
CMI(BSc I/2013) Calculus/Analysis ninth week

Last week we discussed that the three problems — the geometric problem
of drawing tangent to a curve at a given point on the curve, the mechanical
problem of understanding the rate at which a particle in motion is travelling
at a particular instant, the problem of closely approximating a function near
a point by a straight line — all lead to the concept of derivative. We saw
some basic properties of derivatives.

To get a feel, let us look at an instructive example. Consider the function
f(x) = sin(1/x) defined for non-zero real numbers. It oscillates so badly that
we can not assign a value for the function at x = 0 so that it is a conitnuous
function on R.

Consider the function f(x) = x sin(1/x) again defined for non-zero real
numbers. If we define f(0) = 0 then the function is a continuous function on
R. However, it is not differentiable at zero. Of course, it is differentiable at
all other points.

Consider the function f(x) = x2 sin(1/x) defined for x 6= 0. If we declare
f(0) = 0, it is a continuous function on R. It is now differentiable also at
the point x = 0 and in fact f ′(0) = 0. As already noted, it is differentiable
at all non-zero points. Thus f is differentiable at all points and we have the
function f ′ on all of R given by

f ′(x) =

{
− cos(1/x) + 2x sin(1/x) if x 6= 0
0 if x = 0

Whne x is near zero the first term oscillates and second term is near zero.
Thus you can see that f ′ is not continuous at the point zero.

Consider the function f(x) = x3 sin(1/x) defined for x 6= 0 and we declare
f(0) = 0. Then you can see, f is differentiable and f ′ is defined on all of R
and is a continuous function.

These are pointed out so that you can see how we are achieving more
and more ‘smoothness’. We shall now see how derivative of f helps us to
understand the function f itself better.

Definition; Let f be a function defined on a set S and a ∈ S. We say f has
a local maximum at the point a, if there is an open interval (α, β) containing
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the point a such that f(x) ≤ f(a) whenever x ∈ S and α < x < β. In other
words, locally, that is, in the interval (α, β) the function f has maximum at
the point a. Of course, there may be points x outside this interval which are
in S and f(x) > f(a). If a ∈ S is a such a pont that f(x) ≤ f(a) for every x
in S, then we say that a is a point of global maximum. It is local maximum,
but more than that.

We have similar definition regarding minimum. We say f has a local
minimum at the point a, if there is an open interval (α, β) containing the
point a such that f(a) ≤ f(x) whenever x ∈ S and α < x < β. Thus locally,
that is, in the interval (α, β) the function f has minimum at the point a.
There may exist points x ∈ S such that x ≤ α or x ≥ β where f(x) < f(a).
If a ∈ S is a such a pont that f(a) ≤ f(x) for every x in S, then we say that
a is a point of global minimum.

Fact: Let f be dfined on an interval (u, v) and a ∈ (u, v) is a local maxi-
mum or loal minimum. If f is differentiable at the point a then f ′(a) = 0.

Proof is simple. suppose a is a local maximum. Let us take a ∈ (α, β) ⊂
(u, v) so that f(x) ≤ f(a) for all x ∈ (α, β). if you take a sequence of points
{xn} in this interval so that each xn < a and xn ↑ a, then we see

f ′(a) = lim
f(xn)− f(a)

xn − a
≥ 0.

similarly, if we take a sequence of points yn ↓ a in this interval, each yn > a,
we see

f ′(a) = lim
f(yn)− f(a)

yn − a
≤ 0.

hence f ′(a) = 0. similar proof applies for local minimum.

The main point is the following. if you are looking for the (local) maxi-
mum or local minimum in an open interval, just search among points where
the derivative vanishes (assuming that the function is differentiable). Of
course you will ask,how do I know if we have max or min? The answer has
to wait till we define second derivative.

Understand carefully what we said. a is a a point of max or min implies
f ′(a) = 0. We did not say: f ′(a) = 0 implies a is a point of max or min. if
you consider f(x) = x3, we see f ′(0) = 0 but zero is neither max nor min.
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We also said that the point of max or min must be inside the interval,
not endpoint. For example f(x) = x defined on [3, 20] has minimum and
maximum at end points and the derivative there exists and not zero. Of
couse, you should consider left derivative at the point 3 and left derivative
at the point 20.

Suppose that f is a continuous function on a closed bounded interval
[u, v]. we do know that f is bounded and attains the bounds. suppose a is a
point where f assumes largest value. If we now assume that u < a < v and
f is differentiable at a we can conclude f ′(a) = 0. Gometrically it says the
following. The the tangent at a is parallel to the x-axis, its slope is zero.

We shall now show that there is a tangent parallel to any given chord of
the graph of f .
Fact: Let u < v ∈ R. Let f be a continuous function on an interval [u, v]
which is differentiable at every point u < x < v. Then there is a point
θ ∈ (u, v) such that

f(v)− f(u) = (v − u)f ′(θ).

You can rewrite this as

f ′(θ) =
f(v)− f(u)

v − u
.

Observe that slope of the chord joining the two points (u, f(u)) and (v, f(v))
on the curve (graph of f) is precisely the right side above. The slope of the
tangent at the point θ ∈ (u, v) is precisely the left side above.

Proof is simple. Shall convert the problem to one we already solved.
define

ϕ(x) = [f(v)− f(u)]x− [v − u]f(x).

then ϕ(u) = uf(v) − vf(u) = ϕ(v) and ϕ is differentiable in (u, v). Also
ϕ′(x) = [f(v)−f(u)]− [v−u]f ′(x). If ϕ is constant then any point θ ∈ (u, v)
will do the job. Otherwise ϕ must take values either larger than the value at
the end points or values smaller than at the end points. Thus either maix-
mum or minimum must be attained in the open interval (u, v). Such a point
will do, by the previous fact.

This theorem is called mean value theorem. [f(v) − f(u)]/[v − u] is the
‘mean velocity’ in this interval — ratio of distance travelled to the time
duration. There is another interpretation. For ten numbers their mean value
or average value is their sum/10. If you have a bounded function g on a finite
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interval, then its mean value or average value is integral/length, integral over
the interval and length of the inteval. If you take g = f ′, defined on (u, v),
then its mean valus is precisely [f(v)− f(u)]/[v− u]. Thus the theorem says
that the mean value of f ′ is actually value of f ′ at one of the points in the
interval. Note that this quantity is not the mean of the values of the function
f at the two end points.

Fact: Let f be defined in an open interval (u, v) differentiable at every
point.

(i) If f ′(x) ≥ 0 for all x then f is increasing function in this interval.
(ii) If f ′(x) ≤ 0 for all x then f is decreasing function in this interval.
(iii) If f ′(x) = 0 for all x then f is a constant in this interval.

Proof is simple. (i) Let x < y, then for some point θ,

f(y)− f(x) = (y − x)f ′(θ) ≥ 0.

Same applies to prove (ii). (iii) follows from (i) and (ii).

polynomials of infinite degree:

We have been using exponential function, sine and cosine functions. We
have defined exponential function as a sum of series of powers of x and iden-
tified it with the power ex by using continuity and the functional equation
e(x)e(y) = e(x + y). This last equation is a consequence of Cauchy prod-
uct theorem of series. We have used sine and cosine functions and in fact
used their derivatives too. So the question is: are we depending on our high
school definition here? If so what is it? Did we prove that it is continuous
and differentiable?

Let us, once and for all, prove a general theorem. This theorem allows us
to cook up functions, show their continuity, differentiability etc. This thorem
also allows us to calculate their derivative by providing a formula, just like
the one you have for polynomials.

The functions we are talking about are polynomials of infinite degree,
sounds like an oxymoron, because when we say polynomial we mean a finite
sum of powers of x and thus polynomial can not be of infinite degree. Yes,
true these functions are not really clled so but are called power series.

An expression of the following form where αi, are real numbers is called
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a power series.

P (x) = α0 + α1x+ α2x
2 + α3x

3 + · · · · · ·

This is only a symbolic expression. At this stage there is no meaning to it.
We shall now give a meaning to it. It is nothing new. Take a real number and
substitute that number for x in the above series. You get a series of numbers.
This series may converge or may not. if it converges then we associate that
value, namely sum of the series as the meaning of the above series at the
point x ypu have taken.

Thus a value is attached for the above series whenever you take a real
number and find that the series converges. To put it differently, we have a
function defined on the set S of all numbers a such that the series converges
when you substitute the number a for x in the above series. The important
question is: what exactly is the nature of the set S and how does this func-
tion behave on that set.

For example can the set S be, say, the interval [4, 5] or union of two in-
tervals like [1, 2]∪ [9, 10]? the amazing thing is that such a situation can not
occur. If the seris converges when you put x = 5, then it converges for every
value |x| < 5. In fact whenever you take a number a with |a| < 5, then the
series

∑ |αna
n| converges, that is, the series P (a) converges absolutely. Be

careful, we did not say that the series defining P (5) itself converges abso-
lutely. We did not even say that the series obtained by putting x = −5 con-
verges. If the series does not converge when x = 5, then it does not converge
for any value larger than 5. Here is the main theorem about the power series.

Theorem: Let

P (x) = α0 + α1x+ α2x
2 + α3x

3 + · · · · · ·

be a power series. Let

r =
1

lim sup n

√
|αn|

We take r = 0 in case the above limsup is ∞. We take r = ∞ if the above
limsup is zero.

(i) The series converges absolutely for any value x with |x| < r. The
series does not converge for any value x with |x| > r. When x = ±r, it may
or may not converge. r is called the radius of convergence of the power series.
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Let us assume r > 0. and define the function

P (x) =
∑

i≥0

αix
i; x ∈ (−r, r).

(ii) P is a continuous function on the interval (−r, r).
Let Q(x) be the power series

Q(x) = α1 + 2α2x+ 3α3x
2 + 4α4x

3 + · · · .

(iii) The power series Q also has the same radius of convergence r. Thus

Q(x) =
∑

i≥0

(i+ 1)αix
i; x ∈ (−r, r)

is a well defined function.
(iv) The function P is differentiable in the interval (−r, r) and P ′(x) =

Q(x).

This theorem has a long proof. We shall develop some tools needed as
we go along. But before that, a few comments.

First you should realize that the content of the theorem is trivial: you
can treat this infinite degree polynomial as if it is usual polynomial you came
across in high school. You can differentiate term by term, as you were doing
with polynomials in high school. The only difference is that a polynomial is
defined for every x ∈ R. But the power series is defined only on an symmetric
interval around zero (which, of course, may turn out to be all of R in some
cases depending on the numbers α).

Secondly, we have denoted the symbolic infinite series by P (x). We have
used the same symbol to denote the function defined on the interval (−r, r).
This is done just to avoid too many notational symbols. If you do not like,
you can denote the function by f . Thus P (x) stands for the power series∑

αix
i without any explanation as to what the symbol x is, what the mean-

ing of the sum is, whether it exists etc. On the other hand, f(x) stands for
the function defined on the interval (−r, r) whose value at a point a in this
interval is given by the sum

∑
αia

i. But it is not necessary to make such a
fine distinction unless you are getting confused.

Thirdly, you must be wondering about the word ‘radius’ in naming r as
the radius of convergence. You can ignore this terminlogy and just think of
the interval (−r, r) as interval of convergence. But the story is different. You
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can think of even putting a complex number like 1 + i for x in the power
series P (x) and want to know whether the series of complex numbers so ob-
tained converges. The answer is the following. Draw a circle of radius r in
the (x, y)-plane with origin as center. if your complex number z is inside this
circle, then the series P (z) converges. If your complex number z is outside
the circle, then the series P (z) does not converge. For points z on the circle,
the series P (z) may or may not converge. However, we shall not peep into
complex numbers now.

Finally, we assumed that r > 0. Because if the series converges only for
r = 0, then the function is not defined on an interval and the question of
coninuity is simple and the question of derivative does not make sense (why?).

underlineProof of (i): Actually we have already done this. Let
∑

n an be
a series. we have proved the following:

lim sup n

√
|an| < 1 ⇒

∑
|an| converges;

lim sup n

√
|an| > 1 ⇒

∑
an does not converge.

Fix a number x. The series
∑

αnx
n converges if lim sup n

√
|αn |x| < 1. Thus

if the limsup here is zero, then the series converges for every x. If the limsup
is ∞, then this does not converge for any non-zero x. if the limsup is finite
and non-zero, then the series converges if |x| < r. In this case the series
converges absolutely.

On the other hand if lim sup n

√
|αn||x| > 1, that is, if |x| > r, then the

seies does not converge. This completes proof of (i).

Towards Proof of (ii):

Let Pn(x) =
n∑
0

αix
i. Then,by definition of sum of series, we see that for

each x ∈ (−r, r), the sequence {Pn(x)} converges to P (x). We also see that
for each fixed n the function Pn(x) is a polynomial and is hence continuous.
Unfortunately, in general, such a point-wise a limit of a sequence of contin-
uous functions need not be continuous.

For instance, consider the function fn(x) = xn defined on the interval
[0, 1] for each n = 1, 2, · · · . Let f(x) = 0 for 0 ≤ x < 1 and f(1) = 1. Clearly,
fn(x) → f(x) for each x ∈ [0, 1]. Each of the functions fn is a continuous
function on [0, 1] but yet f is not continuous.
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When we say fn(x) → f(x) for every x what do we mean? suppose we
fix a point x, then fn(x) → f(x), that is, given ǫ > 0, there is an n0 such
that n ≥ n0 implies |fn(x) − f(x)| < ǫ. This n0 depends not only on the
given ǫ but also on the point x fixed. In the above example, this is what is
happening. If x = 1/2 you see fn(1/2) < 1/1000 already for n ≥ 10. But if
you want f(0.999) < 1/1000 then this n0 = 10 will not do, you need to take
much larger n0. For each point x < 1, we do have fn(x) → 0, but how long
should we wait to be close to zero depends on the point x.

If we can make fn close to f irrespective of the point, then f will be
continuous. Let us make it precise. suppose we have a sequence of functions
{fn} and a function f , all defined on a set S. Let us say that fn → f uni-

formly if given ǫ > 0, there is an n0 such that |fn(x)− f(x)| < ǫ whenever
n ≥ n0 whatever be the point x ∈ S. Observe that this implies, in particular,
that for every point x we have fn(x) → f(x). Uniform convergence is more
than simply saying point-wise convergence.

Temporarily take S = [0, 1] so that all our functions are defined on [0, 1].
Imagine the graph of f and the graphs of f+ǫ and f−ǫ. here f±ǫ means the
function f(x)±ǫ. The graph of f+ǫ is parallel to the graph of f and is above
graph of f . Draw pictures. The graph of f − ǫ is again parallel to graph of f
and is below graph of f . If fn → f uniformly, then after some stage, graphs
of all the functions fn lie within this band f − ǫ to f + ǫ. Just like an interval
(a− ǫ, a+ ǫ) in the real line, we can imagine a band of functions, namely, all
functions whose graphs lie between f − ǫ and f + ǫ. Just as convergence of
numbers, xn → a, demands that after some stage all numbers xn lie within
(a− ǫ, a+ ǫ); uniform convergence of functions, fn → f uniformly, demands
that after some stage all the functions should lie within the band (f−ǫ, f+ǫ).

Convince yourself that in the above example of the sequence of functions
{xn} on the interval [0, 1] the convergence is not uniform. if we were to con-
sider the same sequence of functions on the set S = [0, 0.99] the convergence
is indeed uniform. if you want to make |fn| < ǫ, choose k so that (0.99)k < ǫ.
then whatever be n > k and whatever be x ∈ S, we see that xn < ǫ.

We now make a very useful observation:

Fact: If fn → f uniformly on S and if each fn is continuous on S, then f
is continuous on S.

Proof is simple. Suppose that a ∈ S and ǫ > 0 are given. We produce
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δ > 0 so that |f(x)− f(a)| < ǫ whenever |x− a| < δ and x ∈ S. Idea is this:
f(x) is close to fk(x) (if k is sufficiently large); and fk(x) is close to fk(a)
(by continuity of fk) and fk(a) is close to f(a). Here is the execution.

First you choose k so that |fk(y)− f(y)| < ǫ/3 for every y ∈ S. You can
do this because of uniform convergence. Actually uniform convergence tells
you that you can choose an k so that this inequality is true for every n ≥ k.
But we need not bother about it now. That the inequality holds for this one
k is enough. Since fk is continuous at the point a ∈ S, choose δ > 0 so that
|fk(x)−fk(a)| < ǫ/3 whenever |x−a| < δ; x ∈ S. Now if you take any x ∈ S
with |x− a| < δ we have

|f(x)− f(a)| ≤ |f(x)− fk(x)|+ |fk(x)− fk(a)|+ |fk(a)− f(a)| < ǫ.

returning to our power series, if only we knew that Pn → P uniformly
on (−r, r), we could have immediately applied the above theorem rightaway.
Since each Pn, a polynomial is continuous, it follows that P is also continu-
ous. Unfortunately, there is a little twist. In general Pn does not converge
uniformly on all of (−r, r). They nearly do so.

Fact: Let 0 < c < r. Then Pn → P uniformly on [−c, c].

You can take c = r − 0.00001, but can not take c = r in general.
Proof is simple. Let ǫ > 0. Remember the power series converges abso-

lutely at the point c. That is, the series
∑ |αi|ci is convergent. Also remember

that when a series converges, the partial sums converge to the grand sum. A
consequence of this, which we observed earlier , is that tail sums converge to
zero. That is if tn =

∑
i>n

|αi|ci, then tn → 0. Let us choose k so that tk < ǫ.

We claim that |Pn(x) − P (x)| < ǫ for any n > k and for any x ∈ [−c, c]. In
fact for any such n and x,

|P (x)− Pn(x)| = |
∑

i>n

αix
i| ≤

∑

i>n

|αi|ci ≤
∑

i>k

|αi|ci < ǫ.

We now complete proof of (ii).

Let us take a ∈ (−r, r). We show that P is continuous at a. First fix
c > 0 so that −r < −c < a < c < r. The above two facts tell you that P is
continuous on the interval [−c, c]. To show that P is continuous at a, take
a sequence xn → a, −r < xn < r. Then after some stage xn ∈ (−c, c). By
continuity of P on [−c, c] tell us P (xn) → P (a).
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This completes proof of (ii).

Towards proof of (iii):

Recall
Q(x) = α1 + 2α2x+ 3α3x

2 + 4α4x
3 + · · ·

We need ot show that Q also has radius of convergence r. Here the coefficient
of xn is (n+1)αn+1 so for the radius of convergence of Q we would be involved

in n

√
(n+ 1)|αn+1|. On the other hand calculation of r involved n

√
|αn|. We

first sort out this mismatch between n and n + 1. We claim that the series
Q(x) converges iff the following series converges.

xQ(x) = α1x+ 2α2x
2 + 3α3x

3 + 4α4x
4 + · · ·

In fact let x be any real number. if the seriesQ(x) converges, then multiplying
each term by x we get the second series and hence the second series also
converges. conversely, suppose that the second series converges. If x = 0,
then first series also converges (inspect what is the series when you put
x = 0). So let x 6= 0. But then the first series is obtained from the seond
series by dividing each term by x.

As a consequence, the radius of convergence of the power series Q(x) is
given by

1

lim sup n

√
n|αn|

.

Thus to prove (iii) we only need to show that

lim sup
(

n
√
n n

√
|αn|

)
= lim sup n

√
|αn|.

Fact: Let {an} and {bn} be sequences of non-negative numbers; an → a
0 < a < ∞; lim sup bn = b; 0 ≤ b ≤ ∞. Then lim sup(anbn) = ab.

if this fact is proved, then we can take an = n
√
n and bn = n

√
|αn|. we had

already proved earlier that an → 1, so that a = 1 and the fact applies to give
us what we wanted.

Here is proof of the fact.
Case b = ∞. Need to show lim sup anbn = ∞. Given any number c, we show
that infinitely many of these anbn are larger than c. Since lim sup bn = ∞,
infinitely many bn are larger than c/(a/2); say bn1

, bn2
, bn3

· · ·. Since an → a,
after some stage an > a/2; say for n ≥ k. If you look at ani

bni
for ni > k
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you see that they are all larger than c.

Case b < ∞.
Since lim sup bn = b, there is a subsequence converging to b. Say

bn1
, bn2

, bn3
,→ b.

Since an → a, every sunsequence also converges to a. Hence

an1
bn1

, an2
bn2

, an3
bn3

, · · · → ab

Thus ab is a limit point of the sequence {anbn} so that lim sup anbn ≥ ab. If
c is any limit point of the sequence {anbn}, then there is a subsequence

an1
bn1

, an2
bn2

, an3
bn3

, · · · → c.

But
an1

, an2
, an3

, · · · → a.

Since a 6= 0, we conclude that

bn1
, bn2

, bn3
, · · · → c

a
.

Thus c/a is a limit point of the sequence {bn} and hence must be not larger
than its limsup.

c

a
≤ b; c ≤ ab

Thus any limit point of the sequence {anbn} issmaller than ab. Since we have
already shown that ab is a limit point, we conclude that lim sup anbn = ab.

This completes proof of (iii)

Finally, we prove (iv):

The idea is similar to that of (ii). Fix a ∈ (−r, r). Need to show that
[P (x) − P (a)]/[x − a] is close to Q(a)when x is close to a. We know that
[Pn(x)− Pn(a)]/[x− a] is close to Qn(a)when x is close to a where

Pn(x) = α0 + α1x+ α2x
2 + · · ·+ αnx

n.

Qn(x) = α1 + 2α2x+ 3α3x
2 + · · ·+ nαnx

n−1.

If we can show that [P (x)− P (a)]/[x− a] is close to [Pn(x)− Pn(a)]/[x− a]
and Qn(a) is close to Q(a), we are done as earlier in (ii). this is what we
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execute now.

Let ǫ > 0 be given. We shall exhibit δ > 0 so that (a− δ, a+ δ) ⊂ (−r, r)
and

0 < |x− a| < δ ⇒
∣∣∣∣∣
P (x)− P (a)

x− a
−Q(a)

∣∣∣∣∣ < ǫ.

This will show that P is differentiable and P ′(a) = Q(a).

First we fix c > 0 so that −r < −c < a < c < r. This is possible
because −r < a < r. Since Q also has radius of convergence r and 0 < c < r
we conclude that the series Q(c) converges absolutely. That is the series∑
(i+ 1)|αi+1|ci is convergent. So as earlier in (ii), its tail sums converge to

zero. Fix N such that ∑

i≥N

(i+ 1)|αi+1|ci <
ǫ

3
.

We have already defined

Pn(x) = α0 + α1x+ α2x
2 + · · ·+ αnx

n.

Qn(x) = α1 + 2α2x+ 3α3x
2 + · · ·+ nαnx

n−1.

Let us also put

P̃n(x) = αn+1x
n+1 + αn+2x

n+2 + αn+3x
n+3 + · · · .

Q̃n(x) = (n+ 1)αn+1x
n + (n+ 2)αn+2x

n+1 + (n+ 3)αn+3x
n+2 + · · · .

so that for each n ≥ 1 we have

P (x) = Pn(x) + P̃n(x); Q(x) = Qn(x) + Q̃n(x); (♦)

With this notation, choice of N tells us

|x| ≤ c ⇒ |Q̃N(x)| ≤ ǫ/3. (♠)

Note that by mean value theorem, for x ∈ [−c, c] we have the following.

∣∣∣∣∣
αN+1x

N+1 − αN+1a
N+1

x− a

∣∣∣∣∣ ≤ (N + 1)|αN+1|cN ≤ ǫ

3
.

∣∣∣∣∣
αN+1x

N+1 + αN+2x
N+2 − αN+1a

N+1 − αN+2a
N+2

x− a

∣∣∣∣∣
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≤ (N + 1)|αN+1|cN + (N + 2)|αN+2|cN+1

≤ ǫ

3
.

More generally, for every k ≥ 1, we have

∣∣∣∣∣∣∣∣∣∣∣

N+k∑

i=N+1

αix
i −

N+k∑

i=N+1

αia
i

x− a

∣∣∣∣∣∣∣∣∣∣∣

≤ ǫ

3
.

Since this is true for every k ≥ 1 we see by taking limits (over k),

−c ≤ x ≤ c ⇒
∣∣∣∣∣
P̃N(x)− P̃N(a)

x− a

∣∣∣∣∣ ≤
ǫ

3
. (♥)

As noted already and easy to see, derivative of the polynomial PN is QN .
Thus we can fix δ > 0 so that (a− δ, a+ δ) ⊂ (−c, c) and

0 < |x− a| < δ ⇒
∣∣∣∣∣
PN(x)− PN(a)

x− a
−QN(a)

∣∣∣∣∣ <
ǫ

3
(♣)

For 0 < |x− a| < δ we have the following.

In these string of inequalities below, first use (♦) and then |t+ u+ v| ≤
|t|+ |u|+ |v| and then use (♣), (♥), (♠).

∣∣∣∣∣
P (x)− P (a)

x− a
−Q(a)

∣∣∣∣∣

=

∣∣∣∣∣
PN(x)− PN(a)

x− a
+

P̃N(x)− P̃N(a)

x− a
−QN(a)− Q̃N(a)

∣∣∣∣∣
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≤
∣∣∣∣∣
PN(x)− PN(a)

x− a
−QN(a)

∣∣∣∣∣+
∣∣∣∣∣
P̃N(x)− P̃N(a)

x− a

∣∣∣∣∣+ |Q̃N(a)|

≤ ǫ

3
+

ǫ

3
+

ǫ

3
= ǫ.

This completes the proof of the theorem.

The proof is rather long but you see that each step is simple.
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