
CMI(BSc I/2013) Calculus/Analysis eigth Week

discontinuities:

We have discussed several examples of functions with a point of disconti-
nuity illustrating several possibilities. Essentially, two phenomena can occur:
the function may be well behaved getting close to something or it may behave
in a wiggly manner without getting close to any particular value. Accord-
ingly, we classify the point of discontinuity into two types.

Of course the behaviour mentioned above can happen to the right of the
point under consideration or to the left of the point or on both sides. But
we shall not undertake this minute classification. Before making definition,
let us make an observation.

Fact: Let f : R → R be a function and a ∈ R. Let L be a real number.
The following two statements are equivalent.
(i) Whenever xn ↑ a and each xn < a we have f(xn) → L
(ii) Given ǫ > 0, there is a δ > 0 such that whenever 0 < a− x < δ we have
|f(x)− L| < ǫ.

Proof is simple and similar to the corresponding statements we made
while introducing continuity. Let us go through it once again.

Suppose (ii) holds. We shall prove (i). So take a sequence (xn) where
xn < a for every n and xn → a. We show f(xn) → L. So fix ǫ > 0. We
show a natural number n0 such that |f(xn)−L| < ǫ whenever n ≥ n0. With
the given ǫ > 0 in hand, use (ii) and fix δ > 0 as stated. Since xn → a, fix
n0 so that for n ≥ n0, we have |xn − a| < δ. Now if n ≥ n0, using the fact
that xn < a we conclude that 0 < a − xn < δ and hence choice of δ shows
|f(xn)− L| < ǫ.

Suppose (ii) fails. We show that (i) fails. Fix ǫ > 0 for which we can not
find δ > 0 as stated. Thus taking δ = 1 we get an x1 such that 0 < a−x1 < 1
and |f(x1)−L| ≥ ǫ. Taking δ = 1/2 we get an x2 such that 0 < a−x2 < 1/2
and |f(x2) − L| ≥ ǫ. In general, taking δ = 1/n we get an xn such that
0 < a− xn < 1/n and |f(xn)− L| ≥ ǫ. Put yn = max{x1, x2, · · · , xn}. Then
yn ↑; 0 < a − yn < 1/n so that yn ↑ a; yn being one of the xi we have
|f(yn)− L| ≥ ǫ for every n. This completes the proof.

Note that a number L as above may not exist at all, like in case of the ex-
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amples involving sin(1/x). However if such a number exists then it is unique.
There can not be two such numbers. Indeed, if L and L′ are two such num-
bers, then f(a − 1

n
) converges to both L and L′. Since a sequence can not

converge to two different points we conclude that L = L′.

If any one of the above two things happens we say that f has a left limit
at the point a and the value of the left limit equals L. We express it as

lim
x<a;x→a

f(x) = L; or f(a−) = L.

Note that we are not evaluating the function f at a−; there is no number
called a−. It is only a notational convenience to express in that fashion.

Fact: Let f : R → R be a function and a ∈ R. Let L be a real number.
The following two statements are equivalent.
(i) Whenever xn ↓ a and each xn > a, we have f(xn) → L
(ii) Given ǫ > 0, there is a δ > 0 such that whenever 0 < x− a < δ we have
|f(x)− L| < ǫ.

As in the case of left limits, note that such an L, if exists, is unique. If
any one of the above two things happens we say that f has a right limit at
the point a and the value of the right limit equals L. We express it as

lim
x>a;x→a

f(x) = L or f(a+) = L.

Note that we are not evaluating the function f at a+; there is no number
called a+. It is only a notational convenience to express in that fashion.

Suppose that the point a is a discontinuity point of the function f . We
say that it is a simple discontinuity if both f(a−) and f(a+) exist. that is,
the left and right limits exist at the point a. In other words simple disconti-
nuity is first of all a discontinuity point, but the function has right and left
limits at that point. Simple discontinuity is also called discontinuity of the
first kind.

If a is a point of discontinuity and if a is not a discontinuity of the first
kind, we say that f has discontinuity of the second kind at the point a. Thus
at a discontinuity of the second kind, either the right limit or the left limit
does not exist. Of course, when one of these limits does not exist, then the
function is discontinuous at that point.
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Fact: f is continuous at a point a iff both f(a−) and f(a+) exist and
equal f(a).

If f is continuous at a, then whenever xn → a, we have f(xn) → f(a). In
particular this happens when xn ↑ a or xn ↓ a. Thus f(a−) and f(a+) exist
and equals f(a).

Conversely, if both the limits exist and equal f(a), then we show f is
continuous at a. Let ǫ > 0. We show δ > 0 such that |f(x) − f(a)| < ǫ
whenever |x−a| < δ. Since both left and right limits at a equal L = f(a), fix
one δ > 0 so that |f(x)− L| < ǫ whenever 0 < a− x < δ and also whenever
0 < x−a < δ. This δ will do. Note that when x = a we have f(x)−f(a) = 0.
This completes the proof.

There is one class of functions which have discontinuities of only first
kind. Let us say that a function f : R → R is monotone increasing if x < y
implies f(x) ≤ f(y). Say that f is monotone decreasing if x < y implies
f(x) ≥ f(y). A function is monotone if it is either monotone increasing or
monotone decreasing.

Note that the word increasing/decreasing is not used in the sense of
strictly increasing or strictly decreasing. That is why sometimes a func-
tion which is monotone increasing in the above sense is also referred to as
‘monotone non-decreasing’. Similarly a function which is monotone decreas-
ing in the above sense is referred to as ‘monotone non-increasing’. But we
shall not do that.

Fact: Let f : R → R be monotone. Then the following are true.
(i) At every point a, both f(a+) and f(a−) exist.
(ii) f is continuous at a point a iff f(a−) = f(a+).
(iii) f is continuous at all but countably many points.

Proof: Let us assume that f is monotone increasing.
(i) Let a ∈ R. Put

L = lim f(a−
1

n
).

This limit exists because f
(

a− 1
n

)

is an increasing sequence, bounded above

by f(a). In fact L ≤ f(a). We now show that if we take any sequence xk ↑,
each xk < a, then f(xk) → L. Since xk ↑ we conclude that f(xk) ↑ and hence
the limit lim f(xk) exists. Denote it by L′.
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Fix any k. Since xk < a we see that for all sufficiently large n, xk < a− 1
n

so that f(xk) ≤ f
(

a− 1
n

)

. remember this is true for all large n. Hence

f(xk) ≤ lim f
(

a−
1

n

)

= L.

Remember this is true for every k. Hence lim f(xk) ≤ L. Thus L′ ≤ L.

Now fix any n. Since xk ↑ a we have xk >
(

a− 1
n

)

for all sufficiently

large k. Hence f(xk) ≥ f
(

a− 1
n

)

for all sufficiently large k. Hence

L′ = lim f(xk) ≥ f
(

a−
1

n

)

.

Remember this is true for every n. Hence

L′ ≥ lim f
(

a−
1

n

)

= L.

Thus L′ = L. Thus f(a−) exists and f(a−) ≤ f(a). Similarly f(a+)

exists and f(a) ≤ f(a+). In fact f(a+) = lim f
(

a+ 1
n

)

.

(ii) Since we have observed above that f(a−) ≤ f(a) ≤ f(a+), equality of
the extremes implies that they both equal f(a).This, combined with earlier
fact proves (ii).

(iii) Let D be the set of discontinuity points of f . Of course, if D is
empty there is nothing to argue. Suppose a ∈ D. Then from (ii) I(a) =
(f(a−), f(a+)) is a non-empty interval. Moreover if a < b are in D, then
f(a+) ≤ f(a+b

2
) ≤ f(b−) so that the intervals I(a) and I(b) are disjoint.

Thus we have a family of non-empty disjoint intervals of the type (a, b) with
a < b. But any such interval contains a rational number and if D were un-
countable, we would be getting uncountably many rational numbers leading
to a contradiction.

Similar proof applies when f is decreasing. The proof is complete.

To define left limit, it is not necessary to take the sequence (a− 1
n
). We can

take any sequence an ↑ a with each an < a and consider L = lim f(an). The
argument above shows precisely this, namely, limit lim f(xn) does not depend
on the particular sequence, as long as each xn < a and xn ↑ a, you get the
same answer. Of course, we could also have defined L = sup{f(x) : x < a},
thus avoiding sequences altogether.
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If you consider the function f(x); one or zero according as x is rational
or irrational, you see that each point a ∈ R is a point of discontinuity. Of
course, this function is not monotone.

We just now saw that the set of discontinuity points of a monotone func-
tion is a countable set. In fact given any countable subset D ⊂ R, we can
define F : R → R which is monotone and the given set D is precisely its set
of discontinuity points.

discontinuities continued:

If you have understood the above arguments, you see that in the defini-
tion of the left limit f(a−) the value of f at a, namely f(a) did not play
any role. In fact no value f(x) for x > a played any role. Thus you can talk
about left limit at the point a as long as the function is defined on (−∞, a).

Also, values of f at points far below a did not play any role. What does
this mean? Suppose you have two real valued functions f and g defined on
(−∞, a). Suppose f(x) = g(x) for all x with a − 0.0001 < x < a. the func-
tions may be different outside this smll interval. It is easy to see that f(a−)
exists iff g(a−) exists and then they are equal. This leads to the following
definition. We start with an observation first and then make the definition.

Let f be a real valued function defined on some set Df ⊂ R and a ∈ R,
Suppose that (a0, a) ⊂ Df for some a0 < a. Then a number L satisfies
statement (i) below iff it satisfies statement (ii).
(i) xn ↑ a, each xn < a, each xn ∈ Df ⇒ f(xn) → L.
(ii) Given ǫ > 0, there is a δ > 0 such that

0 < a− x < δ; x ∈ Df ⇒ |f(x)− L| < ǫ.

If any one of the above two statements holds, we say L is left limit of f
at a or simply f(a−) = L. Similarly we define right limit f(a+) whenever
(a, a1) ⊂ Df for some a1 > a. Of course these limits may not exist. If both
exist and are equal, then we can define f(a) to be the common value. Then
f , so defined at a would be continuous at a. Of course, if a ∈ Df already,
then f is continuous at a iff f(a) equals this common value.

We can define monotone function, not necessarily taking the domain of
definition to be R as we did earlier. A real valued function f with domain
Df is monotone increasing if x, y ∈ Df and x < y imply f(x) ≤ f(y). Sim-
ilarly we can define monotone decreasing function. Exactly the same proof
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given earlier shows the following. Let f be a monotone function defined on
an interval I. Then at every point a ∈ I except at the end points (if any)
the left limit f(a−) and f(a+) exist and the set of discontinuities of f is at
most countable.

At the end points one needs to be careful. For example the left end point
of I is finite, say a, we can only talk about the right limit f(a+) and not
left limit f(a−). Further the right limit f(a+) is finite iff the function is
bounded in an interval (a, a1). Even if the left end point a is ∞ one can
still talk about right limit at −∞. But when you need this you will realize
without much problem. It is unnecessary to confuse ourselves with utmost
generalities at the beginning stage.

differentiation:

How to draw tangent to a curve at a point. Suppose the curve is given
by y = f(x) and at the point (a, f(a)) on the curve we are required to draw
tangent. The first question is: what do you mean by tangent. well, one
intuitive idea is that it is a straight line pasing through the given point and
meets the curve at that point only. This is not quite correct, you can try to
draw tangent to the curve y = sin x at several points and see what happens.
Of course, for a circle, tangents are precisely straight lines that meet the
circle at exactly one point. (why?)

Another idea is the following. Take the point (a, f(a)) on the curve and
a nearby point (x, f(x)) join these two points by a straight line. This is a
‘chord’. A natural question is whether this chord has a limiting form as the
point x approaches a. At first sight this explanation appears too complicated
because we are talking about limiting form of straight lines. But it is not
difficult to understand.

Afterall, a straight line is determined by its slope — apart from a point
through which it passes. In our case the point is (a, f(a)). Thus chords we
are talking about or the tangent we are looking for , all pass through this
point. So we only need to specify the slope. Thus the question amounts to
asking whether the slopes of the chords have a limiting value. of course, slope
of the chord we have mentioned above is nothing but [f(x)− f(a)]/[x− a]..
Thus we need to see if this has a limiting value as x approaches a.

To start an entirely different second line of thought, suppose a particle
is starting at the origin at time zero and travelling along a path. How do
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we understand its velocity? If it is travelling so that at time t the particle is
at 5t, then matters are simple. At time instants t0 < t1 it is at 5t0 and 5t1
respectively, so that the distance travelled during this time duration t1 − t0
is 5t1 − 5t0 and so the velocity, distance divided by time, equals 5 and does
not depend on the two time points we have taken. But in practice particles
accelerate and do not travel with ‘uniform speed’ as above.

Suppose that the particle is travelling along the curve y = t2, again start-
ing at zero. The distance travelled during the time period 1 to 2 is 4− 1 = 3
while the distance travelled during time period 10 to 11 equals 121−100 = 21
and you can try to find out the distance travelled during time period 1000
to 1001. You see that the particle is going faster and faster as time elapses.
Thus the concept of velocity does not make sense unless you specify a time
point and ask: what is the velocity at this time. In other words one needs to
talk about instant velocity.

Suppose a time point t = 5 is given. What is th velocity t time instant 5?
Naturally it should depend on what is happening around this time instant
and one idea is to take the distance travelled during the time period 5 to
5+h and then take the ratio. In other words, if the path is given by f(t), to
understand the velocity at time 5 we need to calculate [f(5 + h) − f(5)]/h
and then see if there is any particular value to which this ratio is getting close
as h gets closer to zero, that is, whether the intuitive idea of distance trav-
elled/time approaches any aprticular value as we consider durations nearer
to the time point of interest. To change notation, if the time point under
consideration is a, then we need to look at the ration [f(a) − f(x)]/[a − x]
and see if it has a limiting value as the (time) point x approaches a.

To start a yet different, third line of thinking, let us understand com-
plexity of functions. The simplest functions are constant functions. Suppose
we are given a function f on R and a point a, Which simplest function best
approximates f near a. Obviously the constant function ϕ(x) ≡ f(a) is the
best. When x is close to a, ϕ(x) is close to f(x), simply because f(x) is close
to the number f(a) when x is close to a. In symbols, f(x) − ϕ(x) → 0 as
x → a.This means, f(xn)− ϕ(xn) → 0 whenever xn → a.

Suppose you are allowed to use a little more complicated functions than
constant functions, namely, straight line functions. Can you do better? so
what is meant by better? Earlier we simply said f(x) − ϕ(x) should get
close to zero as x gets close to a. We did not demand any quantitative mea-
surement on how this quantity gos to zero. Now having allowed functions
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general than constant functions, we demand that not only this error gets
close to zero, the ratio [f(x) − ϕ(x)]/[x − a] should get closer to zero as x
gets closer to a.

Note that this implies, in particular, that f(x)− ϕ(x) gets closer to zero
as x gets closer to a. But since both f and ϕ are continuous, this difference
is getting closer to f(a) − ϕ(a). In other words ϕ(a) = f(a). Thus the
straight line passes through (a, f(a)). If the straightline we are thinking is
ϕ(x) = mx+ c, then what we concluded just now amounts to ma+ c = f(a)
or c = f(a)−ma. Thus the straight line is

ϕ(x) = mx+ f(a)−ma = f(a) + (x− a)m.

Thus
f(x)− ϕ(x)

x− a
=

f(x)− f(a)

x− a
−m.

Thus the demand that this ratio gets closer to zero as x gets closer to a, sim-
ply amounts to saying that the ratio [f(x) − f(a)]/[x − a] should get closer
to the number m, slope of the line we are looking for.

All these thought processes lead to one common conclusion: the rate of
change of the function is an important quantity. Before defining this pre-
cisely, we make an observation.

Fact: Let f : R → R and a ∈ R. For a number m ∈ R, the following two
statements are equivalent.
(i) If xn → a and xn 6= a for each n; then

f(xn)− f(a)

xn − a
→ m.

(ii) Given ǫ > 0, there is a δ > 0 such that

0 < |x− a| < δ ⇒

∣

∣

∣

∣

∣

f(x)− f(a)

x− a
−m

∣

∣

∣

∣

∣

< ǫ.

Proof is simple and we have come across such a situation several times
earlier — connection between discrete and continuous formulations of an idea.

Suppose (ii) holds. To prove (i), take xn → a and xn 6= a for every n.
Shall show n0 such that

n ≥ n0 ⇒

∣

∣

∣

∣

∣

f(xn)− f(a)

xn − a
−m

∣

∣

∣

∣

∣

< ǫ.
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Use (ii) with the given ǫ to get a δ > 0 and then use xn → a to get n0 so
that n ≥ n0 ⇒ |xn − a| < δ. This will do.

Conversely, if (ii) is false, we exhibit a sequence for which (i) fails. Since
(ii) is false, fix ǫ > 0 for which we can not find δ > 0 stisfying the stated
condition. With δ = 1/n get xn so that 0 < |xn − a| < 1/n and yet

∣

∣

∣

∣

∣

f(x)− f(a)

x− a
−m

∣

∣

∣

∣

∣

≥ ǫ.

This sequence shows failure of (i).

Definition: Let f : R → R and a ∈ R. We say that f is differentiable at
the point a if there is a number l satisfying the above conditions. In such a
case l is called derivative of f at a. There are several notations.

f ′(a) = l;
df

dx
(a) = l; Dxf(a) = l.

Another way of saying the same thng is the following: Define the function
ϕ(x) = [f(x) − f(a)]/[x − a]. Of course, this is defined on R except at the
point a. If the right limit and left limit of this function exist at a and equal,
then we say that the function f is differentiable at the point a and this limit
is called the derivative of the function f at the point a. If the function is
differentiable at every point, then we say that f is differentiable. In this case,
we can define f ′ on all of R.

Observe that the number l, when exists, is unique.

Fact: Let f : R → R. if f is diferentiable at a, then f is continuous at a.

Proof: Let xn → a. We need to show f(xn) → f(a). If all the xn are
different from a, then

f(xn)− f(a) =
f(xn)− f(a)

xn − a
(xn − a) → f ′(a) · 0 = 0.

Suppose that there is an n0 such that xn 6= a for all n ≥ n0. Then you can
write the equation above for n ≥ n0 obtaining the result. if there is an n0

such that xn = a for all n ≥ n0, then there is nothing to do.
Finally suppose that there are infinitely many n such that xn 6= a and

infinitely many n such that xn = a. Then you will get two subsequences
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corresponding to each and the above argument applies for the two corre-
sponding subsequences of f(xn). Using an earlier observation, we conclude
that f(xn)− f(a) → 0.

Here is another way to argue. If only finitely many xn are different from
a, then after some stage f(xn) = f(a) and so we are done. If infinitely
many xn 6= a; let n1 < n2 < · · · are precisely those integers. Then [f(xni

)−
f(a)]/[xni

− a] converges to f ′(a) and hence is a bounded sequence, say
bounded by C. Since xni

− a → 0, there is nk such that for all i ≥ k
|xni

− a| < ǫ/C. But then |f(xni
)− f(a)| < ǫ. And of course, if n > nk and

not in the subsequence then f(xn) = f(a) and hence for all n > nk, we see
|f(xn)− f(a)| < ǫ.

It is instructive to argue using ǫ − δ. That is, fix ǫ > 0 and show δ > 0
such that |f(x)− f(a)| < ǫ whenever |x− a| < δ.

Fact: if f : R → R and g : R → R are differentiable at a then so are f+g
and 39f and fg. In fact

(f + g)′(a) = f ′(a) + g′(a); (39f)′(a) = 39f ′(a);

(fg)′(a) = f(a)g′(a) + f ′(a)g(a).

If g(x) 6= 0 for all x, then f/g is also differentiable at a and

(

f

g

)

′

(a) =
f ′(a)g(a)− f(a)g′(a)

g2(a)
.

Proof: if you take any sequence xn → a, xn 6= a for all n, then

(f + g)(xn)− (f + g)(a)

xn − a
=

f(xn)− f(a)

xn − a
+

g(xn)− g(a)

xn − a

→ f ′(a) + g′(a).

(39f)(xn)− (39f)(a)

xn − a
= 39

f(xn)− f(a)

xn − a
→ 39f ′(a).

(fg)(xn)− (fg)(a)

xn − a
=

f(xn)g(xn)− f(xn)g(x) + f(xn)g(x)− f(x)g(x)

xn − a

→ f(a)g′(a)− f ′(a)g(a).

Here we used continuity of f at a.
We show 1/g is differentiable and calculate its derivative, then the above
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multiplication rule can be used for the product f · (1/g). Take a sequence
xn → a, xn 6= a for all n.Then

(1/g)(xn)− (1/g)(a)

xn − a
=

g(a)− g(xn)

xn − a

1

g(xn)g(a)
→

g′(a)

g2(a)
.

here we have used continuity of g at a.

Fact: Let f : R → R and g : R → R and a ∈ R. Assume that f
is differentiable at a and g is differentiable at the point f(a). Let h(x) =
g(f(x)), the composition. then h is differentiable at a and

h′(a) = g′(f(a))f ′(a).

Proof: Take xn → a, xn 6= a for all n.
Case 1: Assume that there is an n0 such that for all n ≥ n0 we have

f(xn) = f(a). Then note that

f ′(a) = lim
f(xn)− f(a)

xn − a
= 0

so that g′(f(a))f ′(a) = 0. Of course, h(xn) = h(a) for all n ≥ n0 so that
h′(a) = 0 proving existence of limit (of [h(xn)− h(a)/[xn − a]) as well as the
stated equality in the case under consideration.

Case 2: Assume that there is an n0 such that f(xn) 6= f(a) for all n ≥ n0.
Then for n ≥ n0 we have

h(xn)− h(a)

xn − a
=

g(f(xn))− g(f(a))

f(xn)− f(a)

f(xn)− f(a)

xn − a

→ g′(f(a))f ′(a).

Here we have used that f is continuous at a, thus f(xn) → f(a). This proves
existence of limit (of [h(xn)− h(a)/[xn − a]) and also the stated formula.

Case 3. There are infinitely many n such that f(xn) = f(a) and infinitely
many n such that f(xn) 6= f(a). Enumerate the integers satisfying the first
condition as n1 < n2 < n3 < · · · and the second kind as l1 < l2 < l3 < · · ·
and apply the above cases for the subsequences

h(xni
)− h(a)

xni
− a

;
h(xli)− h(a)

xli − a
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and conclude the result by employing earlier fact about subsequences.

So far we have not calculated derivative of any specific function.

Fact: if f(x) = 55 for all x then f ′(a) = 0 for all a.
if f(x) = x for all x, then f ′(a) = 1 for every a.
if f(x) = x39 for all x, then f ′(a) = 39a38 for every a.

Proof: First two statements are easy (should be done to say this).

Last statement follows from

x39 − a39

x− a
= x38 + x37a+ x36a62 + · · ·+ a38

→ 39a38.

Using the rules above, you can now show that polynomials are differen-
tiable and be able to calculate their derivatives. Also for rational functions
you should be able to do. What is a rational function? a function of the form
P (x)/Q(x) where P and Q are polynomials and Q is not the zero polynomial.
Where is this function defined? On R minus finitely many points; which is a
finite unon of intervals.

if you have understood the earlier calculations, then you can do some
improvements.

Why should we have functions defined on all of the real line? suppose that
f is a function defined on an interval I = (α, β) where −∞ ≤ α < β ≤ +∞.
Let a ∈ I. We say that f is differentiable at a iand f ′(a) = l if any one of
the following two equivalent conditions hold;
(i) xn ∈ I for all n, xn 6= a for all n ⇒ f(xn)−f(a)

xn−a
→ l.

(ii) Given ǫ > 0, there is δ > 0 such that

0 < |x− a| < δ; x ∈ I ⇒

∣

∣

∣

∣

∣

f(x)− f(a)

x− a
− l

∣

∣

∣

∣

∣

< ǫ.

Of course the case α = −∞ and β = +∞ corresponds to I = R, discussed
above.

All the facts remain true. For sum, product and ratio of functions (de-
fined on the interval I now) with exactly the same proofs. the composition
rule also holds with exactly the same proof as follows: let f be real valued
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function defined on an interval I = (α, β). let g be a rael valued function de-
fined on another interval J = (γ, δ). let us assume that range of the function
f is contained in J . that is, f(x) ∈ J for every x ∈ I. Then the composition
makes sense: h(x) = g(f(x)) defined on I. let now a ∈ I. Assume that f is
differentiable at a and g is differentiable at f(a). The h is differentiable at a
and h′(a) = g′(f(a))f ′(a).

This is not a novel. You are expected to pause and convince yourselves
that what was said in the para above is true. if you have trouble, that means
you have not understood the earlier calculations for functions defined on all
of R. You are advised to go back and work it out taking pen and paper.
then you should return to the para above and not take it for granted.

Some of you were asking about functions defined on a closed interval.
Suppose that f is defined on the interval [23, 33]. You can define the concept
of differentiability at all points in the interval (23, 33). if you take a point a
in this interval, there is a small δ > 0 so that (a− δ, a+ δ) ⊂ (23, 33) — you
can take δ = min{a− 23, 33− a}.

Can you define derivative at the points 23 and 33? Yes, at the point 23,
you can define righthand derivative, namely,limit of [f(x)−f(23)]/[x−23] as
x ↓ 23 as was done in discussing left and right limits of functions. of course,
this limit may not exist. similarly, you can define left derivative at the point
33. some of you who are curious can think about this. However, most of you
should concentrate on understanding the above discussion thoroughly and
clearly.
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