and g are C1 functions on Rn to R. Assume that g does not take the
value zero. Show

∇(f/g) =
g∇f − f∇g

g2
.

17



48. f is a C1 function on R3 to R. At every point (x, y, z) the vectors
∇f(x, y, z) and (x, y, z) are parallel. Show that

f(0, 0, z) ≡ f(0, 0,−z).

49. Let a = (a1, a2, a3) and b = (b1, b2, b3) be points of R3. Define

f(x) = 〈x× a, x× b〉; x ∈ R3.

Here × denotes vector product. show

∇f(x) = a× (x× b) + b× (x× a).

50. Let F be a C2 function and G be a C1 function on R. Let c be a real
number. Define a function f(x, t) on R2 by

f(x, t) =
F (x+ ct)− F (x− ct)

2
+

1

2c

∫ x+ct

x−ct
G(s)ds. (∗)

Show that the function satisfies

∂2f

∂t2
= c2

∂2f

∂x2
. (∗∗)

and
f(x, 0) = F (x); f2(x, 0) = G(x). (∗ ∗ ∗)

The (partial) differential equation (**) is called one-dimensional wave
equation. The solution (*) is called D’Alembert’s solution. The condi-
tions (***) are called initial conditions.

51. Find stationary points (zero gradient) for the following functions and
classify if they are maxima or minima or neither.
f(x, y) = x2 + (y − 1)2.
f(x, y) = x2 − (y − 1)2.
f(x, y) = sin x sin y sin(x+ y).
f(x, y) = sin x cosh y.

52. If f : R3 → R3 be C1 function, f = (f1, f2, f3), divergence of f is
defined by

div(f) =
∂f1
∂x

+
∂f2
∂y

+
∂f3
∂z

= ∇ · f.

Show div(f + g) = div(f) + div(g). if ϕ : R3 → R be C1, then show
div(ϕf) = ϕ(div(f)) +∇ϕ · f.
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53. calculate the following integrals:

(a)
∫ ∫

Ω
ex+ydxdy over Ω = {|x|+ |y| ≤ 1}.

(b)
∫ ∫

Ω
x2y2dxdy over x ≥ 0, y ≥ 0, xy = 1, xy = 2, y = x, y = 4x.

(c)
∫ ∫

Ω
(x2 + y2)dxdy over Ω = {|x| ≤ 1, |y| ≤ 1}.

(d)
∫ ∫

Ω
(3x+ y)dxdy over Ω = {x ≥ 0, y ≥ 0, 4x2 + y2 ≤ 36}.

54. In each of the following, a region Ω is given, a transformation (x, y) 7→
(u, v) is given. Show that it is one-one on Ω; describe the transformed
region in two ways

(i) possible values of u and for every u, the possible values of v;

(ii) possible values of v and for every v, the possible values of u.

(a) Ω = [0, 1]× [0, 1]; u = x+ y, v = x− y.

(b) Ω = [−1,+1]× [−1,+1]; u, v as above.

(c) Ω = [0, 1]× [0, 1]; u = x+ y, v = x.

(d) Ω = (0,∞)× (0,∞); u = xy, v = y.

(e) Ω = (0,∞)× (0,∞); u = xy, v = x/y.

(f) Ω = (0,∞)× (0,∞); u = x+ y, v = y.

(g) Ω = (0,∞)× (0,∞); u = x+ y, v = y/(x+ y).

(h) Ω = (0,∞)× (0,∞); u = x2 + y2, v = y.

(i) Ω = (0,∞)× (0,∞); u = x2/y2, v = y2.

in the following verify the map is one-to-one and describe the
range of u and for each u, the possible values of v and for every
u, v the possible values of w.

(j) Ω = (0,∞)× (0,∞)× (0,∞);

u = x+ y + z, v = x+ y, w = x.

(k) Ω = (0,∞)× (0,∞)× (0,∞);

u = x+ y + z, v = x/(x+ y + z), w = z/(x+ y + z).
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(l) Ω = (0,∞)× (0,∞)× (0,∞);

u = x2 + y2 + z2, v = x/
√
x2 + y2 + z2, w = y/

√
x2 + y2 + z2

Discuss the following map (what does this mean?).

(m) Ω = [0,∞)× [0, π)× [0, 2π)

points here are denoted by (r, θ, φ).

x = r cos θ, y = r sin θ cosφ, z = r sin θ sinφ.

(n) Ω = [0,∞)× [0, π)× [0, 2π)× [0, 2π)

points here are denoted by (r, θ, φ, ψ).

x = r cos θ, y = r sin θ cosφ, z = r sin θ sinφ cosψ., w = r sin θ sinφ sinψ.

55. If you have a bounded region Ω ⊂ R2 with small boundary, then cen-
troid of Ω is the point (x, y) defined by

x =
∫ ∫

Ω

xdxdy; y =
∫ ∫

Ω

ydxdy.

calculate centroids of the regions shown (?) below.

(a) unit disc

(b) the triangle with vertices (−1, 0), (0,−1), (1, 1).

(c) the unit square [0, 1]× [0, 1]

(d) region bounded by y = x2; x+ y = 2

(e) region bounded by y = sin2 x, y = 0, 0 ≤ x ≤ π.

(f) region bounded by y = sin x, y = cosx, 0 ≤ x ≤ π/4.

(g) region bounded by x > 0, y > 0,
√
x+

√
y = 1.

56. Let A be a symmetric 2× 2 matrix with strictly positive eigen values.
This is same as saying that A is symmetric positive definite matrix.
Show that there is a symmetric positive definite matrix B such that

B2 = BTB = A

Generalize to higher dimensions (why should we care?)
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57. Calculate the Taylor expansion around the origin upto third order.

(a) f(x, y) = exp{sin y}.
(b) f(x, y) = cos(xy).

(c) f(x, y, z) = sin{ex + y2 = z3}.

58. In the following calculate the integrals over the regions indicated.

(a) Q = [−1, 1]× [0, 2].
∫ ∫

Q

√

|y − x2|.

(b) Q = [0, π/2]× [0, π/2].
∫ ∫

Q
sin(x+ y).

(c) Q = [0, π]× [0, π].
∫ ∫

Q
cos(x+ y).

(d) Q = [0, 3]× [0, 2].
∫ ∫

Q
[x+ y];

where [a] is the greatest integer not exceeding a.

(e) Q = [0, 1]× [0, 1].
∫ ∫

Q
f ;

where f is defined on Q as follows. f(x, y) = x+y if x2 ≤ y ≤ 2x2;
and zero otherwise.

(f) Ω = {4x2 + 9y2 ≤ 36; x > 0; y > 0}, ∫ ∫

S
(3x+ y).

(g) Ω = {x2 + y2 ≤ 16}, ∫ ∫

S
(20 + 2x+ y).

(h) Ω is the region bounded by xy = 1; xy = 2; y = x and y = 4x,
∫ ∫

S
(x2y2).

(i) Let D = {x ∈ R2 : 0 < ||x|| < 1}. Show that the integral
∫ ∫

D
log ||x|| exists and calculate it.

Same problem in other dimensions.

(j) Let D be as above. When is the integral
∫ ∫

D
||x||−p convergent

(p > 0).

Same problem in other dimensions.

(k) Let Ω = {||x|| > 1}. When is the integral
∫ ∫

Ω
||x||p convergent.

Here p > 0. Calculate the integral.
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59. For the function f(x, y) = xy(1−x2−y2) on [0, 1]× [0, 1] calculate local
maxima, local minima, global maxima, global minima, saddle points.

60. Do the same problem for the function f(x, y, z) = x4 + y4 + z4 − 4xyz.

61. Suppose that f(x, y, z) is a C2 function with a stationary point P .
Suppose that f ′′(P ), that is, the second derivative matrix, has two
diagonal entries with opposite sign.

Show that the point P is a saddle point.

62. For the function f(x, y) = ax2 + 2bxy + cy2 + 2dx + 2ey + h (a, b, · · ·
are constants) with a > 0 and b2 < ac show that there is a global
minimum. Calculate it.

63. Which straight line is close to f(x) = x2 on [0, 1]. What about on [1, 2].
(What does the question mean?)

64. Suppose a1, a2, · · · , a100 are points in R121. Show the centroid minimizes
f(x) =

∑

i
||x− ai||2.

65. Let A and B be n × n symmetric matrices and B is positive definite.
Solve: max x′Ax subject to x′Bx = 1.

First show that the later set is compact and so the problem has a
solution.

Show that if x and λ are obtained by Lagrange method, then Ax = λBx
and λ is the max.

66. Given k points {(xi, yi) : 1 ≤ i ≤ k} in R2 (xi are distinct), fit the best
straight-line by least squares method. Give formulae for the parameters
of the line.

Find the best quadratic function by least square method. Find formulae
for the parameters.

67. I have a die with 9 faces, the i-th face having probability pi > 0 in a
throw. I rolled the die 100 times and got the observation (?)

(8, 12, 4, 11, 20, 6, 14, 9, 16)

What do you think is the most likely values of the (pi)? (I believe that
what I observed must be having maximum probability).
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68. Are the following functions continuous? if not describe the set of points
where they are discontinuous?

(a)

f(x, y) =
√

1− x2 + y2; if x2 + y2 ≤ 1

f(x, y) = (1− x2 + y2)5 if x2 + y2 > 1

(b)
f(x, y) = 86

√
xy if (x ≥ 0, y ≥ 0)or(x ≤ 0, y ≤ 0)

f(x, y) = 59
√
xy otherwise.

(c)

f(x, y) =
sin(xy)

x
x 6= 0

and f(x, y) = 1 when x = 0.

(d)

f(x, y) =































1
2y

if |x| < |y|; y 6= 0

0 if |x| > |y|; y 6= 0

+1 if x = 0, y = 0

0 if x 6= 0; y = 0.

69. Describe the set where the functions are defined (called domain of def-
inition) and compute ∇f at the interior points of the set.

(a)

f(x, y) = exp

{

x

y
+
y

x

}

(b)
f(x, y) = sin−1(x+ y)

(c)

f(x, y) = tan−1

√

x2 − y2

x2 + y2
.

(d)
f(x, y) = ex log y + sin y log x.
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(e)

f(x, y) = log

√
x2 + y2 − x√
x2 = y2 + x

(f)

f(x, y) =
x

y
.

70. Find the directional derivatives.

(a) f(x, y) = 2x2 − y2 at the point (1, 2) in the direction of the line
joining (1, 2) to (4, 0).

(b) f(x, y) = x3+3xy+4y2 at (0, 0) in the direction of the line making
60o with the x-axis.

(c) f(x, y) = x2 + y2 − 3xy at the point (1, 2) in the direction of the
tangent to the curve y = x2 at (0, 0).

(d) f(x, y) = 5x2−3x−y−1 at (2, 1) in the direction of the line from
this line to (5, 5).

(e) f(x, y) = x3 + 3x2 + 4xy + y2 at the point (2/3, −4/3) in all
directions.

71. Define a function u(x, t) for 0 < t <∞ and −∞ < x <∞ by

u(x, t) =
1

t171

∫ t

−t
e−(x+y)(t2 − y2)85dy.

Show that

uxx =
172

t
ut + utt.

72. For the curves find their length. parametric so that arc length is the
parameter.

(a) Consider the circular helix

x1 = cos t; x2 = sin t; x3 = t

for 0 ≤ t ≤ 100.

(b)

x1(t) =
sin t√

2
; x2 =

sin t√
2
; x3 = cos t.

(c)
x1 = 6t; x2 = 3t2 x3 = t3

for 0 ≤ t ≤ 1.
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(d)
x1 = et; x2 = e−t x3 =

√
2t.

(e)

x1 =

√
t2 + 4 + t

2
x2 =

√
t2 + 4− t

2

x3 =
√
2 log

√
t2 + 4 + t

2
.

73. Show that the plane passing through the points {(xi, yi, z,) : i = 1, 2, 3}
has equation

∣

∣

∣

∣

∣

∣

∣

x1 − x y1 − y z1 − z
x2 − x y2 − y z2 − z
x3 − x y3 − y z3 − z

∣

∣

∣

∣

∣

∣

∣

= 0.
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74. suppose f, f 2, g, g2 are continuous or just bounded integrable functions
on [a, b]. Show

1

2

∫ b

a





∫ b

a

∣

∣

∣

∣

∣

f(x) g(x)
f(y) g(y)

∣

∣

∣

∣

∣

2

dy



 dx =
∫ b

a
f 2
∫ b

a
g2 −

(

∫ b

a
fg

)2

.

Deduce Cauchy-Schwarz inequality for integrals (what is it?)

75. Show
1

2

∫ b

a

[

∫ b

a
[f(y)− f(x)][g(y)− g(x)]dy

]

dx

= (b− a)
∫ b

a
fg −

∫ b

a
f
∫ b

a
g.

76. Let f be a non-negative continuous function on [a, b] with sup f =M .
Show

lim
n

{

∫ b

a
[f(x)]ndx

}1/n

=M.

The following is known as Laplace principle. This will locate minimum
of a function.

Let h : [0, 1] → R be a continuous function. Then

lim
n

1

n
log

∫ 1

0
e−nh(x)dx = −minh.

77. Circular Helix is the curve in R3 defined by

x− ρ cos t; y = ρ sin t; z = kt; 0 ≤ t,∞.

Here k > 0. Calculate its length from 0 to t = 28.

78. Twisted cubic is the curve given by

x = at; y = bt2; z = ct3; 0 ≤ t <∞.

Here the product abc 6= 0. Calculate the tangent vector at each point
of the curve.
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79. Find length of the curve

x = a(θ − sin θ), y = a(1− cos θ), z = 4a sin(θ/2), 0 ≤ θ ≤ 2π.

80. Design a cylindrical can with lid to contain one litre (=1000 cm3) of wa-
ter using minimum amount of metal. Assume that there is a minimum.

(diameter = length = 20/ 3
√
2π)

81. A parcel delivery service requires that size of rectangular box be such
that length + 2 width =2 height be no more than 108 inches. What is
the volume of the largest box the company delivers?

(11,664 cubic inches)

82. The well known Cobb-Douglas model of economy, simplest one, takes
the production function as

Q(K,L) = A Kα L(1−α)

where A > 0 and 0 < α < 1 are constants. K denotes units of capital
and L denotes units of labour. Assume that the price of one unit of
capital is q rupees and price of one unit of labour is p rupees. If the
total cash available is B rupees, maximize the production.

(αB/q; (1− α)B/p)

83. The following is apparently known as Lagrange’s identity. Prove it.

(r × s) · (t× u) = (r · t)(s · u)− (r · u)(s · t).

84. Show that the function

f(x+ iy) =
√

|x||y|
satisfies Cauchy Riemann equations at (0, 0). Is it (complex) differen-
tiable at this point?

85. Describe the following sets of points in the complex plane. (draw the
picture).

(a) Re(z) = 3. Im(z) = −1.

(b) |z − c| = |z − d| where c and d are complex numbers.

(c) Re(z) + Im(z) = 0

(d) |z| = Re(z) + Im(z).
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86. Show that the function f(z) = 1/z is differentiable on (|z| 6= 0).

87. Considering the function

f(x, y) = sin x cos y

show that there is a number θ between zero and one such that

3

4
=
π

3
cos

πθ

3
cos

πθ

6
− π

6
sin

πθ

3
sin

πθ

6
.

88. Calculate ∇× F for the following.

(a)

F (x, y, z) =

(

x

x2 + y2 + z2
,

y

x2 + y2 + z2
,

z

x2 + y2 + z2

)

(b)

F (x, y, z) =

(

x

x2 + y2 + z2
,

y

x2 + y2 + z2
, 0

)

(c)
F (x, y, z) = (sin x, sin y, sin z)

89. Using
∞
∫

0

sin x

x
dx = π/2

evaluate

f(x, y) =
∫ ∞

0

sin xt cos yt

t
dt.

for each (x, y).

90. Suppose that f is a bounded continuous function on (−∞,+∞). Define
a function

u(y, t) =
1√
4πt

∫ ∞

0
e−(y−x)2/4tf(x)dx

for
0 < t <∞; 0−∞ < y,∞.

show that
uyy = ut.

Do not need to justify under the integral sign.
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91. Show that the function

ϕ(s) =
∫ ∞

0
e−st 1

1 + t2
dt; s ≥ 0

is a continuous function.

92. Let

ϕ(y) =
∫ ∞

0
e−yt sin t

t
dt; y > 0

is a continuous function. Show that for y > 0

ϕ′(y) = − 1

1 + y2

Show that
ϕ(y) =

π

2
− tan−1 y y > 0.

(What happens if you let y → 0).
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