
CMI(BSc I/2013) Calculus/Analysis Fifth Week

series:

If you delete, or add or alter finitely many terms in a series, then conver-
gence is unaffected.

Fact: Let
∑

an be a convergent series.
Let bn = a1000+n for n ≥ 1. Then

∑

bn converges. Here we deleted the first
few terms.

Let cn = an−1000 for n > 1000., For n ≤ 1000 let an be your choice. Then
∑

cn converges. Here we added a few terms at the beginning of the existing
series.

Let dn = an for n > 1000 and dn for n ≤ 1000 be your choice. Then
∑

dn
converges. Here we changed the first feew terms of the series, keeping the
remaining as they are.

All these three statements are proved by showing that the partial sums
are Cauchy. Let (sn) be the partial sums of the series

∑

an. If (tn) are partial
sums of

∑

bn, then tn = sn+1000−s1000. Others are proved in the same manner.

The last statement has the following special case. Consider the first 1000
terms of the original sequence, permute them and take as di. In other words,
if you take a convergent series and permute the first finitely many terms, the
resulting series converges; in fact, it converges to the same number as the
original series.

This can be made precise as follows. Let f be a bijection of {1, 2, · · · , 1000}
to itself. Define dn = af(n) for n ≤ 1000 and dn = an for n > 1000. Then
the series

∑

dn converges. In fact if
∑

an = a then
∑

dn = a as well. This is
clear by noting that the partial sums for both sequences coincide as soon as
n > 1000.

Recall that
∑

an converges if the sequence of partial sums (sn) converges,
which, in turn, is same as saying (sn) is a Cauchy sequence. This is restated
as follows.

Fact: The series
∑

an converges iff the following holds. Given ǫ > 0, there
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is n0 such that |an+1 + an+2 + · · ·+ am| < ǫ for m > n ≥ n0.
In particular, if

∑

an converges then an → 0.

The first sentence follows by observing sm − sn = an+1 + an+2 + · · ·+ am.
The second sentence follows by taking m = n+ 1 in the first sentence.

Fact: Suppose a1 ≥ a2 ≥ a3 ≥ · · · ≥ 0. Then the series
∑

an converges
iff the series a1 + 2a2 + 22a22 + 23a23 + · · · converges.

Let sn = a1 + a2 + · · ·+ an and tk = a1 + 2a2 + 22a22 + · · ·+ 2ka2k . Since
both the series consist of non-negative terms, their convergence is equivalent
to boundedness of the partial sums. Thus the stated result follows from the
following two claims.
(i) For every n, there is a k such that sn ≤ tk.
(ii) For every k, there is an n such that tk ≤ 2sn.

We prove (i) as follows. If 2k−1 ≤ n < 2k, then

sn = a1 + a2 + a3 + a4 + · · ·+ an ≤

a1 + (a2 + a3) + (a4 + · · ·+ a7) + · · ·+ (a2k−1 + · · ·+ a2k−1)

≤ a1 + 2a2 + 22a22 + · · ·+ 2k−1a2k−1 = tk−1.

where, for the inequality we used that an are decreasing.

We prove (ii) as follows.

tk = a1 + 2a2 + 22a22 + · · ·+ 2ka2k ≤

2{a1 + a2 + 2a4 + 22a8 + · · ·+ 2k−1a2k} ≤
2{a1 + a2 + (a3 + a4) + (a5 + · · ·+ a8) + · · ·+ (a2k−1+1 + · · ·+ a2k)}

= 2s2k .

Fact: The following series converge iff p > 1.

∑ 1

np
;

∑

n≥2

1

n(log n)p

For the first series, an = n−p and the terms are decreasing.

2na2n = 2n2−np = 2n(1−p)
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Thus
∑

2na2n is a geometric series
∑

rn where r = 21−p.

For the second series an = n−1(log n)−p. Actually, since log1 = 0, it
started with n = 2. Instead of counting that a2 is the first term etc, to
match the notation being used, take a1 = 0 and a2 is the second term etc.
What we write below will be true for n ≥ 2.

2na2n = 2n
1

2n(n log 2)p
=

1

(log 2)pnp

and so this series converges iff
∑

n−p converges.

Fact: The series

1 +
1

1!
+

1

2!
+

1

3!
+

1

4!
+ · · ·

converges to e.
This follows from our discussion of the partial sum sequence earlier. We

shall see it again by another method which applies not only to this series but
also for several other series.

In what follows we consider series of non-zero terms, that is an 6= 0 for
each n. (Is it necessary to consider series where some an are zero?).

Fact: Suppose that there is an α, 0 < α < 1, such that |an+1/an| < α for
all large n. Then the series

∑ |an| converges and hence
∑

an converges.

Let us say that for n ≥ k the stated inequality holds. Then |ak+1| ≤ α|ak|,
|ak+2| ≤ α|ak+1| ≤ α2|ak|. In general

|ak+n| ≤ αn|ak|, n ≥ 0.

Since geometric series is convergent (|α| < 1) we see, by comparison test,
the series |ak| + |ak+1| + · · ·converges. Adding finitely many terms does not
destroy convergence. Hence

∑ |an| ocnverges.

Fact: Suppose that lim |an+1/an| < 1. Then the series
∑ |an| is conver-

gent and hence
∑

an converges.

If this limit is denoted by l, then hypothesis says that 0 ≤ l < 1. We can
fix a number α so that l < α < 1. Then by definition of limit, the ratios are
smaller than α after some stage and the previous result applies.
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Fact: If lim sup |an+1/an| < 1, then the series
∑ |an| converges.

This is simply observed by looking at the earlier argument. If this limsup
is denoted by s, then 0 ≤ s < 1 and you can pick s < α < 1. Use definition
(or characterization) of limsup to conclude that after some stage the ratios
are smaller than α.

As an application of this we have the following.

Fact: The following series converge for every real number x.

1 +
x

1!
+

x2

2!
+

x3

3!
+

x4

4!
+ · · · · · · .

x− x3

3!
+

x5

5!
− x7

7!
+ · · · · · · .

1− x2

2!
+

x4

4!
− x6

6!
+

x8

8!
+ · · · · · · .

The sum of the first series is denoted by e(x). The sum of the second series
is denoted by sin x. The sum of the third series is denoted by cos x. Yes,
these will be identified with the functions you know.

Fact: If there is a number α > 1 such that |an+1/an| > α after some
stage, then the series

∑

an does not converge.

If this happens for n ≥ k, then by repeated application of the hypothesis
we see that |an+k| ≥ αn|ak| which does not converge to zero. Remember
ak 6= 0.

The above facts go by the name of ratio test.

Fact: If lim sup n

√

|an| < 1 then the series
∑ |an| converges.

Proof: If this limsup is s, then 0 ≤ s < 1 and hence we can fix s < α < 1.

Definition of limsup now says after some stage n

√

|an| < α. That is, |an| < αn

after some stage. Now compare with geometric series
∑

αn as earlier.

This result has a converse too — not exactly, but nearly.

Fact: If lim sup n

√

|an| > 1 then the series
∑

an does not converge.
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if this limsup is s then fix 1 < α < s. Again by definition of limsup, we
have, after some stage |an| > αn. Since α > 1, we conclude that an 6→ 0.

We see that
∑

1/n does not converge whereas
∑

1/n2 converges and in
both cases the limsup equals one. This we state as follows.

Fact: If lim sup n

√

|an| = 1 , the series may or may not converge.

At first sight the fact above may appear like a tautology. Afterall, this
is true of every series, it may or may not converge; nothing else can happen.
But you should keep in mind that we are not talking of a particular series. we
are talking of series satisfying some condition, namely, this limsup equals 1.
There are examples of series which satisfy the condition and which converge.
There are also examples of series which satisfy this condition and do not
converge. Thus when limsup equals one we know for sure that no conclusion
can be drawn regarding convergence without any further hypothesis.

The above facts go by the name of root test.

You see that the main ingradient in all this discussion of convergence
of series is just the high school geometric series. Once the new concept of
convergence is understood, you can draw rather non-trivial conclusions using
just what you knew already.

In all the above results, we showed actually the convergence of the series
∑ |an|, not just

∑

an. This notion of convergence of the series formed by
absolute values is important in applications and has a name.

Definition: A series
∑

an is said to be absolutely convergent if
∑ |an|

converges. Of course, then
∑

an converges too. If
∑

an converges and
∑ |an|

does not converge, we say that the series
∑

an is conditionally convergent.

Thus the above tests help you in testing for absolute convergence. For
example, they fail to tell you if the following series converges.

1− 1

2
+

1

3
− 1

4
+

1

5
− · · · · · · .

The tests above do say that this series is not absolutely convergent.

Note that if the series
∑

an is to be convergent, we should at least have
an → 0. We also know that this condition alone does not imply convergence
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of the series
∑

an; for example the series
∑

(1/n) shows this. Interestingly, as
soon as you know that the terms an are decreasing, this condition is enough
to ensure convergence of the alternating series.

Fact: If an ↓ 0, the series a1 − a2 + a3 − a4 + a5 − · · · converges.

Such series where the terms are alternatively positive and negative are
called ‘alternating series’. (Just to emphasize that you should not be de-
ceived by appearance, the series above is alternating not because you see ±
signs, you need to use that the numbers an are positive.) Of course, the series
is interesting only when all an are different from zero. Because, as soon as
one an equals zero, the sum is actually finite sum and convergence issue is
only theoretical. In other words, the series is theoretically infinite series, but
after some stage partial sums do not change.

Proof: We show the following;

a1 ≥ a2 ≥ a3 ≥ · · · ≥ ak ≥ 0 ⇒ 0 ≤ (a1 − a2 + a3 − · · · ± ak) ≤ a1.

Let us see what happens if this is done. Returning to our series, let sn be its
partial sums. If m > n, then the above conclusion tells us

|sm − sn| = |an+1 − an+2 + an+3 − · · · ± am| ≤ an+1.

Since an ↓ 0, given ǫ > 0, we can choose p such that ap < ǫ. The above
inequality tells that after p-th stage any two partial sums differ by at most
ǫ. In other words, partials sums form Cauchy sequence and hence converge.

We shall now prove the inequality claimed at the beginning of the proof.
The left side equals

(a1 − a2) + (a3 − a4) + · · · ≥ 0

In fact, each bracketed term is non-negative by decreasing nature of an; if k
is even there is nothing left over and if k is odd there is a last non-bracketed
term which is positive.

To see the other inequality,

a1 − (a2 − a3)− (a4 − a5)− · · · ≤ a1.

Each bracketed term is positive and is being subtracted from a1. If k is even,
there is an unbracketed term ak at the end which also appears with negative
sign. This completes the proof.
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There is a useful generalization of this. Suppose that
∑

bn is a series with
bounded partial sums and an ↓ 0, then the series

∑

anbn converges. If we
take

∑

bn to be
∑±1 we get the special case above. this is an extremely

useful generalization.

Cauchy product of series:

We shall now define the concept of product of two series. For certain
useful applications, we shall now consider series as

∑

n≥0
an rather than

∑

n≥1
an.

In other words we consider series a0+a1+a2+ · · · instead of, a1+a2+a3+ · · ·
as has been done so far. You should not get confused. Either you can set
your starting point a little back and think of zeroth term, first term etc (and
zeroth partial sum, first partial sum etc). Or if you have trouble thinking
like that, you can think that first term is a0, second term is a1 and in general
the n-th term is an−1. But in the long run it will help you if you get used to
the first way of thinking. Thus we have partial sums s0, s1, s2 · · ·.

So now let
∑

n≥0
an and

∑

n≥0
bn be two series (of real numbers). We define

cn = a0bn + a1bn−1 + a2bn−2 + · · ·+ anb0; n ≥ 0.

Thus c0 = a0b0; c1 = a0b1+a1b0. In general, cn is the sum of all products aibj
where i+ j adds upto n. These are finite sums and you need not worry. The
series

∑

n≥0
cn is called the Cauchy product of the two series

∑

an and
∑

bn.

At first sight this looks complicated. But think of multiplying two poly-
nomials

A(x) =
p

∑

0

ait
i; B(x) =

q
∑

0

bjt
j.

You know that product of two polynomials is again a polynomial. So let us

say the product A(t)B(t) is the polynomial C(t) =
p+q
∑

0
cit

i. Then what are

the coeficients? You can see c0 = a0b0; c1 = a0b1 + a1b0. In general, cn is the
sum of all products aibj where i+ j adds upto n exactly as above. Of course,
since a polynomial is a finite sum, when you reach p + q there is only one
term apbq. In the infinite series case, there is always a0, a1 etc and finally an
— all appearing in cn.

Pretend that you have two infinite degree polynomials

A(t) =
∑

n≥0

ant
n; B(t) =

∑

n≥0

bnt
n.
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Just like in the usual polynomial case, suppose you want to multiply these
two infinite degree polynomials and write it again as a polynomial by collect-
ing powers of t, then you will exactly get

∑

cnt
n where cn are as defined above.

Fact: If the series
∑

an and
∑

bn are absolutely convergent and if
∑

an =
A and

∑

bn = B, then the Cauchy product
∑

cn converges and
∑

cn = AB.

Proof: Let sn, tn and un be the partial sums of the series
∑

an,
∑

bn
and

∑

cn respectively. Known sn → A and tn → B. Need to show that
un → AB. Of course, we know that snB → AB. Thus if we can show that
un − snB → 0 then

un = (un − snB) + snB → 0 + AB

as wanted. But

un = a0b0 + (a0b1 + a1b0) + · · ·+ (a0bn + a1bn−1 + · · · anb0).
Collecting terms of a0, a1 etc together we get

un = a0tn + a1tn−1 + a2tn−2 + · · ·+ ant0.

Subtracting from the above snB = a0B + a1B + a2B + · · · anB, we get

un − snB = a0(tn − B) + a1(tn−1 − b) + a2(tn−2 − B) + · · ·+ an−1t1 + ant0.

If n is large, the first few terms on right are small because (tn −B) is small;
remember that tn − B → 0. The last few terms are small because an → 0,
remember

∑

an converges. Not only the individual terms are each small but
the entire sum is small, this is where absolute convergence is used.

We wish to show that |un − snB| can be made small for all large values
of n. Here is how. Let ǫ > 0. Let

∑ |an| = α > 0. Note that, if α = 0, then
each ai = 0 and the conclusion is easy. Choose n0 so that |tn − B| < ǫ/(2α)
for n ≥ n0. This is possible because tn → B. Thus as soon as n > n0 we
have

|un − snB| = |
n
∑

k=n0

an−k(tk − B)|+ |
∑

k<n0

an−k(tk − B)|

≤
∑

k≥n0

|an−k||tk − B|+ |
∑

k<n0

an−k(tk − B)|

≤ ǫ

2α

∑

k≥n0

|an−k|+ |
∑

k≤n0

an−k(tk − B)|
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≤ ǫ

2
+ |

∑

k≤n0

an−k(tk − B)|

Note that the second sum on the right side consists of n0 many terms and
each of these terms converges to zero because an−k → 0 for k = 1, 2, · · ·n0−1.
Remember n0 is fixed. Hence we can choose n1 > n0 such that the sum is
smaller than ǫ/2 for all n ≥ n1. Thus if n > n1 we see that the right side is
smaller than ǫ completing the proof.

As you have seen in the proof, we used that
∑

an is absolutely convergent
but did not use that

∑

bn is absolutely convergent. Thus the theorem is true
if one of the series is absolutely convergent. If none of them is absolutely
convergent, then the Cauchy product may not converge. For example if we
take both the series to be the alternating series

1− 1√
2
+

1√
3
− 1√

4
+− · · ·

then the Cauchy product does not converge. This is because the n-th term
cn (n ≥ 0) of the Cauchy product equals (−1)n

∑

1/(
√
k
√
n− k) . This is

sum of n− 1 terms each at least 2/n by using GM ≤ AM. Thus cn does not
converge to zero.

This result is very useful. For example let us take two numbers x and
y and consider the series for e(x) and e(y). Since these are absolutely con-
vergent, we conclude that their Cauchy product converges to e(x)e(y). But
computation shows that the Cauchy product is the series defining the number
e(x+ y). Thus we conclude that

e(x+ y) = e(x) · e(y).

Since e(1) = e by definition of the number e, we see that for every natural
number e(n) = en. Since e(0) = 1 we see that for every integer, positive or
negative, e(n) = en. For an integer q ≥ 1

e(1/q) · e(1/q) · · · e(1/q) (q times) = e(1) = e.

By definition of q-th root, it follows that e(1/q) is q-th root of e. That is,

e(1/q) = e1/q.

It now follows that for every rational number r, e(r) = er. Thus

e(x) = ex, x ∈ Q.
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We shall show later, using continuity of the functions on both sides, that the
equality holds not only for rationals but for all real numbers x.

The sine and cosine functions are also defined by series and are not, at
this moment, recognizable as the good old functions of high school. However,
using Cauchy product, one can show

sin(x+ y) = sin x cos y + cos x sin y; cos(x+ y) = cos x cos y − sin x sin y.

Of course, the very nature of the series shows that sin(−x) = − sin x and
cos(−x) = cos x as well as cos 0 = 1 and sin 0 = 0.

Rearrangements:

When you add finitely many numbers, you can change the order in which
you add, but you still get the same answer. How do you make this precise?
Let a1, a2, · · · , ak be numbers. Let π be a permutation of {1, 2, · · · , k}. Then
∑

ai =
∑

aπ(i). Prove this. (After you prove this once, you can say it is easy).

Is this true for infinite series? This is the question we now answer. First
we need to make precise the concept of changing the order of addition. Let
∑

n≥1
an be a series, Let π be a bijection of {1, 2, · · · , }. This is called a per-

mutation of the natural numbers. Let bn = aπ(n). The series
∑

bn is called
a rearrangement of the series

∑

an. Thus π being a permutation, note that
each an appears exactly once as a bk and no others appear. If π(1) = 24 then
the first term b1 of the new series is a24. If π(33) = 1 then a1 appears as the
33-rd term of the new series.

Fact: Let
∑

an be absolutely convergent series. if
∑

an = A and if
∑

bn
is a rearrangement of

∑

an, then the series
∑

bn converges and
∑

bn = A.

Proof: Let (sn) be the sequence of partial sums of
∑

an and (tn) be partial
sums of

∑

bn. We know sn → A. Need to show tn → A. Let ǫ > 0. We
exhibit n0 so that |tn − A| < ǫ for all n ≥ n0.

To do this, first observe that, since the series
∑ |an| is convergent, its

partial sums are Cauchy. So given ǫ > 0, we can choose n1 so that for
m > n ≥ n1 we have

|an+1|+ |an+2|+ · · ·+ |am| < ǫ/2.

This being true for every m > n we see
∑

i>n

|ai| ≤ ǫ/2.

10



This is true, in particular, with n = n1. Thus sum of all the |ai| with i ≥ n1

is at most ǫ/2. In particular, if you add any (not necessarily all) of the |ai|
for i ≥ n1 the sum is at most ǫ/2.

Now starting with our ǫ > 0, fix n1 as above. By taking larger value for
n1 we can assume that |sn − A| < ǫ/2 for n ≥ n1. This is possible because
sn → A. Choose n0 so that

{π(1), π(2), · · · , π(n0)} ⊃ {1, 2, · · · , n1}.

You only need to see that if 1 = π(k1), 2 = π(k2) etc upto n1, then take n0

as the maximum of all these finitely many ki. We claim that for |tn −A| < ǫ
for n ≥ n0. This is simple. Let n ≥ n0,

tn =
n
∑

1

bi =
n
∑

1

aπ(i) =
n1
∑

1

ai + remaining sum.

Last equality is from the fact that among the π(i) all the integers upto n1

appear. Now the first sum on right side differs from A by at most ǫ/2. The
second sum is addition of some of the ai where the indices i are unknown but
each index i is larger than n1. Hence this sum in modulus is at most ǫ/2.

A theorem of Riemann says that if the series is conditionally convergent,
then this fails in a drastic way. Whatever number a is given, you can rear-
range so that the rearranged series converges to the given value a. This is
what we shall do now. The reason for doing this is the following. First, it
is spectacular. Second, the idea is beautiful and execution is neat. At the
same time you realize that you need good vocabulary to communicate!

So in what follows
∑

an is a conditionally convergent series.
Fact: Let

∑

an be conditionally convergent. Then the sum of all the pos-
itive terms of the sequence equals +∞ and sum of all negatve terms equals
−∞.

Let us put xn = an if an ≥ 0; otherwise put xn = 0. Similarly, put
yn = an if an < 0; otherwise put yn = 0. Clearly we have

xn + yn = an; xn − yn = |an|; n ≥ 1.

If you say that
∑

xn is convergent, then
∑

yn =
∑

(an−xn) is convergent too
and then

∑ |an| =
∑

(xn−yn) is convergent too, contradicting the hypothesis
that

∑

an is conditionally convergent. Note that
∑

xn is a series of positive
terms so that if it is not convergent then partial sums increase to ∞.
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Similarly, we argue that
∑

yn = −∞

Fact: If
∑

an is a conditionally convergent series and if α ∈ R then there
is a rearrangement

∑

bn so that the rearrangement converges and
∑

bn = α.

The idea is simple and is as follows. start adding positive terms of the
series (keep same order) so that the sum just exceeds α and then stop; now
start adding negative terms so that the total sum now just falls below α and
stop; now start adding positive terms (begin with where you left off earlier)
so that the total sum goes just above α and stop; then start adding negative
terms (begin with where you left off earlier) so that the total sum now falls
just below α and continue. You can continue forever because the positive
and negative terms of the series add to infinites. You will consume all an
because in each round you are using at least one positive term and at least
one negative term.

The question is whether the new series actually converges to α. Clearly
partial sums are oscillating around α, but are they converging. Yes. Note
that an → 0 because the series

∑

an is convertgent. Thus in the long run
whenever you exceed α or fall below α you will do so only by a small amount,
not too much, because the numbers you are adding are getting smaller. We
shall now make this precise.

Let f(1) be the first i ≥ 1 such that ai ≥ 0. Having defined f(1) <
f(2) < · · · < f(n− 1), we define f(n) to be the least i > f(n− 1) such that
ai ≥ 0. Similarly g(1) is the first i such that ai < 0. In general g(n) is the
least i > g(n−1) such that ai < 0. Since the positive terms and the negative
terms of

∑

an add up to infinities, we deduce that f(n) and g(n) are defined
for all n ≥ 1.

Each integer i ≥ 1 appears exactly once — either as an f(n) or as a g(n)
but not as both. (♠)

Convergence of
∑

an combined with the facts f(n) ↑ ∞, g(n) ↑ ∞ gives
us the following.

af(n) → 0; ag(n) → 0. (♣)

Let s(n) =
n
∑

1
af(i) and t(n) =

n
∑

1
ag(i).

The fact observed above says
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sn ↑ ∞; tn ↓ −∞. (♥)

We are given α and need to show a rearrangement of the series
∑

an that
converges to α. We assume that α ≥ 0.

We pick two sequences of integers n1 < n2 < · · ·, and m1 < m2 < · · ·
such that the following hold.

(1) n1 is the least integer with s(n1) > α and m1 is the least integer such
that s(n1) + t(m1) < α.

(2) For i ≥ 2: Having selected n1,m1, n2,m2, · · ·ni−1,mi−1 we select ni

to be the least integer > ni−1 such that s(ni) + t(mi−1) > α and mi is the
least integer > mi−1 such that s(ni) + t(mi) < α.

Existence of such sequences is established by induction. First choose n1

as stated in (1) and then choose m1 as stated in (2). Then choose n2 as
stated in (1) and then m2 as stated in (2). That you can poceed for ever is
a consequence of (♥).

Claim 1:

0 ≤ s(n1)− α ≤ af(n1); for k ≥ 2, 0 ≤ [s(nk) + t(mk−1)]− α ≤ af(nk).

Indeed if n1 = 1, then s(n1) = af(1) > α ≥ 0 so that, 0 ≤ s(n1)− α ≤ af(n1)

as stated. If n1 ≥ 2, then by choice of n1, 0 ≤ s(n1 − 1) ≤ α < s(n1)
so that 0 ≤ s(n1) − α ≤ s(n1) − s(n1 − 1) = af(n1) as stated. Simi-
larly, by choice of nk, s(nk − 1) + t(mk−1) ≤ α < s(nk) + t(mk−1), so that
0 ≤ s(nk) + t(mk−1)− α ≤ s(nk)− s(nk − 1) = af(nk).

Claim 2: 0 ≤ α− [s(nk) + t(mk)] ≤ |ag(mk)|.
This is proved exactly as above.

Claim 3: |s(nk) + t(mk−1)− α| → 0 and |s(nk) + t(mk)− α| → 0.
This follows from claims 1, 2 and (♣).

Here is the permutation (a one-to-one, onto map of natural numbers).

π(i) = f(i) for i ≤ n1

= g(i− n1) for n1 + 1 ≤ i ≤ n1 +m1

= n1 + f(i− n1 −m1) for n1 +m1 + 1 ≤ i ≤ n2 +m1

= m1 + g(i− n2 −m1) for n2 +m1 + 1 ≤ i ≤ n2 +m2

= n2 + f(i− n2 −m2) for n2 +m2 + 1 ≤ i ≤ n3 +m2

= · · ·
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(♠) shows that π is indeed a permutation of natural numbers. Let u(n) be

the n-th partial sum of the rearranged series
∑

aπ(n), that is, u(n) =
n
∑

i=1
aπ(i).

Shall now show that u(n) → α.

First note that u(n1) = s(n1); u(n1+m1) = s(n1)+ t(m1); and in general
u(nk + mk−1) = s(nk) + t(mk−1) and u(nk + mk) = s(nk) + t(mk). That
these partial sums are as stated follows from the definition of permutaton π.
Put k1 = n1, k2 = n1 +m1, k3 = n2 +m1, k4 = n2 +m2, k5 = n3 +m2, k6 =
n3 + m3, · · ·. Then Claim 3 shows that uki → α. To show that the entire
sequence un → α observe that for ki ≤ j ≤ ki+1 we have, by construction,
uki ≤ uj ≤ uki+1

. This completes the proof when α ≥ 0.

In case α ≤ 0, first pick m1 (instead of n1) such that t(m1) < α and
then choose n1 etc. Same proof works. of course, even if α < 0, the same
construction as above can be used. This completes the proof.

Some of you asked if every rearrangement converges to something. the
answer is no. In fact the theorem is more spectacular than the above. Let
−∞ ≤ α ≤ β ≤ +∞ are given. There is a rearrangement such that if un

is the n-th partial sum of the rearranged series, then lim inf un = α and
lim sup un = β.

Exactly the same construction and argument as above works when α and
β are finite. You need to go beyond β and below α at each stage. If α = −∞
and β = ∞ you do the following. You go above n and below −n in the n-th
round. If α = β = ∞, you proceed as follows. at the n-th round go beyond
n but then take only one negative term. Other cases are similar.

infinities:

It is time to introduce the objects +∞ and −∞. This is only for conve-
nience. You should keep in mind that every statement made using ±∞ can
also be made, conveying the same meaning, but without using these symbols.

We start with the picture first as to how these objects fit with our picture
of the real number system. We put the object +∞ at the right end of the
real number line and the object −∞ at the left end of the real number line.
So how to operate with these objects and what are the rules to which we
agree upon now. First, we make a notational agreement. Just as we write
4 for +4 and if we want to say negative 4, we write −4, now also we do the
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same. Instead of writing +∞, we just write ∞. So when I write ∞, you do
not ask me which infinity: plus or minus? (Just as, when I write 4, you do
not ask me whether I mean +4 or −4).

Rule 1 (order): We agree (as the picture suggests) x < ∞ for all x ∈ R
and −∞ < x for all x ∈ R. We agree to say, as is sensible now, −∞ < +∞.

Every set bounded above has a supremum. So far, a set which is not
bounded above has no supremum. Now we make a definition. A set which
is not bounded above also has a supremum and it is ∞. Similarly, so far a
set which not bounded below has no infimum. Now we agree to say that a
set which is not bounded below also has a infimum and it is −∞.

Let S be a non-empty set.

(i) For a non-empty set bounded above, its supremum is the least upper
bound. In symbols,

s = supS ↔ [∀x ∈ S)(x ≤ a)]&[∀x ∈ S, x ≤ b → a ≤ b].

We continue to have this. Remember if S is a bounded set of real numbers
the above statement is correct by definition. The symbols express just this
fact, namely, supremum is an upper bound and any other upper bound is
larger than this. Thus if you take the set S of all numbers which are larger
than 5, we now have ∞ to be its supremum. The right side of the above
statement is still correct. Unfortunately, we do not say, in words, that ∞ is
least upper bound of S, though you are invited to imagine so.

The reason we do not say so is the following: we still reserve our right to
say this set S, consisting of all numbers larger than 5, has no upper bound.
So the question of least upper bound does not arise at all. You might ask why
do we do this. Why not say, if a set is not bounded above then ∞ is its upper
bound. Yes, you are invited to imagine and say so. But, even for the interval
[0, 1], you agree that ∞ is an upper bound, simply because for every point x
of this set we have x < ∞. Thus saying that ∞ is an upper bound for a non-
empty set is a tautology (what is a tautology?) and conveys no information.
On the other hand ‘S is not bounded above’ conveys information. (Imag-
ine the oxymoron, if S has no upper bound, then ∞ is its least upper bound).

(ii) In a similar manner for sets bounded below, infimum is its greatest
lower bound. In symbols,

l = inf S ↔ [∀x ∈ S)(a ≤ x)]&[∀x ∈ S, b ≤ x → b ≤ a].
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Commenst similar to above apply. For example, −∞ is infimum of the set S
of all numbers smaller than 5. Of course we do not say that it is the greatest
lower bound.

Also the characterization of supremum and infimum remain correct pro-
vided, we formulate carefully. For a bounded set S, the characterization was
the following:

s = supS ↔ [∀x ∈ S, x ≤ s]&[∀ǫ > 0, ∃x ∈ S, x > s− ǫ].

An equivalent formulation, not using ǫ, is the following

s = supS ↔ [∀x ∈ S, x ≤ s]&[∀b < s, ∃x ∈ S, x > b].

This formulation is still correct even if the supremum of the set is ∞.

Similarly,

l = inf S ↔ [∀x ∈ S, l ≤ x]&[∀b > l, ∃x ∈ S, x < b].

Rule 2 (addition): x + ∞ = ∞ for all x ∈ R as well as for x = ∞.
x − ∞ = −∞ for all x ∈ R as well as for x = −∞. We do not talk about
∞ − ∞. The reason is simple, certain things that we know are true still
remain true even with this convention. No meaning of ∞−∞ will validate
certain existing statements. Also −(∞) = −∞.

For example A and B are (non-empty) sets with supremums a and b,
then the set C = {x + y : x ∈ A, y ∈ B} has supremum to be a + b. We
knew this if the numbers a and b are real. It remains true even if a and
b are infinities. The sets being non-empty, the supremum can not be −∞.
For example, suppose a ∈ R and b = ∞. This means that the set B is not
bounded above. It is easy to see that C is not bounded above. similarly, if
a = ∞ = b, then C is not bounded above. similar remarks apply to infimums.

Let us make a definition. A sequence (xn) converges to ∞, in symbols,
xn → ∞ if given any number α, there is n0 such that xn ≥ α for all n ≥ n0.
This stands to reason. Afterall, ∞ is beyond all numbers. So xn approaches
∞ should mean that xn eventually exceeds any given number. Similarly,
xn → −∞ means that given any number α there is an n0 such that xn < α
for all n ≥ n0.

The statement xn → a and yn → b implies xn + yn → a+ b remains valid
even if the limits are infinities, unless they are of infinities of opposite signs.
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This is simple to prove. For example if xn → −4 and yn → ∞ then given
any number α , we can get n0 such that xn > −5 for n ≥ n0 and and an n1

such that yn > α + 5 holds for n ≥ n1. If n is larger than both n0 and n1

then, xn + yn > α holds.

When xn → ∞ and yn → −∞ holds, you can not say anything about
xn + yn, in general. For example, xn = n and yn = −n tells xn + yn → 0.
xn = n and yn = −n2 says that xn + yn → −∞. If xn = n2 and yn = −n
then xn + yn → ∞.

Simailrly, the statement xn → a implies −xn → −a remains correct even
if a is an infinity. Thus xn → a and yn → b implies xn − yn → a− b, unless
a and b are the same infinity (both ∞ or both −∞).

Rule 3 (multiplication): x×∞ equals +∞ if x > 0 or x = ∞; whereas it
equals −∞ if x < 0 or x = −∞. Simialrly, x× (−∞) equals −∞ if x > 0 or
x = ∞; whereas it equals ∞ if x < 0 or x = −∞. What we did not define is
∞× 0 and (−∞)× 0. Actually there are reasons to define them to be zero,
but right now we do not define them.

The fact that xn → a and yn → b does imply xn × yn → a× b in all the
cases when a×b is defined. The reason we did not define product of zero and
infinity is the following. xn = 1/n and yn = n shows xn · yn → 1; whereas
xn = 1/n2 and yn = n shows that xn · yn → 0; xn = 1/n and yn = n2 shows
that xn · yn → ∞.

Finally, let us discuss limit points. For a sequence (xn) and a ∈ R we
use the same definition as earlier to say a is a limit point of the sequence.
Namely, for every ǫ > 0, we have xn ∈ (a−ǫ, a+ǫ) for in finitely many values
of n. We say that ∞ is a limit point if the sequence is not bounded above.
This is same as saying that for every α, there are infinitely many n such that
xn > α. Similarly, we say −∞ is a limit point if the sequence is not bounded
below, equivalently, given any α, there are infinitely many values of n such
that xn < α.

Observe that the set L of limit points of a sequence (xn) is non-empty.
If it is not bounded below then −∞ is a limit point. If it is not bounded
above then ∞ is a limit point. If it is blounded above and also below (that is,
bounded), then we already showed that there is at least one limit point. As
a consequence, supL and inf L are well defined and these are called limsup
and liminf respectively.
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We had the following characterization of limsup.

s = lim sup xn ↔ [∀ǫ > 0 ∃ only finitely many n; xn > s+ ǫ]&

[∀ǫ > 0, ∃ infinitely many n, xn > s− ǫ].

We can restate this in an equivalent manner, without using ǫ, as follows.

s = lim sup xn ↔ [∀b > s ∃ only finitely many n; xn > b]&

[∀a < s, ∃ infinitely many n, xn > a].

This remains correct, irrespective of whether s is finite or infinity (an expres-
sion like a is finite is simply another way of saying a ∈ R). Similarly, the
following remains correct, irrespective of whether l is finite or infinite.

l = lim inf xn ↔ [∀b < l ∃ only finitely many n; xn < b]&

[∀a > l, ∃ infinitely many n, xn < a].

With the concept of convergence as defined, we can say

∑ 1

n
= ∞

This is because the sum is limit of partial sums. We know that the partial
sums are increasing and are not bounded above, so the sequence of partial
syums converges to ∞. So far we only said that the series above does not
converge, but now we are saying it is ∞. This is a better information.

Afterall, the series ±1 also does not converge. But in the latter case the
partial sums are, in a sense, oscillating. Whereas, for the sequence

∑

1/n,
the above equation conveys the extra information that the sums eventually
exceed any given value. Of course, in this case, because the series consists of
non-negative terms, non-convergence of partial sums is equivalent to saying
that they eventually exceed any given number. But for a general series the
statement that

∑

an = ∞ conveys more than simply saying that the series
does not converge.

The upshot of all this is the following. Introduction of ±∞ sometimes
allows us to express more than what we could do otherwise; sometimes they
facilitate in succinctly expressing some statetments. You must understand
why we entered this issue at all, why we introduced these objects at all. Re-
member that a word is invented to convey some information, which could
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not be conveyed without this word. In the same way we invented ±∞ to
convey certain things. Think.

Some of you are, expectedly, puzzled that while talking supremum and infimum of sets
I always considered non-empty sets. In practice we never have to calculate inf and sup
of empty set. That is why I did not consider. But if it bothers you, here is the answer.
Empty set is bounded. In fact every number is an upper bound as well as lower bound.

Let S be the empty set. If I said that ∀x ∈ S, x ≤ 5, I would be correct. I only need to
show that given any x ∈ S, then x ≤ 5. This is true. Or equivalently, if you want to tell
me my claim is false, you must produce x ∈ S with x > 5, and you can not do this. Now
comes a surprize and I would not like to waste time on it, because you are not going to
learn anything by spending time on this (except worrying that infimum is strictly larger
than supremum).

Here is the surprize. supremum of empty set is −∞. Reason: every number being an
upper bound for S, the infimum of the set of upper bounds is −∞. To put it differently,
given anything different from −∞, I can take something smaller than that and say that is
also an upper bound. Similar thought process shows that every number is a lower bound
for the empty set and hence the greates lower bound is ∞.

It is better not to talk about supremum and infimum of empty set. If you ever need

to calculate this, ask yourself if it is necessary at all; whether you have made life unnec-

essarily complicated.

discussion HA:

Q 27: To show (n+ 47)589/2n → 0. The neumerator is a linear combina-
tion of powers of n. So if we prove that nk/2n →)0 for each k, then we can
use theorems on limits to complete the problem. As soon as n > k, we see
2n > nchoosek + 1 so that

nk

2n
≤ k!

n

n

n

n− 1
· · · n

n− k + 1

1

n− k
→ 0.

Note that k is fixed.

Q 32. Note that (xn) is a sequence where each rational in (0, 1) appears
and no others. Thus if x > 1, then (x − ǫ, x + ǫ) where ǫ = (x − 1)/4 does
not contain any xn and hence can not be a limit point. Similarly, numbers
less than zero are not limit points. Take any x with 0 ≤ x ≤ 1. Consider
(x − ǫ, x + ǫ). Need to show it contains xn for infinitely many values of n.
This follows from the observation that any interval contains infinitely many
rationals. Try to think.
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Continuous functions:

There are several interesting things one could discuss about sequences
and series. But we should stop our discussion on series to proceed to other
stories. We shall now discuss continuity of functions. You are already famil-
iar probably. We shall deal with functions defined on R or subsets of R and
take values in R.

What is a function. Of course, while discussing cardinality, we did discuss
functions. Thus we now deal with functions f that associate a real number
with each point where it is defined. The set D of numbers for which f as-
sociates a value is called domain of the function. For x ∈ D, the value is
denoted by f(x), which is a real number.

Just to make you start thinking (and for nothing else), let us consider the
following. For each x 6= 0, we associate f(x) = x2. When x = 0 we associate
f(0) as follows. If there is an earthquake tomorrow, then f(0) = 35 and if
there is no earthquake tomorrow then f(0) = 27. Is this a function? What is
the meaning of association? You may say this is meaningless or this depends
on time etc etc. But the question remains: is it a function or is it not a
function?

(It is not a function today, because I do not know f(0) today. Unless I
know the value, I do not accept it as a function. The fact that the value is
one of two numbers 27,35 is no consolation. You might then ask: what is
meant by knowing. If it were

√
2, do you know? You may think that I do

not know
√
2 because I, and no one, knows all its decimal places. But the

point is I know that there is exactly one positive number whose square is 2
and this is the number we are talking about. Contents of this and previous
para are intended to make you think about matters and nothing else. You
are free to ignore.)

Returning to examples of funcrions, f(x) = x2 is a function, it is defined
on the full R and with a number x it associates the number x2. The function
f(x) = 1/x is defined only for non-zero real numbers and hence this is its
domain. For a number x in its domain, this function associates 1/x. You
can think of polynomials. For example

f(x) = 5 + 32x3 + 99x55 +
√
2x56.

This function is defined for every number x and the value is as given on the
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right side above.

We can think of complicated functions. For example,

f(x) = 1 +
x

1!
+

x2

2!
+

x3

3!
+ · · ·

is a function. It is defined for every number x. if you take a number x, then
consider the series above for that number. We already know that the series
of numbers converges. The sum of this series is the value of the function for
that number x. This is called exponential function e(x).

Here is another function.

f(x) = x− x3

3!
+

x5

5!
− x7

7!
+−+ · · · .

We know that for any given real number x, the series of numbers on the
right side converges and hence this function is also defined on all of R. This
function is denoted sin x. Yes, this is the same function, you know, explained
without angles and triangles. It is periodic, but not obvious.

Here is another function.

f(x) = 1− x2

2!
+

x4

4!
− x6

6!
+−+ · · · .

This function is denoted cos x.

In olden days by a function, people understood as something given by an
analytical expression, for example the above expressions. Then they realized
that the function need not be given by one analytical expression, may in-
volve more than one expression, but you should be able to draw the graph.
For example, consider f(x) = x2 when x < 1 and f(x) = x3 when x ≥ 1.
Another example is the function defined on the interval [0, 1) by f(x) = 2x
when 0 < x < 1/2and f(x) = 2x − 1 when 1/2 ≤ x < 1. It takes values
again in the interval [0, 1).

It was realized later that, there need not be analytical expression, and
we may not be able to draw the graph also. Such an example is f defined
by f(x) = 1 when x is irrational and f(x) = 0 when x is rational. It is not
possible to draw graph of this function in the usual x, y-coordinate system.
Remember graph of f is the set G of all pairs (x, y) such that f(x) = y.
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Whether we can draw the graph or not, the concept of graph is itself well
defined and is a subset of R × R. Graph has the interesting property that
for every x there is at most one y such that (x, y) ∈ G. In fact if f is not
defined for the point x, then there is no point in G whose first coordinate is
x. On the other hand, if f is defined at the point x with, say, f(x) = a, then
(x, a) is the only point of G with first coordinate equal to x.

Interestingly, any subset G of R × R with the property that for any x
there is at most one y with (x, y) ∈ G defines a function. This is easy. Just
take domain D of the function f to be the set of all points x such that there
is a y with (x, y) ∈ G. For x in D define f(x) to be the unique y such that
(x, y) ∈ G. (Upshot you can ignore: A function is a subset of R × R, you
need not use the words ‘associate’ etc!).

So let us start with a function f defined on all of R. When should we
agree to say that it is continuous. Yes, it is continuous if it is continuous
at each point a. So when shall we say that the function is continuous at a
point a. Idea is the following. If you change a a little bit, then the value also
should change only a little bit, not too much. Or equivalently, if x is close
to a, then f(x) should be close to f(a). We have to make this precise. This
is what we shall do now.
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