
CMI(BSc I/2013) Calculus/Analysis Eleventh week

Bernstein Polynomials:

We saw that Taylor expansion gives us a polynomial with an error term,
of course, only when the function is differentiable so many times as required
there. This led us to see if, in general, functions defined on an interval around
zero have power series expansion. such a hope failed because we found ex-
amples of functions which is zero at x = 0 and all its derivatives exist and
are zero at this point. The only power series then is the zero function; but
we had a non-zero function. Thus such a function, as in that example, can
not be explained in terms of power series.

The question that naturally arises is, even if we can not exactly express
it as an infinte power series, are there polynomials close to it. This question
gains importance because for the above function, Taylor polynomials fail to
give anything. In fact the Taylor expansion of the function (of any order)
around zero will always give you f(x) = f(x), simply because all derivatives
are zero when x = 0 and thus only the ‘error’ term remains which then must
equal f(x). Yes, given any continuous function f on a closed bounded inter-
val there are polynomials which are as close to f as you want.

We know the following. If a is a real number and ǫ > 0, then there is a
rational number r in the interval (a− ǫ, a+ ǫ). We shall now prove a similar
theorem about continuous functions. if f is a continuous function on a closed
bounded interval and ǫ > 0 then there is a polynomial P whose graph lies
in the band (f − ǫ, f + ǫ). You may recall that band means the set of points
{(x, y) : f(x) − ǫ < y < f(x) + ǫ). This is the region in the (x, y)-plane
obtained by taking parallel graphs at distance ǫ above and below the graph
of f . We came across the band while discussing uniform convergence of se-
quences of functions.

In other words, the role of real number is played by continuous function;
role of interval is played by the class of functions whose graphs lie in the
ǫ-band around graph of f as described above; the role of rational is played
by usual high school polynomial.

To put it analytically, we can find a polynomial P such that |f(x) −
P (x)| < ǫ for every x in the closed bounded interval. This is same as saying
that there is a sequence of polynomials Pn which converge uniformly on the

1



interval to f . Of course polynomials are defined on all of R, but we are not
saying about the sequence of polynomials outside the interval [0, 1]. They
may converge or may not converge.

This is very satisfying because it says that general continuous function is
not too far from a polynomial. However, you should bear in mind, this does
not mean any thing in terms of differentiability properties. A polynomial
is differentiable at every point, whereas a continuous function need not be
differentiable at any point what-so-ever. As a consequence, we can not even
ask if the polynomials are related to the Taylor polynomials simply because
the function, we started with, need not be differentiable.

This theorem is due to Weierstrass (as is the concept of uniform conver-
gence of sequence of functions). But the proof we give is due to Bernstein.
Usually, this theorem is not done in a first course of Calculus. The reason
why I am doing is the following. first, it is satisfying and has a clear intuitive
meaning devoid of complicated maths. secondly, it reassures us that the con-
tinuous functions we have dveloped are really not too far from polynomials
which you have learnt in high school (as long as you are thinking of a closed
bounded interval). Also the theorem has a proof using only high school al-
gebra, again devoid of any difficult maths. And it is important from analysis
point of view. It also naturally fits in with the questions raised in connection
with Taylor expansion.

Theorem: Let f be a real valued continuous function on [0, 1] and ǫ > 0.
Then there is a polynomial P such that |f(x)−P (x)| < ǫ for every x ∈ [0, 1].

First we observe an important property of continuous functions defined
on [0, 1].

Fact: f is a continuous function on [0, 1]. Given ǫ > 0, there is a δ > 0
such that |f(x)− f(y)| < ǫ whenever |x− y| < δ and x, y ∈ [0, 1].

When we say that a function is continuus, we just mean that it is con-
tinuous at every point a. In turn, when we say that it is continuous at a,
we mean that given ǫ > 0 there is a δ > 0 (which could depend not only on
ǫ but also on the point a), so that |f(x) − f(a)| < ǫ whenever |x − a| < δ.
What we have said above is different. As soon as ǫ > 0 is given, there is a
δ > 0 that works for every point a; in the sense, now if you take any point a
and any x with |x− a| < δ then you will have |f(x)− f(a)| < ǫ. Because of
this, this property of continuous function is called uniform continuity.
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Just to bring home the point, let us consider the function f(x) = x2 on
all of R. Let us try to verify continuity with ǫ = 1. if our point is a = 0,
then you can take δ = 1 (you must verify this statement). if our point is
a = 10 then δ = 1 will not do, you must choose smaller δ, say δ = 1/21. If
our point is a = 100 then this δ also will not do, you need to choose a much
much smaller δ. It is not difficult to see that as the point a gets larger and
larger, you need to choose smaller and smaller δ which approaches zero as a
gets larger and larger. in other words, you can not choose one δ > 0 that
works for all a. Remember ǫ = 1 is fixed for all this discussion. what the
fact above says is that such a thing can not happen if you had, instead of R,
a closed bounded interval.

The proof of the fact is simple. If possible, fix an ǫ > 0 for which we
can not find a δ > 0. Thus δ = 1/2 or 1/22 or 1/23 etc will not serve our
requirement. thus for each n = 1, 2, 3 · · · we ca find two points xn, yn so that
|xn − yn| < 1/2n yet |f(xn)− f(yn)| ≥ ǫ. The sequence (xn) being bounded,
there is a subsequence {xn1

, xn2
, xn3

, · · ·} which converges to a point a, but
then yi = (yi − xi) + xi tells us that {yn1

, yn2
, yn3

, · · ·} also converges to a,
but then the sequence f(xn1

) − f(yn1
), f(xn2

) − f(yn2
), f(xn3

) − f(yn1
), · · ·

converges to f(a) − f(a) = 0 whereas each term of the sequence is larger
than ǫ in modulus. this is a contradiction. This completes the proof.

to proceed to the proof of the polynomial approximation theorem, we
make a few observations. Through out below, just for these calculations, we
take x0 = 1 when x = 0 — just for now.

n
∑

0

(

n

k

)

xk(1− x)n−k = 1; n ≥ 1. (♠)

This is simply the binomial expansion for (x+ 1− x)n.

n
∑

0

k

(

n

k

)

xk(1− x)n−k = nx; n ≥ 1.

You can sum from k = 1 onward; then you can write k
(

n

k

)

= n
(

n−1
k−1

)

; then

take nx outside the sum. recognize binomial expansion of (x+ 1− x)n−1.

n
∑

0

k(k − 1)

(

n

k

)

xk(1− x)n−k = n(n− 1)x2; n ≥ 1.
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Again, it suffices to sum only for k ≥ 2; write k(k − 1)
(

n

k

)

= n(n − 1)
(

n−2
k−2

)

etc.
n
∑

0

(k − nx)2
(

n

k

)

xk(1− x)n−k = nx(1− x) ≤
n

4
; n ≥ 1.

If we write (k − nx)2 as the sum of four terms k(k − 1) + k + n2x2 − 2nxk
and simplify the four sums using the earlier equations. The last inequality

is clear becaue for x ∈ [0, 1] we have
√

x(1− x) ≤ [x+ (1− x)]/2.

We now define the Bernstein polynomials associated with a continuous
function f on the interval [0, 1].

Pn(x) =
n
∑

0

f(k/n)

(

n

k

)

xk(1− x)n−k; x ∈ [0, 1]; n ≥ 1.

This is clearly a polynomial in x. The values of the function f at certain
points appear in the definition of these polynomials.

The motivation for looking at such polynomials occurs from Probability
theory. Roughly, the reason why this polynomial should be close to f is the
following. The binomial coefficients

(

k

n

)

xk(1 − x)n−k increase as k increases
from zero to near nx, reaching a maximum value near nx and then start
decreasing. Also these coefficients are nearly zero at the tails. Thus in the
above sum, f(k/n) gets maximum weight whenever k is near nx. In other
words values of f near x gets high weight in the above averaging and values
away from x get weight very close to zero. Thus the average is close to f(x).

To prove the theorem, fix ǫ > 0. We show an N such that PN sat-
isfies the requirement. This is done as follows. First fix δ > 0 so that
|f(x) − f(y)| < ǫ/2 whenever |x − y| < δ, possible by uniform continuity of
f . Fix a number C so that |f(x)| < C for every x ∈ [0, 1], possible because
continuous function on a closed bounded interval is bounded. Finally, fix
integer N > (C/δ2ǫ). This will do. Actually, we show, |f(x)−Pn(x)| < ǫ for
every n ≥ N and every x ∈ [0, 1].

From (♠) we see

f(x) =
n
∑

0

(

n

k

)

f(x)xk(1− x)n−k,

so that

|f(x)− Pn(x)| = |
∑

k

[f(x)− f(k/n)]

(

n

k

)

xk(1− x)n−k|
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≤
∑

k

|f(x)− f(k/n)|

(

n

k

)

xk(1− x)n−k

=
∑′

|f(x)− f(k/n)|

(

n

k

)

xk(1− x)n−k

+
∑′′

|f(x)− f(k/n)|

(

n

k

)

xk(1− x)n−k

Where
∑′ is sum over {k : |x − k

n
| ≤ δ}. But by choice of δ this sum is at

most (ǫ/2) times the sum of the binomial coefficients. Hence
∑′ ≤ ǫ/2.

The sum
∑′′ is over {k : |x− k

n
| > δ}. But by choice of C this sum is at

most 2C times sum of the binomial coefficients. For every k in this sum, we
have |nx− k| > nδ so that

∑′′
|f(x)− f(k/n)|

(

n

k

)

xk(1− x)n−k

≤ 2C
∑′′

(

n

k

)

xk(1− x)n−k

≤ 2C
∑′′ (k − nx)2

n2δ2

(

n

k

)

xk(1− x)n−k

≤
2C

n2δ2
n

4
=

1

2

C

nδ2
=

ǫ

2
.

This completes the proof of the theorem.

Why did we take the interval [0, 1]? Just to conveniently describe the
polynomials. Any closed bounded interval is as good. More precisely, let f
be a continuous function on a closed bounded interval [a, b] and ǫ > 0. Then
there is a polynomial P such that

sup
x∈[a,b]

|f(x)− P (x)| < ǫ.

This is observed by changing the action to the unit interval and coming
back as follows. define g(x) = f(a + [b − a]x) on [0, 1]. This is continu-
ous, get a polynomial Q so that |g(x) − Q(x)| < ǫ for all x ∈ [0, 1]. Then
P (x) = Q([x − a]/[b − a]) is a polynomial and serves our purpose. in fact
f(x)− P (x) = g([x− a]/[b− a])−Q([x− a]/[b− a]).

Can we do on the real line? That is, given a continuous function f on
R and ǫ > 0, can we find a polynomial P so that |f(x) − P (x)| < ǫ for all
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x ∈ R. This is false in general. In fact take f(x) = sin x and ǫ = 1/4. if
you take a constant polynomial, it will not do because f takes values zero
as well as one. If you take a non-constant polynomial, then it is not bounded.

L’Hopital revisited:

We shall discuss two issues connected with L’Hopital rule. Recall, it tells
us that if f(x) → 0 and g(x) → 0 as x → a, and if f ′(x)/g′(x) → α, then
f(x)/g(x) → α. This is the 0/0 form. We shall now show that the same
result holds even for ∞/∞ form.

L’Hopital’s rule: Let f and g be two differentiable functions on (a, b) such
that lim f(x) as well as lim g(x) are ∞ as x → a; and g′(x) 6= 0 on (a, b) and
lim f ′(x)/g′(x) → α as x → a. Then lim f(x)/g(x) → α as x → a.

The proof proceeds along the same lines as the 0/0 case, but a little more
involved.

We treat the case α ∈ R. Other cases, namely, α = ∞ and α = −∞ are
similar. So let ǫ > 0 be given. Need to show a number δ > 0 so that

x ∈ (a, a+ δ) ⇒ |
f(x)

g(x)
− α| < ǫ.

As earlier, using the hypothesis, fix δ1 > 0

x ∈ (a, a+ δ1) ⇒ α−
ǫ

4
<

f ′(x)

g′(x)
< α +

ǫ

4
.

Let us fix a number y with a < y < a+ δ1 (sort of a reference point and will
not be changed in our calculations from now). The generalised MVT implies

a < x < y ⇒ α−
ǫ

4
<

f(x)− f(y)

g(x)− g(y)
< α +

ǫ

4
.

Take δ2 so that 0 < δ2 < δ1 and g(x) > max{g(y), 0} for x ∈ (a, a+ δ2). This
is possible because g(x) → ∞ as x → a. Now let us take any x ∈ (a, a+ δ2)
and multiply the above inequality by the positive number [g(x)− g(y)]/g(x).
Thus for a < x < a+ δ2 we have

(

α−
ǫ

4

)

g(x)− g(y)

g(x)
+

f(y)

g(x)
<

f(x)

g(x)
<
(

α +
ǫ

4

)

g(x)− g(y)

g(x)
+

f(y)

g(x)
.

6



Let us observe that [g(x)− g(y)]/g(x) → 1 as x → a because y is fixed and
g(x) → ∞. Thus we can choose δ3 so that 0 < δ3 < δ2 and for a < x < a+ δ3

(

α−
ǫ

4

)

g(x)− g(y)

g(x)
> α−

ǫ

2
;

(

α +
ǫ

4

)

g(x)− g(y)

g(x)
< α +

ǫ

2
.

Thus for

a < x < a+ δ3 ⇒
(

α−
ǫ

2

)

+
f(y)

g(x)
<

f(x)

g(x)
<
(

α +
ǫ

2

)

+
f(y)

g(x)
.

Since f(y)/g(x) → 0 as x → a, choose δ4 so that 0 < δ4 < δ3 and for
x ∈ (a, a+ δ4) this ratio is between −ǫ/2 and +ǫ/2. Thus we have

a < x < a+ δ4 ⇒ α− ǫ <
f(x)

g(x)
< α + ǫ.

This completes proof of the rule.

The second issue related to L’Hopital’s rule is the following. Let us again
consider the 0/0 case. What if f ′ and g′ also converge to zero at a? The
answer is that we can try second derivatives and so on.

Fact: Suppose f and g are (n − 1)-times continuously differentiable on
an interval [a, b] and f as well as g and all their first (n− 1) derivatives are
zero at a. Suppose f (n) and g(n) exist in the open interval; g(n)(x) 6= 0 for all
x ∈ (a, b) and f (n)(x)/g(n)(x) → α as x ↓ a. then f(x)/g(x) → α as x ↓ a.

As suggested by Pranav, you can use the earlier case repeatedly as fol-
lows. First observe that g(n) never takes the value zero, so that g(n−1)(x) can
be zero for at most one value of x in (a, b) — use mean value theorem. Say it
is nonzero in (a, b1). Repeat this argument to see g(n−2) is non-zero in (a, b2)
and so on; finally getting an interval (a, β) where all these derivatives of g
are non-zero and consider only this interval in what follows. This is alright
because we are interested as x → a.

Applying earlier version of L’Hopital successively to f (k); g(k) with k =
n− 1, n− 2, · · · 1 deduce

lim
x↓a

f (n)(x)

g(n)(x)
= lim

x↓a

f (n−1)(x)

g(n−1)(x)
= lim

x↓a

f (n−2)(x)

g(n−2)(x)
= · · · = lim

x↓a

f(x)

g(x)
.

Here is another method when α is finite. This depends on a generaliza-
tion of MVT with higher order derivatives or Taylor for two functions.
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Fact: f , g are n− 1 times continuously differentiable in the interval [a, b]
and f (n), g(n) exist in the interval (a, b). There is a number θ ∈ (a, b) such
that
[

f(b)−
n−1
∑

0

f (k)(a)
(b− a)k

k!

]

g(n)(θ) =

[

g(b)−
n−1
∑

0

g(k)(a)
(b− a)k

k!

]

f (n)(θ).

Proof consists of applying the earlier version to the following functions.

F (x) = f(x) +
n−1
∑

1

f (k)(x)

k!
(b− x)k.

G(x) = g(x) +
n−1
∑

1

g(k)(x)

k!
(b− x)k.

These are continuous on [a, b] and differentiable in (a, b) so there is θ ∈ (a, b)
such that

[F (b)− F (a)]G′(θ) = [G(b)−G(a)F ′(θ). (♣)

F (b)− F (a) = f(b) + 0− f(a)−
n−1
∑

1

f (k)(a)

k!
(b− a)k

= f(b)−
n−1
∑

0

f (k)(a)
(b− a)k

k!
(∗)

For x ∈ (a, b)

G′(x) = g′(x) +
n−1
∑

1

g(k+1)(x)

k!
(b− x)k −

n−1
∑

1

g(k)(x)

(k − 1)!
(b− x)k−1

= g(n)(x)
(b− a)n−1

(n− 1)!
. (∗∗)

Similarly,

G(b)−G(a) = g(b)−
n−1
∑

0

g(k)(a)
(b− a)k

k!
(†)

and

F ′(x) = f (n)(x)
(b− a)n−1

(n− 1)!
. (††)

Substituting (∗), (∗∗), (†), (††) in (♣) we get the result.
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Now the proof of L’Hopital goes exactly as in the earlier case. Fix ǫ > 0.
Need to show δ > 0 so that

a < x < a+ δ ⇒ α− ǫ <
f(x)

g(x)
< α + ǫ.

Fix, using hypothesis, δ > 0 so that

a < x < a+ δ ⇒ α− ǫ <
f (n)(x)

g(n)(x)
< α + ǫ.

The same δ would do. take any a < y < x < a+ δ apply the above MVT on
the interval [y, x] and let y ↓ a. This completes the alternative proof.

Newton’s algorithm for zero:

We shall discuss just one inteersting computational application of the
Taylor formula. It is to find a zero of a function. Shall present the most
primitive version of an algorithm Newton discovered.

Suppose we have a function f : R → R. Let z be a zero of f , that is,
f(z) = 0. Find an algorithm to calculate z with required degree of accuracy,
if we know roughly where it is located.

Start with a point z0. This is your initial or starting approximation to z
(and hence, in general, you need to start close to z). Draw tangent to the
curve, graph of f , at (z0, f(z0)). Suppose it cuts the x-axis at z1 (so you
need to assume that tangent is not parallel to the x-axis). This is your first
approximation to z. Then draw tangent to the curve at (z1, f(z1)) Suppose
that it cuts the x-axis at z2. This is your second approximation. Continue
the process. The hope is you are heading towards to z, the actual zero.

What makes us hope so? Well, as is always the case, look at some ex-
amples. For instance consider the curve f(x) = x2 − 2 and take z0 = 1 and
try. Take the curve f(x) = x3 − 2 and try again. of course, the fact that
ti works in the examples we have seen is not good enough to believe that
this is always true. In fact it is not always true that these numbers zn so
obtained converge to the actual zero. But, under fairly general conditions
they do converge.

Let us see what the algiorithm says. The tangent at (z0, f(z0)) to the
curve is given by

y − f(z0) = f ′(z0)(x− z0).
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To find the point of intersection with the x-axis, set y = 0 to see

z1 = z0 −
f(z0)

f ′(z0)
.

To get z2 you repeat the same formula above. Here is the precise fact.

Suppose that f is a twice differentiable function in an open interval I.
Suppose that f ′(x) is never zero in this interval. Assume that

sup |f ′′(x)|

inf |f ′(x)|
= α < ∞.

Let z be a point in I with f(z) = 0.
Start with a point z0 ∈ I with α|z − z0| < 1. Define recursively,

zn+1 = zn −
f(zn)

f ′(zn)
.

Then each of the points zn is in the interval I and zn → z.

Here is the proof. Suppose zn ∈ I. By Taylor expansion around zn, there
is a point θ between zn and z such that

f(z) = f(zn) + f ′(zn)(z − zn) +
1

2
f ′′(θ)(z − zn)

2.

Since f(z) = 0 we gets

f(zn) = −f ′(zn)(z − zn)−
1

2
f ′′(θ)(z − zn)

2.

Hence

zn+1 = zn −
f(zn)

f ′(zn)
= zn + (z − zn) +

1

2

f ′′(θ)

f ′(zn)
(z − zn)

2.

|zn+1 − z| = |
1

2

f ′′(θ)

f ′(zn)
(z − zn)

2.| ≤
1

2
α|zn − z|2

In particular

|z1 − z| ≤
1

2
{α|z0 − z|}|z0 − z| <

1

2
|z0 − z|.

showing that z1 ∈ I and in fact closer to z than z0. In particular α|z1−z| < 1.
Thus

|z2 − z| ≤
1

2
{α|z1 − z|}|z1 − z| <

1

2
|z1 − z|. ≤

1

22
|z0 − z|.
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By induction, you can conclude the following for each n:

zn ∈ I; α|zn−1 − z| < 1; |zn − z| ≤
(

1

2

)n

|z0 − z|.

This completes proof of the assertion made. In fact the convergence of
the approximations is ‘geometric’.

Integration:

Here is the problem, familiar from high school. How do you calculate
areas. of course, if we have a rectangular region, we some how seem sure
and agreed upon that its area is product of lengths of sides. Thus areas
of rectangles are taken as known. Of course, from this we some how built
up several other areas, for example area of a circle of radius r equals πr2.
We also know how to calculate areas of triangles and some other figures like
parallelogram, trapezium etc.

Let us consider a function f defined on the interval [0, 1]. As a first step,
let us assume that the function takes only non-negative values, so that the
graph of the function is above the x-axis. We also assume that the function is
bounded. Consider the region under the curve, bounded below by the x-axis.
On the sides it is bounded by the vertical lines at x = 0 and x = 1. Thus to
the left, the region is bounded by the y-axis and to the right, it is bounded
by the vertical line at x = 1.

Analytically, it is the region {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ f(x)}.

How nice if the function is a constant f ≡ c > 0. Then the graph of f
is just a flat horizontal line at height c and thus the region is just a rectan-
gle with sides of lengths one and c. Its area is c. Suppose the function is
piece-wise constant, say, on [0, 1/4] value of f is α; on (1/4, 1/3) value of f
is β and finally on [1/3, 1] value of f is γ. Then the region under considera-
tion consists of three rectangles and so the ‘total’ area of the region equals
α(1/4) + β(1/12) + γ(2/3).

If the function is not piece-wise constant, then the region is, of course,
not made up of finitely many rectangles. Let us denote the area by A. The
plan is to find a number which bounds A from below and to find a number
which bounds A from above. For instance, suppose that there are reasons to
believe that the unknown area A must at least be 3 and also can be at most
3. Then you must agree that the area must equal 3, neither more nor less.
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Of course, if you can only conclude that the area must at least be 3 and can
not exceed 4, then we are sure that it must be a number between 3 and 4;
but not yet sure what exactly it should equal.

If you are trying to see a lower bound for the area, the best way is to fit in
non-overlaping rectangles in our region and take their total area. this can be
done in several ways. what is the most efficient way of doing it? here is what
Riemann’s idea is. Break up the interval [0, 1] into finitely many intervals,
say [0, a1], [a1, a2] · · · [a55, 1] — 56 pieces. On each piece, let us calculate
the infimum of the function. Let them be m0,m1, · · · ,m55. Consider the
rectangles with base [ai, ai+1] and height mi for i = 0, 1, 2, · · · , 55. Clearly
these rectangles are non-overlapping (have common sides) and are all within
the region of our interest. Thus the area A must be at least sum of the areas
of theses rectangles.

For every break up of the interval [0, 1] we calculate a number, namely,
sum of the areas of the rectangles constructed as above, by taking infimum
of the function in each of the intervals. Let L be the set of numbers so ob-
tained. Thus, we must agree to the following. Whatever be the area A, we
must have α ≤ A for each α ∈ L. ln other words A is an upper bound for
the set L. Let l be the least upper bound of the set L, that is, supremum of
L. Thus we have l ≤ A.

Let us use the same notation as in the earlier para, and now let us consider
the supremum of the function in each of the intervals, say, M0,M1, · · · ,M55.
Consider the rectangles with base [ai, ai+1] and heightMi for i = 0, 1, 2, · · · , 55.
Clearly these rectangles are non-overlapping (have common sides) and all the
rectangles put together include the region of our interest. Thus the area A
can at most be sum of the areas of these rectangles.

For every break up of the interval [0, 1] we calculate a number, namely,
sum of the areas of the rectangles constructed as above, by taking supremum
of the function in each of the intervals. Let U be the set of numbers so
obtained. Thus, we must agree to the following. Whatever be the area A,
we must have A ≤ α for each α ∈ U . ln other words A is a lower bound for
the set U . Let u be the infimum or the glb of the set U . Thus we have A ≤ u.

Thus we have calculated two numbers l and u and we are sure that
l ≤ A ≤ u. In particular, if we are lucky and it so turns out that l = u
then this must be the area of the region and there is nothing for us to decide.
What is amazing is that this equality holds in many cases. Thus this intuitive
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algorithm leads to an answer for the concept of area in many situations.

Of course, it does not lead to an answer in many other cases. For ex-
ample, if our function f is given by: f(x) equals one or zero according as
x is rational or not. Then L consists of one number, namely 0; whereas U
consists of one number 1. thus l = 0 and u = 1, unequal.

We shall now start with definitions execute the above idea. In what fol-
lows [a, b] is a closed bounded interval. By a partition of this interval we
mean a finite set of points a = a0 < a1 < a2 < · · · , ak = b. We denote
partition by P . Thus partition is just a finite subset of [a, b] and a ∈ P and
b ∈ P . Of course a set consists of only points and there is nothing like first or
second element in the set. When we think of a partition, we keep the order
also in mind when we picturize it. A partition as above breaks the interval
into finitely many intervals, namely, [a, a1], [a1, a2], · · ·, [ak−1, b]. Sometimes
we refer to these intervals as intervals of the partition.

If P1 and P2 are two partitions, we say P2 is finer than P1 if every point
of P1 is also in P2, that is, P1 ⊂ P2. We write P1 ≤ P2. Thus, for example if
the interval is [0, 1] then

{0, 1/2, 1}; {0, 1/4, 1/3, 1/2, 1}; {0, 1/8, 3/8, 1}

are all partitions. The second one is a refinement of the first one. The third
one is not comparable to the other two. However we can think of a partition
that refines both the second and third, namely

{0, 1/8, 1/4, 1/3, 3/8, 1/2, 1}.

In general refinement of two partitions P1 and P2 is just P1 ∪ P2, of course,
you need to arrange the points in increasing order when you picturize. This
is denoted by P1 ∨ P2

Alternatively, you can define a partition as a finite increasing subset of
[a, b] by bringing in the order also as part of the definition. Then of course
common refinement would consist of increasing arrangement of the points of
both taken together.

Now let f be a bounded real valued function on [a, b]. For a partition
P = {a = a0 < a1 < a2 < · · · < ak = b}, we define

U(P, f) =
k−1
∑

0

Mi(ai+1 − ai); Mi = sup{f(x) : ai ≤ x ≤ ai+1}.
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L(P, f) =
k−1
∑

0

mi(ai+1 − ai); mi = inf{f(x) : ai ≤ x ≤ ai+1}.

U(P, f) is the upper Riemann sum for the partition P and L(P, f) is the
lower Riemann sum for the partition P . We put

U(f) = inf
P

U(P, f); L(f) = sup
P

L(P, f).

In the above, the inf and sup is over all the partitions of the interval [a, b].

We say that f is Riemann integrable if U(f) = L(f) and then define
integral of f as this common value U(f) = L(f). The integral is denoted
b
∫

a
f(x)dx. Convince yourself that this is precisely what we thought at the

beginning.

Here are some facts regarding the Riemann sums and integrals.

1: For any partition P , L(P, f) ≤ U(P, f)
This follows from the fact mi ≤ Mi for each i.

2. If P1 ≤ P2, then L(P1, f) ≤ L(P2, f) and U(P1, f) ≥ U(P2, f).

First suppose that P2 has only one extra point than P1; say

P1 = {a = a0 < a1 < · · · < ak = b}.

Suppose P2 has one extra point α; aj < α < aj+1. Let

m′ = inf{f(x) : aj ≤ x ≤ α}; m′′ = inf{f(x) : α ≤ x ≤ aj+1}.

Then mj being inf{f(x) : aj ≤ x ≤ aj+1} we see mj ≤ m′ and mj ≤ m′′; as
the set gets larger, inf gets smaller. Thus

mj(aj+1 − aj) = mj(α− aj) +mj(aj+1 − α)

≤ m′(α− aj) +m′′(aj+1 − α).

Observe that the only difference between L(P1, f) and L(P2, f) is the follow-
ing. The termmj(aj+1−aj) appearing in L(P1, f) is replaced by the right side
above in L(P2, f). Thus the above inequality shows that L(P1, f) ≤ L(P2, f).
Similarly if

M ′ = sup{f(x) : aj ≤ x ≤ α}; M ′′ = sup{f(x) : α ≤ x ≤ aj+1}.
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then we see M ′ ≤ Mj and M ′′ ≤ Mj leading to the inequality U(P2, f) ≤
U(P1, f).

Clearly, by induction, the inequalities follow if P2 has k extra points than
P1; k = 1, 2, · · · This completes the proof.

3. For any two partitions P1 and P2, we have L(P1, f) ≤ U(P2, f).
In fact if P = P1 ∨ P2, their refinement, we see using the two facts above

L(P1, f) ≤ L(P, f) ≤ U(P, f) ≤ U(P2, f).

4. L(f) ≤ U(f).
The earlier fact says that every number L(P, f) is a lower bound for the set
S = {U(Q, f) : Q partition of [a, b]}. Thus L(f) is a lower bound for S.
But U(f) is the glb of S. Hence L(f) ≤ U(f).

5. If α ≤ f(x) ≤ β for all x ∈ [a, b], then for each partition P ,
α(b− a) ≤ L(P, f) and U(P, f) ≤ β(b− a).

Just note that α ≤ mj ≤ Mj ≤ β for each j.

6. If α ≤ f(x) ≤ β for all x ∈ [a, b], then

α(b− a) ≤ L(f) ≤ U(f) ≤ β(b− a).

This follows from the above.

7. Every continuous function on [a, b] is integrable.
We need to show that L(f) = U(f). Since L(f) ≤ U(f) always, we only
need to show U(f) ≤ L(f). Fix ǫ > 0. We show a partition P so that
U(P, f)− L(P, f) < ǫ Then it follows that

U(f)− L(f) ≤ U(P, f)− L(P, f) ≤ ǫ

Since ǫ > 0 is arbitrary, it follows that U(f) ≤ L(f) as required.

Use uniform continuity of f on [a, b] to get δ > 0 so that

x, y ∈ [a, b]; |x− y| < δ ⇒ |f(x)− f(y)| <
ǫ

b− a
.

Now take any partition

P = {a = a0 < a1 < · · · < ak = b}
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such that each interval of the partition has length smaller than δ. There are
such partitions. For example, a, a + (δ/2), a + 2(δ/2), · · ·. Of course, when
k(δ/2) exceeds b, you stop and take the last point as b. If x and y are in
[aj, aj+1] we see |f(x) − f(y)| < ǫ/(b − a) and hence Mj − mj < ǫ/(b − a).
In fact, f being continuous, you can take x and y to be the points in the
interval [aj, aj+1] where the max and min are attained. Thus

U(P, f)− L(P, f) =
∑

(Mj −mj)(aj+1 − aj)

≤
ǫ

b− a

∑

(aj+1 − aj) = ǫ.

Thus we see that a large class of functions, namely continuous functions, are
integrable.
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