
CMI(BSc I/2013) Calculus/Analysis Second Week

discussion of HA1.

Q2. For each n ≥ 1, let An denote the set {1, 2, · · · , n}.
We have a bijection f : S → A11 and a bijection g : S → A13. We want

to show that this is not possible. What should we do?
The first step is to eliminate the unknown set S from the problem.

Step 1: We define a function h : A11 → A13 as follows. Take x ∈ A11.
There is one element s ∈ S such that g(s) = x, because g is onto A11. Also
such a point is unique, because g is one-to-one. This s is denoted by g−1(x).
We take f(s) and this is our h(x). Thus

h(x) = f(g−1(x))

Let y ∈ A13. There is one s ∈ S with f(s) = y , because f is onto. Let
g(s) ∈ A11 be denoted by x. Then it is easy to see h(x) = y. In other words h
is onto. Thus h is a function on A11 onto A13. Next step shows there can not
be such a function. [Actually this h is one-one too, though we do not need:
If x, y ∈ A11 and x 6= y, then g−1(x) 6= g−1(y) and now use f is one-to-one
to conclude h(x) 6= h(y).]

Now we have a function from A11 ONTO A13. Shall show this is not
possible.

If we start associating with 1,2 etc of A11 an element of A13 we will run
out of elements from A11 whereas elements of A13 are still left out.

Why? how do you know this happens?
Because A11 has 11 elements and A13 has 13 elements.
Firstly, I do not know ‘number of elements’. Even if I agree with you on

a suitable definition, why should there be no such function? Actually, this
was our main problem. We did, definitely, believe that A11 has 11 elements.
So if we can establish a bijection between A11 with S then we felt eligible
to say that S also has 11 elements, we decided to write |S| = 11. You are
absolutely right. But to see that this is a sensible definition, we must make
sure that there can not be bijection from S to both A11 and A13. If this
happens we do not know whether S has 11 elements or 13 elements.

But is it not obvious that A11 has 11 elements and A13 has 13 elements.
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Hold on, I think we are going in circles. You are again using ‘number
of elements’ and also the word obvious. Remember, to use an adjective like
obvious, easy, trivial; you must first verfiy the truth of the statement; then
depending on the nature of the argument needed to verify its truth (may be
length, may be depth of facts used), you use these adjectives. We have not
even verified the truth of the statement.

To make you appreciate the issue involved, let me rephrase the problem.
Someone walks into this class room and tells us that he has a function from
A11 onto A13. If he shows you his function, you are sure, you can find an
error. You might even think it is absolutely trivial for you to find his error.
I believe you. But we have a road-block. He refuses to show us his function.
Should we leave matters like this or are we capable of telling him that he is
wrong, we can prove it to him without seeing his function? Yes, we accept
the challenge of showing that he is wrong. Here is how we achieve it.

Step 2: For m = 1, 2, · · · let Pm be the following statement:
Whatever be n > m, we can not find a function on Am onto An.
This is proved by induction.

m=1. Take n > 1. Let f be any map of A1 to An. If f(1) 6= 1, then 1
is not in the range of f . If f(1) = 1, then 2 is not in the range of f ; just
remember n ≥ 2 and An = {1, 2, · · · , n}. Thus f can not be onto.

done for m = 1, 2, · · · , k − 1. Shall do for m = k. Let n > k be fixed and
if possible a function f on Ak onto An. We shall produce a function h on
Ak−1 onto An−1. But n− 1 > k − 1 and the statement Pk−1 is true, leading
to a contradiction.
Let f(k) = a ∈ An. We define h as follows. Take x with 1 ≤ x ≤ k − 1. If
f(x) < a, then declare h(x) = f(x); if f(x) ≥ a declare h(x) = f(x)− 1. It
is clear that h(x) ≤ n − 1, so that h takes values in An−1. Is it onto An−1?
Yes, to see this take y with 1 ≤ y ≤ n − 1. In case y < a, using the fact
that f is onto An, we get x with f(x) = y. But then, h(x) = y and of course
x 6= k, so that x ∈ Ak−1. If y ≥ a, then using the fact that 1 ≤ y ≤ n − 1
first conclude that y + 1 ≤ n and hence there is a x ∈ Ak with f(x) = y + 1.
Observe x 6= k because f(k) = a < y + 1. Thus x ∈ Ak−1 and h(x) = y.
Thus whatever be y ∈ An−1 there is x ∈ Ak−1 with h(x) = y.

Q3 . The reason we are going through this is the following. Many-a-times
we ‘think’ we know certain things while we really do not know them. From

2



school we know,

0.1 =
1

10
; 0.12 =

12

100
; 0.121 =

121

1000
· · · · · · .

Such an understanding is correct and enough in school. But then what is the
meaning of 0.12121212 · · · · · · · · · · · · .?

12121212 · · · · · · · · · · · ·
100000000 · · · · · · · · · · · ·

does not make sense. A perfectly equivalent, but probably looking compli-
cated, way of putting the earlier understanding is the following.

0.1 =
1

10
; 0.12 =

1

10
+

2

100
; 0.121 =

1

10
+

2

100
+

1

1000
, · · · · · · .

With such an equivalent way of putting things, we can easily understand the
infinite decimal expansion.

0.12121212 · · · · · · = 1

10
+

2

102
+

1

103
+

2

104
+ · · · · · · .

Let us return to the problem. When x = 0, we see the required expansion
by taking each ǫi = 0. So let us now consider 0 < x ≤ 1.

How shall we get the decimal expansion?
??
You can give a try.
We take gif of 10x.
What is gif, I do not know.
greatest integer function.
Oh, let us denote it as [x]: the largest integer which is less than or equal

to x. With this notation you are saying that [10x] is the first decimal digit.
What is the second digit?

We take [10{x− [10x]}]. This is second decimal digit.
Yes, you are right. But how do we show that the decimal expansion with

these digits gives us the number x?
??
I shall put the exact same thing in a more picturesque way, you can see

convergence too.
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Given a number x with 0 < x ≤ 1, here is an algorithm for obtaining its
decimal expansion. Denote by Ik the interval

Ik =

(

k

10
,

k + 1

10

]

; k = 0, 1, · · · , 9.

These intervals are disjoint, each having length 1/10. They make up all of
(0,1]. Thus x must be in exactly one of these intervals. Let that interval be
Ik and put ǫ1 = k. Since

ǫ1
10

< x ≤ ǫ1 + 1

10
,

we see that

0 < x− ǫ1
10

≤ 1

10
.

Now divide this interval Ik (just remember now k = ǫ1) into ten parts by
conisdering

Ikl =

(

k

10
+

l

102
,

k

10
+

l + 1

102

]

; l = 0, 1, · · · , 9.

Since x ∈ Ik and the intervals {Ikl : 0 ≤ l ≤ 9} are disjoint making up all
of Ik, there is exactly one l such that x ∈ Ikl. Put ǫ2 = l and immediately
observe, as earlier, (recalling that k = ǫ1) that

0 < x − ǫ1
10

− ǫ2
102

≤ 1

102
.

By induction now one can obtain the required digits and show the stated
properties too by using the inequalities deduced at each stage.

Suppose a number x has two different expansions

·ǫ1ǫ2ǫ3 · · · = x = ·η1η2η3 · · · .

Remember this means,

ǫ1
10

+
ǫ2
102

+
ǫ3
103

+ · · · = x =
η1
10

+
η2
102

+
η3
103

+ · · · .
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Let ǫi = ηi for i = 1, 2, · · · k − 1 and ǫk < ηk. (of course, ηk may be smaller.
Either you can repeat the same argument, or, to start with itself, you can say
the one having smaller value at the first digit where they differ, is denoted
with epsilons). Thus, we see

ǫk
10k

+
ǫk+1

10k+1
+

ǫk+2

10k+2
+ · · · = ηk

10k
+

ηk+1

10k+1
+

ηk+2

10k+2
+ · · · .(♠)

Observe that the left side of (♠) is at most, (use sum of geometric series)

LHS of (♠) ≤ ǫk + 1

10k

and strict inequality holds if ǫm < 9 for at least one m > k. Also

RHS of (♠) ≥ ηk
10k

and strict inequality holds if ηm > 0 for at least one m > k.
But LHS and RHS of (♠) are equal and ǫk < ηk; we must have

ǫk + 1 = ηk; and
ǫm = 9 for each m > k; and
ηm = 0 for each m > k.

Q6. For the time being do not try the part about algebraic numbers. It
is simple, but needs a new idea. Interestingly, if a and b are algebraic, we
can not simply show that a + b is algebraic; we need to show (at the same
time) that several things are algebraic and a+ b is one of them.

exponentiation. (continued).

xn for x 6= 0 and n ∈ N .
This is defined by induction: x1 = x and if we have defined xn for n =
1, 2, · · · k then we put xk+1 = xk · x. Do you know how to prove the law of
indices: xn+m = xn · xm and (xy)n = xnyn. If you never saw a proof, now is
the time to write a proof of this fact.

xn for x 6= 0 and n ∈ Z.
For n ∈ N it is defined above. For n = 0, we put x0 = 1. For n < 0 it is
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defined as xn = (1/x)−n. Prove the law of indices.

x1/n for x > 0 and n ∈ N .
In the last class we proved the existence of exactly one number y > 0 such
that yn = x. We define this y as x1/n, also denoted as n

√
x.

If 0 < x < y then x1/n < y1/n. Also for any x, y > 0, (xy)1/n = x1/ny1/n.

xr for x > 0 and r ∈ Q

Let r = m/n where m,n are integers and n ≥ 1. we put xr = (xm)1/n.
This makes sense because xm > 0 whatever be m ∈ Z. Is this well defined?
Someone expreses the same rational m/n as (km)/(kn) (here k ∈ N), and
calculates. Will he get the same answer? In other words

(xm)1/n = (xkm)1/(kn)?

To see that this is indeed true, first observe that the right side is positive.
If we show that its n-th power equals xm, then the right side equals the left
side (by uniqueness of n-th roots).

(xkm)1/(kn)(xkm)1/(kn) · · · (n− times) = (xkmxkm · · · (n− times)1/kn

= (xkmn)1/(kn) = [(xm)kn]1/(kn) = xm.

Here the last equality is by uniqueness of (kn)-th root.
More generally, suppose a rational number is expressed as m/n and also

p/q where all m,n, p, q are integers and n, q ≥ 1. — for example (4/6) and
(6/9). The question is whether

(xm)1/n = (xp)1/q?

This follows from

(xm)1/n = (xmq)1/(nq); (xp)1/q = (xnp)1/(nq); mq = np.

Thus xr is well defined for every x > 0 and rational number r. Verify the
laws of indices:

xr+s = xrxs; (xy)r = xryr; xr = (1/x)−r.

x > 1, r < s ⇒ xr < xs; x < 1, r < s ⇒ xr > xs.
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xa for x > 1 and a ∈ R
For x > 1, we define xa = lub{xr : r ∈ Q, r ≤ x}. If we take any rational t,
with a− 1 < t < a, then xt is in the above set; if we take any rational s with
a < s < a + 1 then xs is an upper bound for that set. Thus lub is sensible.
Also if a happens to be rational then this definition gives the same answer
as the definition in the previous clause. Show this by using the last property
(monotonicity) stated above.

xa for x > 0 and a ∈ R
If x > 1 the above clause defines xa. If x = 1, we put xa = 1 whatever be a.
If 0 < x < 1, we put xa = (1/x)−a. This makes sense because, 1/x > 1 and
above clause applies.

The laws of indices still hold. We postpone this study. We need to develop
some other stories of importance.

modulus.

For a real number x, we define |x|, modulus of x, as follows: if 0 ≤ x then
|x| = x while we define |x| = −x in case x < 0.

Fact: (i) |x| ≥ 0; |x| = 0 iff x = 0. (ii) |x| = |−x|. (iii) |x+y| ≤ |x|+ |y|.

(i) If x 6= 0 then −x 6= 0 as well and hence if x 6= 0 then |x| 6= 0.
If x > 0, then |x| = x > 0. If x < 0, then we know |x| = −x > 0.
(ii) If x > 0, then −x < 0 so that | − x| = −(−x) = x = |x|.
If x < 0, then −x > 0 so that | − x| = −x = |x|.
If x = 0, then −x = 0 so that | − x| = 0 = |x|.
(iii) case 1: x ≥ 0, y ≥ 0. Then x+ y ≥ 0 so that

|x+ y| = x+ y = |x|+ |y|.

case (ii): x < 0, y < 0. Then x+ y < 0 so that

|x+ y| = −(x+ y) = (−x) + (−y) = |x|+ |y|.

case (iii): x > 0 and y < 0. Then x+ y ≥ 0 and x+ y < 0 are both possible.
In case x+ y ≥ 0, use y < −y to see

|x+ y| = x+ y ≤ x+ (−y) = |x|+ |y|.
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In case x+ y < 0, use −x < x to see

|x+ y| = −(x+ y) = (−x) + (−y) < x+ (−y) = |x|+ |y|.

case (iv): x < 0 and y > 0. argue as above.

cardinality.

We shall now return to cardinality of sets: Recall the definitions of finite,
countable, uncountable sets. Generally, |A| is called the cardinality of the
set A. Of course, as of now this is defined for finite sets. For countably
infinite set ℵ0 denotes its cardinality. For R, the symbol is c. Even among
uncountable sets, there are several kinds; we shall not enter that topic. Here
are some simple rules.

Fact:

(i) Let n ≥ 1 be an integer. If |A| = n and f : A → B a bijection, then
|B| = n.

(ii) If A is countably infinite, f : A → B is a bijection, then B is also
countably infinite.

(iii) The set N = {1, 2, 3, · · ·} is countably infinite.
(iv) Any infinite subset of N is countably infinite. Any subset of a count-

able set is countable.
(v) The set of integers, Z is countable.
(vi) The set of pairs S = {(m,n) : m,n ∈ N} is countable.
(vii) The set of positive rational numbers is countably infinite.
(viii) The set of rational numbers is countable.
(ix) If for each n = 1, 2, 3, · · · we have countable sets, then their union

∪An is also countable set.

Proof: (i) Since |A| = n, fix a bijection g : {1, 2, · · · , n} → A . Then
h(x) = f(g(x)) gives a bijection of {1, 2, · · · , n} to B.

(ii) Similar proof as above holds.

(iii) Identity map f(x) = x shows this.
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(iv) Let A be an infinite subset of N . Define, by induction, for each
n ∈ N , an element an ∈ A as follows:

a1 = minA; an+1 = min (A ∩ {a1, · · · , an}c) ; n > 1.

Recall that if A ⊂ N is not empty, then it has a first element; that is, a ∈ A
such that x > a for all x ∈ A; x 6= a. This is denoted as min above. Also the
set being infinite, this process can be continued for ever. Define

f : {1, 2, · · ·} → A; f(n) = an.

This is one to one. Indeed, if m < n, then by definition of an we see that
an 6= am. To see that this is onto, we proceed as follows. Observe that
a1 ≥ 1. This, in turn, implies

x ∈ A, x 6= a1 ⇒ x > 1.

Using induction, we can prove that an ≥ n for every n. This, in turn, gives

x ∈ A, x 6= a1, a2, · · · , an ⇒ x > n.

Thus,
x ∈ A ⇒ x = an for some n.

This shows that f is onto A.
The last part is easy now.

(v) Define f : Z → N by f(n) = 2n if n ≥ 1; f(n) = 3−n if n ≤ −1 and
f(0) = 1. Then f is a one-to-one function. But of course it is not onto N .
However it is onto its range, namely, the set A = {f(x) : x ∈ Z}. Since A is
countably infinite, so is Z.

(vi) The function f(m,n) = 2m3n establishes a on-one function on S onto
its range contained in N .

(vii) The set of strictly rational numbers is identified with the set of pairs
(m,n) wher m ≥ 1, n ≥ 1 are integers and have no common factors. But
then this is a subset of the earlier set.
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(viii) Proof similar to (v). Fix a bijection f from strictly positive rationals
to N . For x ∈ Q, put

g(x) = 2f(x) if x > 0; g(x) = 3−f(−x) if x < 0; g(0) = 1.

(ix) We can safely assume that An 6= ∅ for each n (why?). For each
n = 1, 2, · · ·, fix a function fn : An → N a one-one function. We are not
saying ‘onto’ because in case An is finite it would be impossible. Define a
function f : ∪An → N as follows. Take x ∈ ∪An. Let i be the first integer
such that x ∈ Ai. Put

f(x) = 2i3fi(x).

This establishes a one-one function onto its range contained in N .

Fact: The interval (0, 1) is uncountable. The set of real numbers is
uncountable. The set of irrational numbers is uncountable. The set of tran-
scendental numbers is uncountable.

Proof: the set (0, 1) is not countable.

If possible, let f : N → (0, 1) be any function. We show that there is an
element of (0, 1) which is not in the range of f ; showing, in particular, that
there can not be a bijection between the two sets. The method of proof is
called Cantor’s diagonal argument, which is simple, yet powerful.

For each n, fix a decimal expansion of the number f(n). Let us define
numbers ǫn for n = 1, 2, · · · as follows. ǫn = 7 if the n-th digit in the decimal
expansion of f(n) is different from 7, while ǫn = 8 if the n-th digit in the
decimal expansion of f(n) equals 7.

Let
a =

ǫ1
10

+
ǫ2
102

+
ǫ3
103

+ · · · .

The series converges and defines a number.
Is it between zero and one? Yes, actually it is between 7/10 and 9/10.
Does it differ from every number in the range of f? Yes, from the number
f(n) it differs at the n-th decimal digit.
Since some numbers have more than one expansion, how can we say that this
number a is different from each f(n) just because there is a difference in one
decimal place? Since the expansion of a does not end either with zeros or with
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nines, a has exactly one expansion and it does not agree with any of the f(n).

R is not countable.
If R were countable its subset (0, 1) would be countable too.

Set of transcendental numbers is not countable.

The set of algebraic numbers is known to be countable; if the set of tran-
scendental numbers is also countable then the union of these two sets would
be countable set too.
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