
CMI(BSc I/2013) Calculus/Analysis Sixth Week

Continuous functions:

Thus we felt that a function is continuous at a point a if, for points near a
the values should be close to the value at a. We should now make it precise.
First we make an observation.

Fact: Let f : R → R and a ∈ R. Then the following two statements are
equivalent.
(i) xn → a implies f(xn) → F (a).
(ii) Given ǫ > 0, we can find a δ > 0 so that |f(x) − f(a)| < ǫ whenever
|x− a| < δ.

Proof: Let (ii) hold. Let xn → δ. Fix ǫ > 0. We exhibit n0 so that
|f(xn) − f(a)| < ǫ for n ≥ n0. Go to the hypothesis (ii) and get δ > 0 for
this ǫ. Choose n0 so that |xn − a| < δ for n ≥ n0. But then, for these n, we
have |f(xn)− f(a)| < ǫ.

Conversely, let (ii) fail. We show (i) fails by producing a sequence xn → a
but f(xn) 6→ f(a). Since (ii) is false, there is an ǫ > 0 for which we can not
find δ > 0 satisfying the condition of (ii). Fix such an ǫ > 0. Using the
fact that δ = 1/n does not fulfil condition of (ii), we can fix an xn such that
|xn − a| < 1/n and yet |f(xn)− f(a)| ≥ ǫ. No need to say anything more.

Definition: A function f : R → R is continuous at a point a if any one of
the above conditions holds. We say that f is continuous if it is continuous
at every point a.

The two conditions are interesting. Condition (i) allows us to verify dis-
crete instances. That is, to verify this condition we fix any arbitrary sequence
xn → a and verify f(xn) → f(a). Of course there are uncountably many se-
quences converging to a, but that is a different matter. Whenever you set to
verify one instance it is a discrete sequence. On the other hand condition (ii)
is a non-discrete condition. Even for one instance, you fix ǫ > 0 and produce
a δ; but this delta should verify something for every x with a−δ < x < a+δ,
namely, for every such x we must verify −ǫ < f(x) − f(a) < ǫ. Remember
this verification is to be done for every x in an interval. However, both are
equivalent. Sometimes (i) and sometimes (ii) would be handy.

When we were making up our mind about continuity, some of you men-
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tioned about limits. Yes, you are right, usually the notion of continuity is
defined after defining limits of functions. One defines righthand limit, left-
hand limit at a and says that the function is continuous at a if both righthand
limit and lefthand limit exist and equal f(a). I find it difficult to begin with
these concepts, which demand understanding continuous limits. It is not to
say that these concepts are unimportant. They are simple and important.
After you feel comfortable with the existing concepts and assimilate them,
you would have no problem discovering them yourself.

The collection of all real valued functions on a set S has a nice structure. If
f and g are are such functions, you can define the function h(x) = f(x)+g(x)
on the set S. This function is simply denoted by f + g. Similarly fg denotes
the function whose value at x ∈ S is f(x)g(x). The function 55f is the
function whose value at x ∈ S is 55f(x). The function f

g
or f/g has value

f(x)
g(x)

at x ∈ S; but now this function may no longer be defined on all of S.

It is defined only for those points x ∈ S such that g(x) 6= 0. The domain of
this function may not be all of S.

Thus remember sum, product etc of functions is defined by us. On the
other hand, the set of real numbers R is a set with operations of addition
and multiplication defined on the set satisfying certain conditions. The set
of all real valued functions defined on S did not come with such operations.
We defined those operations.

Fact: If f : R → and g : R → R are continuous functions, then so are
f + g, fg and 29f . The function f/g is also continuous if g(x) 6= 0 for all
x ∈ R.

Proof is very simple, follows from definition of continuity and properties
of sequences that we know.

The last statement regarding f/g is unsatisfactory, it excludes all func-
tions g which take value zero at one point. It would be more satisfying to
allow such functions too and be able to say that f/g is continuous on the set
where it is defined. We shall rectify the situation soon, but let us see some
examples first, of continuous functions defined ln all of R.

Fact: The following continuous from R to R.

f(x) ≡ 49; f(x) = x; f(x) = x100.
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More generally, every polynomial is a continuous function.

Definition: Let S ⊂ R be a non-empty subset and f : S → R and a ∈ S.
We say that f is continuous on S at the point a, if any one of the following
two equivalent conditions holds.
(i) xn → a, xn ∈ S for all n implies f(xn) → f(a).
(ii) Given ǫ > 0, there is a δ > 0 such that |f(x) − f(a)| < ǫ whenever
|x− a| < δ and x ∈ S.
We say f is continuous on S if it is continuous on S at every point of S.

Of course, before making such a definition we should verify that the two
conditions are indeed equivalent. This is very easy, if you look at the proof
above you realize it. Proof of (ii) implies (i) needs no change. In the proof
of ‘¬ (ii)’ implies ‘¬ (i)’ you only need to choose points xn from S.

Fact: If f , g are real valued continuous functions on S ⊂ R, then so
are f + g, 29f and fg. The function f/g is also continuous on the set
T = {x ∈ S : g(x) 6= 0}.

Fact: Let f(x) = (x− 55). Then f is continuous on R and 1/f is contin-
uous on the set {55}c = R− {55}.

Here we have used another notation R − {55}, but what is subtraction.
It is not given to us. We define subtraction between two sets as follws:
A− B = {x ∈ A : x 6∈ B} This is same as A ∩Bc.

Let us see some functions which are not continuous.
The function f(x) = 0 for x rational and f(x) = 1 for x irrational is defined
on all of R and is not continuous at every a ∈ R.
The function f(x) = x2 for x ≤ 0 and f(x) = x + 1 for x > 0 is defined on
all of R. It is continuous at every non-zero a ∈ R. It is not continuous at
a = 0.
The function

f(x) =
1

x− 1
+

1

x− 2
+

1

x− 12
.

is defined on the set S = {1, 2, 12}c and is continuous on S at every point of S.

If S is the set of integers, then every real valued function on S is contin-
uous on S. This is easy to see.
Here is a useful property of continuous functions defined on a closed bounded
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interval [a, b].

Fact: Let f be a real valued continuus function defined an an interval
[a, b]. Then f is bounded, that is there is a number C such that |f(x)| ≤ C for
all x. In fact, there are points x0 and x1 in [a, b] so that f(x0) ≤ f(x) ≤ f(x1)
for all x.

Thus the function attains its minimum and maximum values at the points
x0 and x1 respectively.

Proof: Let us start with an observation. If we proved that every con-
tinuous function is bounded, then the second part follows. Indeed, let α =
inf{f(x) : a ≤ x ≤ b}. If there is no point where the value of f equals α,
then g = 1/(f − α) is continuous and not bounded, because for any n ≥ 1,
there is a point x with f(x) < α − (1/n) so that g(x) > n. Thus there is
a point x0 so that f(x0) ≤ f(x) for all x. Similarly, there is an x1 so that
f(x) ≤ f(x1) for all x.

Let us now show that f is bounded. Let I1 = [a, b]. If f is not bounded,
then it is not bounded either on the left half [a, (a+ b)/2] or on the right half
[(a+ b)/2, b] of [a, b]. Let it be I1. If f is unbounded on both halfs, take the
left half. Since f is unbounded on I1 let I2 be the left half of I1 if f is un-
bounded there or right half. In this way we get a sequence of closed bounded
intervals with lengths decreasing to zero and henec by Cantor’s theorem will
have exactly one point, say α, in common. Clearly α ∈ [a, b]. Since f is
continuous on [a, b] at the point α, get δ > 0 so that |f(x) − f(α)| ≤ 1 for
all x ∈ I with |x − α| < δ. In particular, on the interval (α − δ, α + δ) the
function is bounded by |f(α)|+ 1. Pick k so that length (Ik) is smaller than
δ/4. since α ∈ Ik we see Ik ⊂ (α− δ, α+ δ). In other words f is bounded on
Ik. This contradiction proves our result.

What if the function is not defined on a closed bounded interval? Clearly,
you can not take your set to be unbounded. If S is unbounded, then f(x) = x
is a continuous function on S which is not bouinded. Of course, if it is de-
fined on an open interval (a, b), then it need not be bounded. For instance,
the function f(x) = 1/x on the interval (0, 1) tells you this. In this example,
the function f is defined on the interval (0, 1). There is a sequence in this
set converging to a point outside the set, namely 1/n → 0. If sequences
in your set do not converge to points outside the set, then this will ensure
boundedness of the function.
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Definition: Say that a set C ⊂ R is closed under limits, simply closed if
xn → x, xn ∈ C for all n implies x ∈ C.

For example, as seen above, the interval (0, 1) is not closed but the in-
terval [0, 1] is closed. The set {1/n : n ≥ 1} is not a closed set but the set
consisting of these points along with zero is a closed set.

Fact: Let f be a real valued continuous function on a closed bounded set
S. Then f is bounded, in fact, there are numbers x0 ∈ S and x1 ∈ S so that
f(x0) ≤ f(x) ≤ f(x1) for all x ∈ S.

Proof goes exactly along the same lines as earlier. The first part implies
the second part by same argument. First part is proved as follows. Since the
set is bounded, get real numbers a < b so that S ⊂ [a, b] let I1 = [a, b]. If f is
unbounded on S, then it is unbounded either on the part of S in the left half
or on the part of S in the right half of I1. Denote it by I2. Continue always
making sure that f is not bounded on the part of S in In and lengths are
always halved. Get α common to all these intervals. Is α ∈ S? Yes, because
f being unbounded on the part of S in In, you see that in particular you can
pick a point xn of S from In. Obviously, |xn − α| ≤ length In → 0. Since S
is closed, we conclude α ∈ S. Now use continuity of f at α and proceed as
earlier.

Here is another property of continuous functions.
Fact: Suppose f is continuous on S and g is continuous on T . Assume

that f(x) ∈ T for each x ∈ S. Define the composition h(x) = g(f(x)) on S.
Then h is continuous on S.

In fact, if xn → x, then f(xn) → f(x) and so g(f(xn)) → g(f(x)).

Disucssion of HA:

Q37 xn → a To show an → a where an =
n
∑

1
xi.

If you are taking average of many many numbers and if most of them are
close to a then so should be their average. Here as n becomes large, you are
taking average of many many numbers and by hypothesis most of them are
close to a.

No loss to assume a = 0. This is because, you consider the sequence
yn = xn−a. Then averages of yi are just averages of xi minus a. If the result
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is proved for (yn), then you can complete the proof.

So let us assume that xn → 0. Fix ǫ > 0. Shall show n0 so that

|
1

n

n
∑

1

xi| < ǫ, n ≥ n0.

First fix k so that |xn| < ǫ/2 for n ≥ k, possible since xn → 0. Having fixed
k like this fix n0 > k so that

1

n0

k
∑

1

|xi| < ǫ/2,

possible because k is fixed. Now if n > n0

1

n
|

n
∑

1

xi| ≤
1

n

k
∑

1

|xi| +
1

n

n
∑

k

|xi| ≤
ǫ

2
+

ǫ

2
.

as promised.

Q53. To discuss convergence of
∑ P (n)

Q(n)
.

You are forgetting basic rule of life: If there is a complicated problem,
you have no clue how to proceed, ask if you can solve a simpler problem.

Why worry about general polynomials? Ask yourself: what if P (x) = xl

and Q(x) = xk? Then the ratio is
∑

n−(k−l) and it converges iff k − l > 1.
Since we are dealing with polynomials, k, l are integers, so this amounts to
saying k ≥ l + 2.

Let now

P (x) = a0+a1x+a2x
2+· · ·+alx

l; Q(x) = b0+b1x+b2x
2+· · ·+bkx

k al, bk > 0.

There is no loss to assume al > 0, otherwise argue for −P (x). Similarly, no
loss to assume that bk > 0. Observe that

P (n)/Q(n)

nl/nk
→

al

bk
> 0

and the terms of the given series, namely, P (n)/Q(n) as well as nl/nk are
positive and hence either both converge or both fail to converge by Q51. But
this special case we know already. Thus convergence holds iff k ≥ l + 2.
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Q51 an/bn → 55, all the a’s and b’s are strictly positive. To argue
∑

an
converges iff

∑

bn converges. Get k so that we have for n ≥ k,

54 <
an
bn

< 56 (i.e.) 54bn < an < 56bn.

Thus if
∑

an converges then
∑

n>k

bn ≤
∑

n≥k an/54 converges and hence
∑

bn

converges. If
∑

bn converges then
∑

n>k

an ≤
∑

n>k

56bn converges and hence
∑

an converges.

Return to Q 53. Since P (n)/nl → al > 0 we see P (n) is positive after a
stage. similarly Q(n) > 0 after some stage. Thus P (n)/Q(n) is positive af-
ter some stage. But Q 51 assumes all terms an and bn are positive. Sort it out.

Also hypothesis says that Q(n) is never zero. But they did not say
P (n) 6= 0. Thus it is quite likely that P (n)/Q(n) = 0. But Q 51 assumes all
an etc are strictly positive. Sort it out.

Unless you sort out these two issues, the proof is incomplete. (you may
want to say: but this is easy. Remeber, you would know whether it is easy
or difficult or even wrong, only after you argue it out once. Also moreover,
if you are writing proof, you would not like to wait till someone objects and
then modify your proof.)

Q55. Convergence of

∑ 1

n log n (log log n)p
.

Some of you are again forgetting basic facts of life, nothing to do with maths.
I do not know if you are lazy or just afraid of the mathematical expressions
and close your brain right away. You must attend to this, whatever it be.
This is the famous phrase of Paul Erdos: keep your brains open.

Whenever you are in an unknown territory and see an animal like the
above one, you should ask the natural question: did I see any similar animal
earlier. there pops out the answer: yes I saw the series with terms 1/np and
1/{n(log n)p} . You do not seem to take advantage of the fact that you have
seen very few animals and it is easy to go through the list of the animals you
have seen very quickly. Once the answer comes out, you should ask: how
did I tackle that animal. Of course, similar thing may or may not work, but
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obviously you should go with your natural instincts and try out.

So coming to the problem at hand: The given series converges iff
∑

2na2n
converges, that is, iff the following series converges

∑

2n
1

2n(n log 2)(log(n log 2)p
=

1

log 2

∑ 1

n(log n+ log 2)p
.

Ignore the log 2 factor and take the series as
∑

an and try

∑

bn =
∑ 1

n(log n)p
.

You see all the terms are positive and

bn
an

=

[

log n+ log 2

log n

]p

→ 1.

Now comnplete the proof.

Remember we started with n > 1000 or some such thing to make sure
denominator make sense. So the series you are comparing with, let it also
start in a similar way. Otherwise, if you blindly compare with

∑

n≥2
bn then

you are not doing correctly.

Q59 Convergence of the series

∑ log(n+ 1)− log n

(log n)2
=

∑ log(1 + 1
n
)

(log n)2
.

This is a series of positive terms and if you use the inequality log(1+ x) ≤ x
then this series is dominated by the series with terms 1/{n(log n)2} and hence
converges.

One of you suggested different argument which is nice, but I forgot it at
this moment.

unraveling negations;

We have employed, the method of proof by contradiction, several times.
This is how it goes. Need to show S ⇒ T .
Thus you are granted a hypothesis S.
You want to prove a sentence T .
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You are unable to do so directly.
Then, you would say, alright, suppose T is false.
And work hard to show S is false.
Where are we now?
T is false ⇒ S is false
Of course, S is true ⇒ S is true.
Thus
S is true and T is false ⇒ S is true and S is false.
But we can not have S is true and S is false at the same time.
So we can not have S is true and T is false at the same time.
So when S is true, T must also be true.

While running proof by contradiction, it is important to know what is
the meaning of: suppose T is false. To take a specific example. in proving
the equivalence of the two statements regarding continuity at a point a, we
had

S : (∀ǫ > 0)(∃δ > 0)(∀x)(|x− a| < δ ⇒ |f(x)− f(a)| < ǫ).(♠)

We needed to know its negation. This is not a lecture on logic, we restrict
to some common sense aspects, to be able to carry on arguments.

If we have a simple sentence like (c ≤ 5) then its negation is easy: (c > 5).
If you have compound sentence like (c < 5) ∨ (c > 30), it says one of two
things happens. So its negation is that none of them happen. Thus its nega-
tion is (c ≥ 5) ∧ (c ≤ 30). Thus negation is (5 ≤ c ≤ 30).

A sentence (c < 5) ⇒ (d > 7) means when (c < 5) holds then (d > 7)
must hold. But we always have either (c < 5) or ¬(c < 5). Thus we always
have either (d > 7) or ¬(c < 5). In other words (c < 5) ⇒ (d > 7) means
¬(c < 5) ∨ (d > 7). Thus sentence 1: A ⇒ B is same as saying sentence 2:
¬A ∨ B. What is explained just now tells you why this is so. Of course, in
logic you take statement 1 as an abbreviation for statement 2. But let us not
bother.

But sentences which involve quantifiers ∀ and ∃ are to be carefully an-
alyzed for negation. If you follow logical or symbolic method of writing
sentences, then making negations is easy.
S: Every student has a pen.
What is its negation: Every student has no pen?
No, it is: There are students without a pen. because even if one student has
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no pen, S is negated.
Thus ∀xA(x) would have negation ∃x¬A(x).

S: there is a student who is sleeping.
What is its negation: there is a student who is not sleeping?
No, it is: every student is not sleeping.
Thus ∃xA(x) would have negation ∀x¬A(x).

Let us return to our sentence.

S : (∀ǫ > 0)(∃δ > 0)(∀x)(|x− a| < δ ⇒ |f(x)− f(a)| < ǫ).(♠)

Its negation is what we are interested.

¬S : ¬
{

(∀ǫ > 0)(∃δ > 0)(∀x)(|x− a| < δ ⇒ |f(x)− f(a)| < ǫ)
}

.(♣)

From what was said above about ∀, negation of S is,

¬S : (∃ǫ > 0)¬
{

(∃δ > 0)(∀x)(|x− a| < δ ⇒ |f(x)− f(a)| < ǫ)
}

.(♣)

Again from what has been said about ∃, we see

¬S : (∃ǫ > 0)(∀δ > 0)¬
{

(∀x)(|x− a| < δ ⇒ |f(x)− f(a)| < ǫ)
}

.(♣)

Again using negation of ∀, this is same as

¬S : (∃ǫ > 0)(∀δ > 0)(∃x)¬
{

(|x− a| < δ ⇒ |f(x)− f(a)| < ǫ)
}

.(♣)

Remembering A ⇒ B is same as saying (¬A) ∨ B, this is same as

¬S : (∃ǫ > 0)(∀δ > 0)(∃x)¬
{

[¬|x− a| < δ] ∨ [|f(x)− f(a)| < ǫ]
}

.(♣)

remembering negation of A ∨B is ¬A ∧ ¬B, we see

¬S : (∃ǫ > 0)(∀δ > 0)(∃x)
{

¬[¬|x− a| < δ] ∧ ¬[|f(x)− f(a)| < ǫ]
}

.(♣)

But of course ¬¬A is same as A. Thus we have,

¬S : (∃ǫ > 0)(∀δ > 0)(∃x)
{

(|x− a| < δ) ∧ (|f(x)− f(a)| ≥ ǫ)
}

.(♣)

10



The logical symbols are introduced to convince you how simple it is to
understand negations. It is a step by step process. Let us read in words now.

The statement S reads: for every ǫ > 0, there is δ > 0, so that for every
x either |x− a| ≥ δ or |f(x)− f(a)| < ǫ.

The statement ¬S reads: There is an ǫ > 0 so that for every δ > 0, there
is an x such that |x− a| < δ and also |f(x)− f(a)| ≥ ǫ.

This is fun and you should treat it so. In case you are getting confused,
either sort it out or ignore all this and think in your own way. The issue is:
you should be able to write negation of sentences without using negation for
quantifiers.
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