
CMI(BSc I/2013) Calculus/Analysis Twelfth week

We shall continue our discussion of properties of integrals and how to
calculate integrals. We are only considering bounded functions on a closed
bounded interval. We showed that every continuous function is integrable.This
we did by showing that for every ǫ > 0, there is a partition P such that
U(P, f)− L(P, f) < ǫ. Actually we observed a more precise property.

8. Let f be a continuous function on [a, b]. Given ǫ > 0, there is a δ > 0
with the following property: whenever we take any partition with difference
between successive points smaller than δ, then U(P, f)− L(P, f) < ǫ.

Let us introduce a word that reduces our writing. Given a partition
P = {a = a0 < a1 < a2 < · · · < ak = b}, the maximum distance between
successive points, max

i
(ai+1 − ai) is denoted by ||P ||, norm of P . A selection

for a partition is simply a selection of points from each partition interval;
more precisely, a (finite) sequence of points s = {x0 ≤ x1 ≤ x2 ≤ · · · xk−1}
such that xi ∈ [ai, ai+1] for i = 0, 1, 2, · · · , k − 1. Given any interval, there
are several possible partitions of the interval. Given one partition, there are
several possible selections for the partition; we can pick any one point from
each interval of the partition.

Given a partition P and a selection s for the partition, we define

R(P, f, s) =
k−1
∑

i=0

f(xi)[ai+1 − ai].

This is called the Riemann sum for the partition and selection. Recall that,
instead of value of the function at the selected point, if we used the infimum
and supremum in each partition interval we get the lower and upper Riemann
sums.

We denote integral of f over the interval [a, b] by
b
∫

a
f(x)dx or

b
∫

a
f or sim-

ply
∫

f if the interval is clear from the context.

9. Let f be a continuous function on [a, b]. Given ǫ > 0, there is a δ > 0
such that |R(P, f, s) − ∫

f | < ǫ for any partition P with ||P || < δ and for
any selection s for the partition.
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We only need to observe that both
∫

f and R(P, f, s) are between L(P, f)
and U(P, f). So the same δ as above would do.

10. Let {Pn} be a sequence of partitions of [a, b] with ||Pn|| → 0 and for
each n, let sn be a selection for the partition Pn. Then for any continuous
function f on [a, b] we have:

U(Pn, f) →
∫

f ; L(Pn, f) →
∫

f.; R(Pn, f, sn) →
∫

f

This is clear from the previous statement. Thus even though the appear-
ance of selection appears an extra complication, you should keep in mind
that it is one more choice at our disposal and some times some one (like
mean value theorem) may already make a choice for us. You will see this in
the fundamental theorem of integral calculus.

Though we are concentrating on continuous functions now, one naturally
wonders whether there are functions which are not continuous but integrable.
the answer is yes. The evidence is also easy to get. Just consider the func-
tion f(x) = 1 for 0 < x < 1; and f(0) = 54, f(1) = 1/2. This function is
integrable. In fact lower sums and upper sums are easily calculable and they
yield U(f) = 1 = L(f).

But what is not easy to answer is the following question: what precisely
are the functions which are integrable? The answer roughly is that f is in-
tegrable when and only when its set of discontinuities is ‘small’. This is an
important issue but but shall not enter this discussion now. It is more im-
portant and basic to see how to calculate integrals and how to use integrals
to our benefit. However, some of the observations we made above are true
without assuming that we have a continuous function. Here is an example
whose proof is easy.

11. Let f be bounded function on [a, b]. Then f is integrable iff for every
ǫ > 0, there is a partition P such that U(p, f)−L(P, f) < ǫ; or equivalently,
for every ǫ > 0 there is a partition P such that |R(P, f, s)− R(P, f, s′)| < ǫ
for any two selections s and s′.

This is immediate from the following simple fact. Suppose we have two
sets S1 and S2. Suppose that a ≤ b for every a ∈ S1 and every b ∈ S2. Then
supS1 = inf S2 iff for every ǫ > 0, there are a ∈ S1 and b ∈ S2 with b−a < ǫ.
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For some of the statements below, continuity of the functions is not
needed, integrability is enough; of course proofs have to be done with more
care. But, as mentioned earlier, we shall not complicate life now.

11. if f and g are continuous, then

∫

(f + g) =
∫

f +
∫

g;
∫

(39f) = 39
∫

f.

if f ≡ 28 on [a, b], then
b
∫

a
f = 28(b− a).

12. If f is continuous on [a, b] and a < c < b, then

∫ b

a
f =

∫ c

a
f +

∫ b

c
f.

Just take a sequence of partitions Pn such that ||Pn|| → 0 and each Pn

includes the point c. Then the set Qn = {x ∈ Pn : x ≤ c} and the set Rn =
{x ∈ Pn : x ≥ c} will constitute partitions of [a, c] and [c, b] respectively.
Clearly

||Qn|| → 0; ||Rn|| → 0; U(Pnf) = U(Qn, f) + U(Rn, f)

and proof is completed by noting

U(Pn, f) →
∫ b

a
f ; U(Qn, f) →

∫ c

a
f ; U(Rn, f) →

∫ b

c
f.

13. for any continuous function | ∫ f | ≤ ∫ |f |.
Note that |f | is again a continuous function and hence its integral makes
sense. proof is simple because for any partition

|U(P, f)| ≤ U(P, |f |).

14. Fundamental Theorem of Integral Calculus:

let f be a continuous function on [a, b].

(i) Define F (a) = 0 and F (x) =
x
∫

a
f for a < x ≤ b.

Then F is continuous on [a, b]; it is differentiable; F ′ = f .

(ii) Let G be any continuous function on [a, b] which is differentiable on

(a, b) and G′(x) = f(x) for a < x < b. Then
b
∫

a
f = G(b)−G(a).
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(iii) If G1 and G2 are two such functions as in (ii), then there is a number
α such that G1(x) = α +G2(x) for every x ∈ [a, b].

This is an extremely useful and powerful theorem. Firstly, it relates inte-
gration to derivatives. Secondly, it reduces our job of calculating integrals to
finding functions whose derivative is the given function. This is easier than
struggling with partitions, sups, infs, and limits.

Any function G as in (ii) is called a primitive for f . Part (i) says F is al-
ways a primitive, unfortunately, its definition depends on integration again.
So it can not be used as a way to evaluate integrals. It is important and
assures us of the existence of a primitive.

Sometimes only part (ii) is called fundamental theorem. Usually it is
stated for integrable functions rather than only for continuous functions as
we did above. For example if you take the function f which is one on (0, 1)
and our choice of numbers at x = 0 and x = 1; then f need not be continuous
on [0, 1] but the function G(x) = x fits the bill.

Before proving this theorem, let us see two useful applications. The fun-
damental theorem makes it possible to translate theorems on derivatives to
theorems on integrals, which help in calcualting integrals. We ‘translate’ the
chain rule’ and ‘product rule’ of differentiation.

15. Let ϕ be a strictly increasing continuously differentiable function on
[a, b] onto [c, d]. Let f be a continuous function on [c, d]. then

∫ b

a
f(ϕ(x))ϕ′(x)dx =

∫ d

c
f(y)dy.

since ϕ′ is assumed to be continuous, the integrand on the left side is contin-
uous and hence integral makes sense.

Thus integrating f on the interval [c, d] is not simply integrating the
composed function on [a, b], but you need to multiply this composed func-
tion with ϕ′. the reason is that when you calculate Riemann sums on [a, b]
you multiply with length of partition interval. If x1 < x2 then length of the
interval [x1, x2] is (x2 − x1). If ϕ(x1) = y1 and ϕ(x2) = y2 then length of
the image interval [y1, y2] is ϕ(x2) − ϕ(x1) which is ϕ′(θ)[x2 − x1] for some
number θ between x1 and x2. Thus when an interval in domain is shifted
to the range, the length gets magnified by a factor (the factor could be less
than one).
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In practice, the method above is implemented as follows. You need to
evaluate an integral which you recognize as the left side. you say put y = ϕ(x)
so that dy = ϕ′(x)dx and the left side becomes the right side after noting
that y = c when x = a and y = d when x = b.

You can state a similar theorem when ϕ is decreasing. We need to mul-
tiply with |ϕ′(x)| = −ϕ′(x) instead of simply ϕ′(x).

Proof of the formula is simple. Let F be a primitive for f on [c, d]. Thus
it is differentiable and F ′(y) = f(y) for c < y < d. Set G(x) = F (ϕ(x)) on
[a, b]. Clearly, G is continuous on [a, b], differentiable on (a, b), and by chain
rule,

G′(x) = F ′(ϕ(x))ϕ′(x) = f(ϕ(x))ϕ′(x).

Thus by fundamental theorem
∫ b

a
f(ϕ(x))ϕ′(x)dx = G(b)−G(a) = F (d)− F (c) =

∫ d

c
f(y)dy.

We have taken a simple route by using the extra concept of primitive
assured by the fundamental theorem. You should remember that, such a
method of taking easy way out will not help us when life does get compli-
cated. But can we prove it starting from definition of integral? Yes. Here is
another proof, you may ignore if you wish.

For any partition P of [a, b], let ϕ(P ) denote the partition of [c, d] obtained
by taking images of points in P . First observation is this: If ||Pn|| → 0, then
||ϕ(Pn)|| → 0. This is a simple consequence of uniform continuity of ϕ.

Let us temporarily name g(x) = f(ϕ(x))ϕ′(x) defined on [a, b]. The
second observation is the following. Given any partition P of [a, b], there is
a selection s for the partition P of [a, b] so that

R(P, g, s) = R(ϕ(P ), f, ϕ(s)).

First you should note that image of a selector is a selector for the image
partition. To show the stated selector, if [α, β] is an partition interval for P ,
then by MVT, there is a γ in this interval so that

[ϕ(β)− ϕ(α)] = ϕ′(γ)[β − α].

Let s be the selection for the partition P so that from any partition interval
[α, β] it picks a point γ satisfying the above equation from this interval. MVT
assures there is at least one such point. Then

g(γ)[β − α] = f(ϕ(γ))[ϕ(β)− ϕ(α)]
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It is clear that this selector will do the job.

Now to complete the proof is simple. Take a sequence of partitions Pn

with ||Pn|| → 0. Then ||ϕ(Pn)|| → 0. For each n select sn as described above.
Then

R(Pn, g, sn) = R(ϕ(Pn), f, ϕ(sn)).

Here the left side converges to
∫

g and right side to
∫

f over the appropriate
intervals.

This completes the alternative proof.

This is the most commonly used form of method of substitution. How-
ever, the fundamenttal theorem tells us better. Do not assume ϕ is strictly
increasing. Just assume that it is a continuously differentiable on [a, b] onto
[c, d] with ϕ(a) = c and ϕ(b) = d. Then the proof using the fundamental
theorem still holds good and hence the formula is still true.

Here is translation of product rule.

16. Let F and G be two continuously differentiable functions on [a, b]
with derivatives f and g. Then

∫ b

a
F (x)g(x)dx = {F (b)G(b)− F (a)G(a)} −

∫ b

a
f(x)G(x)dx.

Proof is trivial. The function FG is continuous and its derivative equals
Fg + fG and so is a primitive for the later. By Fundamental theorem

F (b)G(b)− F (a)G(a) =
∫

(Fg + gF ) =
∫

Fg +
∫

fG.

Let us now return to the proof of the fundamental theorem. Interestingly,
the proof is straight forward.

(i) Shall show uniform continuity of F on [a, b]. Fix ǫ > 0. Since f is
continuous, it is bounded, say |f(x)| < M for all x. Take δ = ǫ/M Now take
x, y with |x− y| < δ. No loss to assume x < y, If x = a then F (a) = 0 and
so

|F (y)− F (a)| = |F (y)| = |
∫ y

a
f | ≤

∫ y

a
|f | ≤ M(y − a) < ǫ.

If a < x < y our earlier observation tells

∫ y

a
f =

∫ x

a
f +

∫ y

x
f ; i.e, F (y) = F (x) +

∫ y

x
f ;

6



so that
|F (y)− F (x)| = |

∫ y

x
f | ≤

∫

|f | ≤ M(y − x) ≤ ǫ.

We show that F is differentiable and F ′(x) = f(x). Fix x and let us denote
f(x) = α. In what follows when we integrate α over an interval, it is under-
stood that we are talking about the constant function identically equal to
α on that interval. Also all the points appearing below are in the interval [a.b]

Let ǫ > 0. We exhibit δ > 0 so that

0 < y − x < δ ⇒ |F (y)− F (x)

y − x
− α| < ǫ.

and

0 < x− y < δ ⇒ |F (y)− F (x)

y − x
− α| < ǫ.

This will prove the stated result. Do not worry, if your point x = b then first
implication can not arise and when x = a the second can not. We take δ > 0
so that

y ∈ [a, b]; |y − x| < δ ⇒ |f(y)− α| < ǫ.

Note that x is fixed and f(x) is named α. So the above is possible by
continuity of f . For any y > x, we have

F (y)− F (x) =
∫ y

x
f(t)dt;

∫ y

x
αdt = α(y − x).

|F (y)− F (x)

y − x
− α| = |

∫ 1

y − x

∫ y

x
[f(t)− α]dt| ≤ 1

y − x

∫ y

x
|f(t)− α|dt.

If |y−x| < δ then for every t ∈ [x, y] we have |t−x| < δ so that the integrand
above is at most ǫ and so the integral is at most ǫ(y − x) showing what we
wanted.

Similar computation yields the result for 0 < x− y < δ.
This completes proof of (i).

Proof of (ii). First we observe the following. Given any partition P , there
is a selection s so that G(b) − G(a) = R(P, f, s). This will complete proof
as follows. Take a sequence of partitions Pn with ||Pn|| → 0. For each n, get
selector sn for Pn as claimed above. Then proof is completed by noting

R(Pn, f, sn) →
∫

f ; R(Pn, f, sn) = F (b)− F (a) for all n.

So let
P = {a = a0 < a1 < a2 < · · · < ak = b}
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and let us get selection s as claimed. For each i let xi ∈ (ai, ai+1) be given
by the MVT to satisfy

G(ai+1)−G(ai) = f(xi)(ai+1 − ai).

This is the selection s. then

G(b)−G(a) =
k−1
∑

i=0

[G(ai+1)−G(ai)] =
∑

f(xi)(ai+1 − ai) = R(P, f, s).

This completes proof of (ii)

Proof of (iii): suppose that there are two functions G1 and G2 having the
same derivative f . Then G1 − G2 has zero derivative and hence is a con-
stant in the interval (a, b). Since G1 −G2 is continuous on the interval [a, b]
and is a constant in the interval (a, b) it must be constant in the interval [a, b].

This completes proof of the fundamental theorem.

We have excellent tools before us to evaluate integrals and also put them
to use. sometimes we use a notation as follows:

∫

f = F without mentioning
any interval [a.b]. We use the same variable x for both f and F . This is to
be interpreted as saying that F is a primitive for f . It simply means that
over a ‘meaningful’ interval F ′ = f . Thus if you have two numbers a < b in

this interval then
b
∫

a
f(x)dx = F (b)− F (a).

I assume that you have come across the following in high school and so go
over them fast to reach new and interesting things. If you did not go through
them in high school or if you do not remember, then you should convince
yourself about their truth. Do not take anything for granted.

∫

xn =
xn+1

n+ 1
.

∫

xadx =
xa+1

a+ 1
if a 6= −1.

We have explained the calculation of Archimedes for calculating
1
∫

0

x2dx. It

follows exactly the upper and lower sums. It would be a nice exercise to
calculate

∫

xn for positive integers n, following the same idea.
∫

exdx = ex, x ∈ R.
∫ 1

x
dx = log x, x > 0.

∫

cosxdx = sin x.
∫

sin xdx = − cos x.
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∫

sinh xdx = cosh x;
∫

cosh xdx = sinh x.

∫ 1√
1 + x2

dx = log(x+
√
1 + x2).

∫ 1√
x2 − 1

dx = log(x+
√
x2 − 1) |x| > 1.

∫ 1

−
√
x2 − 1

dx = log(x−
√
x2 − 1) |x| > 1.

∫ 1

1− x2
dx =

1

2
log

1 + x

1− x
|x| < 1.

∫ 1

1− x2
dx =

1

2
log

x+ 1

x− 1
|x| > 1.

If we write
∫

f = ϕ− ∫

g it simply means

∫ b

a
f(x)dx = ϕ(b)− ϕ(a)−

∫ b

a
g(x)dx.

Walli’s product:

∫ π/2

0

sin0 xdx =
π

2
;

∫ π/2

0

sin xdx = cos 0− cos(π/2) = 1.

If m > 1, then integration by parts gives

∫ π/2

0

sinm xdx =
∫ π/2

0

sinm−1 x(− cos x)′dx

=
∫ π/2

0

cos x (m− 1) sinm−2 x cos xdx

= (m− 1)
∫ π/2

0

sinm−2 xdx− (m− 1)
∫ π/2

0

sinm xdx

so that
∫ π/2

0

sinm xdx =
m− 1

m

∫ π/2

0

sinm−2 xdx.

Thus
∫ π/2

0

sin2m xdx =
2m− 1

2m

2m− 3

2m− 2

2m− 5

2m− 4
· · · 3

4

1

2

π

2
.

∫ π/2

0

sin2m+1 xdx =
2m

2m+ 1

2m− 2

2m− 1

2m− 4

2m− 3
· · · 4

5

2

3
1.
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dividing the first equation by the second

∫ π/2
0 sin2m xdx

∫ π/2
0 sin2m+1 xdx

=
(2m− 1)(2m+ 1)

(2m)2
(2m− 3)(2m− 1)

(2m− 2)2
· · ·

· · · 3× 5

42
1× 3

22
π

2
.

π

2
=

22

1 · 3
42

3 · 5
62

5 · 7 · · · (2m− 2)2

(2m− 3)(2m− 1)

(2m)2

(2m− 1)(2m+ 1)

×
∫ π/2
0 sin2m xdx

∫ π/2
0 sin2m+1 xdx

.

We shall now show that as m → ∞;

∫ π/2
0 sin2m xdx

∫ π/2
0 sin2m+1 xdx

→ 1. (♠)

It will then follow that

π

2
= lim

m→∞

22

1 · 3
42

3 · 5
62

5 · 7 · · · (2m− 2)2

(2m− 3)(2m− 1)

(2m)2

(2m− 1)(2m+ 1)
.

This is called wall’s product.

π

2
= lim

m→∞

22m(m!)2

32 · 52 · · · (2m− 1)2(2m+ 1)
= lim

m→∞

24m(m!)4

[(2m)!]2(2m+ 1)
.

Or
√

π

2
= lim

m→∞

22m(m!)2

(2m)!
√

(2m+ 1)

Or
√
π = lim

m→∞

22m(m!)2

(2m)!
√

(m+ 1/2)

Since
√
m/

√

m+ 1/2 → 1. we get

√
π = lim

m→∞

22m(m!)2

(2m)!
√
m

This is called Walli’s formula for
√
π.

Euler’s constant:
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We know that

1 +
1

2
+

1

3
+

1

4
+ · · · 1

n

increases to infinity as n becomes large. But how large is the above quantity,
in other words, how fast is the above sequence increasing towards infinity?.
Knowledge of integration helps to answer this question. The above quantity
is like log n. We shall show this now. Let

an = 1 +
1

2
+

1

3
+

1

4
+ · · · 1

n
− log n

Observe,

log(k + 1)− log k =
∫ k+1

k

1

x
dx

so that
1

k + 1
≤ log(k + 1)− log k ≤ 1

k

So that

1 +
1

2
+

1

3
+

1

4
+ · · · 1

n
≥

n
∑

1

[log(k + 1)− log k] = log(n+ 1).

an ≥ log(n+ 1)− log n ≥ 0.

Also the same inequality above shows

an − an+1 = log(n+ 1)− log n− 1

n+ 1
≥ 0.

Thus (an) is a decreasing sequence of non-begative numbers and hence con-
verges. The limit is usually denoted by γ, called Euler’s constant.

There is another (essentially same argument as above) argument to show
convergence of (an) and also to see that it is strictly positive. The above
inequalities show

1 ≥ [log 2− log 1] ≥ 1

2
≥ [log 3− log 2] ≥ 1

3
≥ [log 4− log 3] ≥ 1

4
· · · · · · .

Leibnitz’s theorem on alternating series tells that the alternating series with
above terms converges. The sequence an we have is nothing but its partial
sums (not all, a subsequence) and hence converges and this also shows that
the sum is at least 1− log 2.
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Incidentally, no nice alternate description seems to be known to decide
whether γ is rational or not.

some more friends:

There are certain functions which are important and we have not yet met
them. We saw the exponential function, ex and some trigonometric functions;
sin x and cos x. We have also calculated their derivatives.

(sin x)′ = cos x and (cosx)′ = − sin x and hence (cos2 x + sin2 x)′ = 0.
Since this sum of squares equals one at x = 0 we see sin2 x+ cosx = 1. This
also shows

−1 ≤ sin x ≤ 1; −1 ≤ cosx ≤ +1.

Not to interrupt our plan of meeting more friends, we assume the following
fact and prove it later. This shows that the functions sin and cos are just as
you know in high school.

These functions, sin x and cos x, are periodic of period 2π,

where π is the area of the circle of radius one. (♠).

and also π/2 is the least positive number where cosx = 0.

Thus the function sin x is one-to one strictly increasing function on the inter-
val [−π/2, +π/2] onto [−1,+1]. general theory regarding continuous func-
tions tells us that the inverse function g is continuous on the interval [−1,+1]
onto [−π/2, +π/2] Also it is differentiable at every point in (−1,+1) with
derivative given by the general formula as follows. temporarily denote by f
the sin function on the interval [−π/2 + π/2] we see f(g(y)) = y for each
y ∈ [−1,+1]. Since the derivative of f is non zero at every point in (−1, 1)
general theory tells us g is differentiable in (−1, 1) and

f ′(g(y))g′(y) = 1;

so that

g′(y) =
1

cos g(y)
=

1
√

1− sin2(g(y))
=

1√
1− y2

.

where in the last equality we used that g is inverse of sine function.

Usually g(y) is denoted by sin−1(y) (inverse of the sine function) or
arcsin y (arc whose sine is y, here arc refers to the angle subtended at the
centre by the arc). Since cos is positive in the interval [−π/2,+π/2] we have
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taken positive root in the second equality above.

Of course, the sine function is on-to-one in the interval [+π/2, 3π/2]
onto [−1,+1]. we could have defined the inverse sine function so that it
takes values in this interval. Nothing wrong with it, it would also be differ-
entiable on (−1,+1). Of course it would then be decreasing and derivative
will be negative — cosine function is negative in the interval [+π/2, 3π/2].

Thus several ‘branches’ are possible for the inverse function. We settled
on one branch, that is all. This is the branch usually one takes.

The cosine function is not one-to-one on the interval [−π/2, +π/2]. But
it is one to one, strictly decreasing on [0, π] onto [−1, 1]. Its inverse h is
defined on the interval [−1,+1]; takes values in [0, π],; strictly decreasing
and continuous; differentiable on (−1, 1) with derivative

h′(y) =
1

− sin(h(y))
=

−1
√

1− cos2 h(y)
=

−1√
1− y2

.

Usually, h(y) is denoted by cos−1(y) (inverse of the cosine function) or
arccos x (arc whose cosine is y).

Again as in the case with sine function, several branches of the inverse
function are possible for the cosine function too.

The function tan x is defined as sin x/ cos x. Of course, this is not defined
on all of R. This is not defined precisely at those points where cosx = 0.
It is defined at all other points. It is one-to-one on (−π/2, +π/2) onto
(−∞,+∞), strictly increasing and differentiable. If −π/2 < x < 0, sine is
negative and since cos x approaches zero as x approaches −π/2 we see that
tan approaches −∞ as x approaches −π/2. similarly it approaches +∞ as
x approaches +π/2.

(tan x)′ =
1

cos2 x
.

Thus inverse g of the tangent function is defined on all of R, continuous,
increasing, takes values in (−π/2, +π/2), it is differentiable and

g′(y) =
1

cos2(h(y))
=

1

1 + tan2(h(y))
=

1

1 + y2
.

Usually g(y) is denoted tan−1(y) or arctan y.
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We can define cot x, sec x and cosec x. Since there is nothing we can add
to what you know from high school, we shall not continue in this direction.
But you should recollect them, use composition rule for differentiation to
calculate their derivatives.

The trigonometric functions are also called circular functions because
(cos x, sin x) form points on circle. we shall now introduce hyperbolic func-
tions,

cosh x =
ex + e−x

2
. sinh x =

ex − e−x

2
x ∈ R.

These are called hyperbolic cosine and hyperbolic sine respectively, because
the points (cosh x, sinh x) lie on the hyperbola y2 − x2 = 1.

cosh 0 = 1; cosh x ≥ 1;

cosh(−x) = cosh x; lim
x→±∞

cosh x = ∞.

sinh 0 = 0; sinh(−x) = − sinh x;

lim
x→−∞

sinh x = −∞.; lim
x→∞

sinh x = ∞.

cosh(x+ y) = cosh x cosh y + sinh x sinh y.

sinh(x+ y) = sinh x cosh y + cosh x sinh y.

(sinh x)′ = cosh x; (cosh x)′ = sinh x.

The hyperbolic sine is strictly increasing and has range all of R. Hence
its inverse map is defined on all of R, is differentiable. Here we can calculate
explicitly the inverse map.

Similarly, hyperbolic cosine is strictly increasing on [0,∞) and has range
[1,∞). Thus its inverse is defined on [1,∞) with values in [0,∞) and is
continuous. It is differentiable on (1,∞). We can explicitly solve for the
inverse. Of course, cosh is one to one on (−∞, 0] onto [1,∞) and so we can
think of another branch of its inverse. We shall not take it for inverse.

cosh−1(y) = log
(

y +
√

y2 − 1
)

; sinh−1(y) = log
(

y +
√

y2 + 1
)

.

By chain rule you can calculate their derivatives too.

Fine tuning of integral:
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(i) After defining upper sums; lower sums; integrability and after show-
ing that very continuous function on a closed bounded interval is integrable,
we have been specializing to continuous functions. However, one does come
across functions which are not continuous or functions which are bounded
continuous but defined only on an open interval.

For example the function sin(1/x) defined on the open interval (0, 1),
continuous and bounded. We, at this moment, are unable to talk about inte-
grability because we did everything on a closed bounded interval. This was
only done to fix ideas and have concrete picture in mind. Discussing open
intervals poses no serious problems. This we do first.

(ii) so let us take a bounded interval (a, b) and a bounded function f on
this interval. As earlier, partition is a finite sequence of points

P = {a = a0 < a1 < a2 < · · · < ak = b}.

Given a partition P we define U(P, f) and L(P, f) the upper and lower sums
as earlier; just that for the first and last interval we take sup and inf only
over (a, a1] and [ak−1, b). As earlier, we say that f is Riemann integrable
if Sup of all lower sums equals inf of all upper sums and in that case, the
common value is called integral of f and is denoted

b
∫

a

f ;
∫ b

a
f(x)dx.

The fact that every lower sum is smaller than every upper sum is obvious
and also the fact that upper sums decrease whereas lower sums increase as
the partition becomes finer. It is also easy to show that f is integrable iff for
any given ǫ > 0, we can get a partition P so that U(P, f)− L(P, f) < ǫ..

(iii) We can show that a bounded continuous function is integrable. Ear-
lier we used uniform continuity, but now this is no longer immediately pos-
sible because continuous function on an open interval need not be uniformly
continuous. However, we can take advantage of the fact that the function is
bounded.

Let |f(x)| ≤ M for all x ∈ (a, b). Let ǫ > 0. Let us choose δ > 0 so
that 2Mδ < ǫ/4. Note that on any subinterval, sup minus inf of f is at most
2M . Thus in particular, if you consider the interval (a, a+ δ] or the interval
(b− δ, b] you see that sup minus inf over that interval times delta is smaller
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than ǫ/4.

The function being uniformly continuous on [a+ δ, b− δ], get a partition
P1 of this [a + δ, a − δ] so that U(P1, f) − L(P1, f) < ǫ/4. The partition P
for (a, b) is simply the points in P1 along with a at the beginning and b at
the end. Thus the first interval of this partition is (a, a + δ]. and the last
interval of this partition is (b− δ, b]. It is easy to see that

U(P, f)− L(P, f) <
ǫ

4
+

ǫ

4
+

ǫ

4
< ǫ.

(iv) it is interesting to see that in the notation for integral,
b
∫

a
there is

nothing to show wether we have open interval or closed interval. Since area
of a line is zero, it makes no difference whether you include the lines at the
end points or not, in calculating the area under the curve.

More precisely, suppose f were actually continuous on [a, b] and you ig-
nore it and consider the function only on (a, b) and calculate the integral.
You get the same answer as you would get when you calculated for the closed
interval. The proof is very simple, for each partition whether you calculate
the sums over (a, b) or [a, b] you get the same answer. After all, the only
difference is the end intervals and there continuity of the function tells you
whether you include end point or not you get the same value for the sup or inf.

(v) You can also show that selections (given a partition, select points
from each partition interval) and Riemann sums also lead to the value of the
integral, even on an open interval. In fact, whenever ||Pn|| → 0 the sums
R(Pn, f, sn) converge to the integral whatever be the selection sn for Pn.

(vi) The idea in the above argument has something more to offer. sup-
pose that f is a bounded function on [a, b] but only known to be continuous
on (a, b). Is it integrable? Yes, the argument above show that it is integrable
and equals the integral of f over the open interval (a, b).

(vii) In fact one can go further. Suppose f is a bounded function de-
fined on (a, b) and is continuous at all but finitely many points. then f is
integrable and the integral equals integral of f on the complement of this
finite set. Note that complement of this finite set is made up of finitely many
disjoint open intervals, so from the above, f is integrable on each of these
intervals, so calculate them and add them up. This is the meaning of integral
of f over the complement of the finite set.
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Carefully understand the statement above. Firstly, we said that f is inte-
grable. Secondly, we said to calculate the integral, you do on the complement
of the finite set. the first statement is easy to see by improvising the above
idea, enclose each of the finitely many discontinuity points in small intervals
and get partitions of the remaining parts carefully and put all together to
get a partition P of (a, b) to see U(P, f)−L(P, f) < ǫ. The second statement
also follows from this, but its importance is that it gives us a method of
calculating the integral.

(viii) Actually all this is a reflection of the fact that finitely many lines
have area zero. of course, countably many lines also have area zero and even
if f has countably many discontinuity points the result must be true. Yes, it
is indeed so. But we shall not discuss. But are they the only functions which
are integrable.? No, there are more.

(ix) The properties of integrals that we verified for continuous functions
hold good for integrable functions. For example, if f and g are bounded
integrable functions on (a, b) (or [a, b]) then so is their sum f + g and
∫

(f + g) =
∫

f +
∫

g. Also 7f is integrable and
∫

(7f) = 7
∫

f .

In other words a fine tuning is possible and would make the theory bet-
ter and complete. But if you understand the story of functions with finitely
many discontinuities and how to calculate integrals, ti would suffice for a first
course.

You must keep in mind that all this story we developed is for bounded

functions on bounded intervals. if the function is unbounded, you can imme-
diately see that this procedure is useless. There one interval of the partition
where the sup is +∞ or there is a partition interval where the inf is −∞.
In the first two cases we get ±∞ for each partial sum. However when the
last case occurs, we can not even define Riemann sum we will be involved in
∞−∞ for which we have not given any meaning.

When the interval is infinite, then also we enter a similar situation.

Most of the integrals are of this kind, that is, either the function is un-
bounded or the interval of integration is unbounded. We deal with such
situations next.
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