
Cantor intersection Theorem:

One way to get numbers is to produce convergent sequences. Thus we can
regard a convergent sequence as defining that point to which it converges.
Here is another way of producing numbers. Any decreasing sequence of closed
bounded intervals with length decreasing to zero would all have exactly one
common point. Thus such a sequence of intervals can be regarded as defining
that unique number which is common to all those intervals.

Fact: Let [an, bn] for n ≥ 1 be a sequence of intervals, where an, bn are
all real numbers. Suppose that the sequence of intervals is decreasing, that
is, [an+1, bn+1] ⊂ [an, bn] for n ≥ 1. If bn − an → 0, then there is exactly one
point which is common to all these intervals.

Proof: First note the following. If [a, b] ⊃ [c, d], then both c and d are in
the interval [a, b] so that a ≤ c ≤ d ≤ b. Thus we have

a1 ≤ a2 ≤ a3 · · · · · · ≤ b3 ≤ b2 ≤ b1.

Thus any bi is an upper bound for the increasing sequence (an). So an → s
where s is supremum of the sequence (an). In particular an ≤ s for each n.
Moreover, each bi being an upper bound for the sequence (an) we see that
s ≤ bn for each n. In other words an ≤ s ≤ bn for each n, showing that the
point s is in all the intervals. Let x be any other point, say s < x. since
bn − an → 0, fix k large so that bk − ak < (x − s)/4. Since s ∈ [ak, bk] if
x ∈ [ak, bk] then we would have x− s ≤ bk − ak, contradiction.

Just like Cantor diagonal argument which we used to show uncountability
of real number system, the above argument is also powerful and appears in
several contexts.

Cauchy sequences:

How do we know if a given sequence (xn) converges? One way is to take
each real number x and see if xn → x. If the answer is yes for some num-
ber x, then stop and say that the sequence converges. If the answer is no
for every x, say that the sequence does not converge. But it is difficult to
test every x. Moreover, in this procedure we are looking outside the sequnece.

Is there a way to tell whether the sequence converges, by just looking at
the terms of the sequence. Yes. Here it is. If a sequence converges, then the
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terms are getting close to something. And hence, they must be getting close
among themselves. the interesting point is that if the terms of a sequence are
getting closer among thmeselves, then the terms are actually getting close to
some thing.

Fact: A sequence (xn) converges iff the following holds. Given ǫ > 0,
there is an integer n0 ≥ 1 such that |xm − xn| < ǫ for every n,m ≥ n0.

Proof: Let xn → x. Let ǫ > 0. Get n0 so that |xn − x| < ǫ/2 for n ≥ n0.
Clearly, if m,n ≥ n0 we have

|xm − xn| ≤ |xm − x|+ |x− xn| ≤
ǫ

2
+

ǫ

2
= ǫ.

Conversely, suppose that the sequence satisfies the given condition. We ex-
hibit a number x and show that xn → x.

Step 1: Take ǫ = 1 and get n1 so that |xm − xn| < 1 for m,n ≥ n1, in
particular, we have |xn1

−xn| < 1 for every n ≥ n1. Thus if c1 = xn1
− 1 and

d1 = xn1
+ 1, then the interval [c1, d1] includes all points xn of the sequence

with n ≥ n1.
In general, take ǫ = 1/k and get nk so that |xm−xn| < 1/k for m,n ≥ nk.

Thus if ck = xnk
− 1/k and dk = xnk

+1/k, then the interval [ck, dk] includes
all points xn of the sequence with n ≥ nk.

Observe that the interval [ck, dk] has length 2/k so that lengths of thses
intervals are converging to zero. However,these intervals may not be decreas-
ing. So let us put

ak = max{c1, c2, · · · , ck} bk = min{d1, d2, · · · , dk},

so that
[ak, bk] = [c1, d1] ∩ [c2, d2] ∩ · · · ∩ [ck, dk].

Of course, it is not clear if this is meaningful, for example, is ak ≤ bk? Yes,
in fact if n is larger than all of n1, n2, · · · , nk, then xn is in all the intervals
[c1, d1], · · · , [ck, dk] showing that ak ≤ bk. Not only that, the interval [ak, bk]
contains all xn with n larger than pk = max{n1, n2, · · · , nk}. By construction,
these intervals are decreasing and lengths converge to zero. Thus Cantor the-
orem applies to provide us with a unique point x.

Step 2. The sequence (xn) converges to x. To see this, let ǫ > 0. Choose
k so that [ak, bk] ⊂ (x− ǫ, x+ ǫ). For example, as soon as bk − ak < ǫ/4 this
will be true because x ∈ [ak, bk]. But then for all n > pk we have xn ∈ [ak, bk]
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and hence xn ∈ (x− ǫ, x+ ǫ). This completes the proof.

The property of sequences that appeared in the above result is important
enough to warrant a name.

Definition: A sequence (xn) is Cauchy sequence if the following holds.
Given ǫ > 0, there is n0 so that |xm − xn| < ǫ for all m,n ≥ n0.

This means that terms of the sequence are getting closer among them-
selves. Given any closeness (that is, ǫ > 0) there is a stage after which any
two terms of the sequence are close up to the given ǫ. With this notation,
the fact observed above can be restated as follows:

Fact: A sequence converges if and only if it is a Cauchy sequence.

This is one way to verify the convergence of a sequence. Just show it
is Cauchy sequence. Sometimes, this is much simpler than searching for a
number and showing that the sequence converges to that number. This is
precsiely the point. Without knowing where it converges, we will be able to
conclude that it converges. sometimes the limit may be a number that we
have not seen before, that is, a new number is discovered.

more on lub axiom:

We used the lub axiom to show that every bounded monotone sequence
converges, which helped in the Cantor intersection theorem, which, in turn,
lead to the conclusion that Cauchy sequences converge. Actually all these
statements are equivalent. You may feel that the lub axiom is unnatural, or
you do not like it. But you may like one of the consequences that we just
mentioned or you may feel it is more natural. Then you can take that as an
axiom in place of the lub axiom. We make it precsie now. You can ignore
this section, its intent is exactly what I said just now, nothing more.

Fact: Let us delete the lub axiom from the set of axioms for real number
system. Instead, assume the following.

If [an, bn] for n ≥ 1 is a decreasing sequence of intervals
and if bn − an ≤ 1/n, then

there is exactly one point common to all these intervals

Conclusion: The lub axiom holds.
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Proof:
First observe that the hypothesis implies the Archimedean property. This

is because we know that the intervals [−1/(2n),+1/(2n)] all contain the point
zero and hence can not contain any other point. Thus, given x > 0 we see
that the number 1/x is outside one of these intervals which provides you an
integer 2n larger than x.

Let S be a non-empty set which is bounded above. Need to exhibit a
number s which is an upper bound of S and any other upper bound of S is
larger than s.

We take an upper bound b of S and a point a ∈ S. Thus the interval
[a, b] has points of S. We denote this interval as [a1, b1]. That is, set a1 = a
and b1 = b. Note that

[a1, b1] contains points of S and no point of S is larger than b1.

Consider the two intervals (left half) [a1, (a1 + b1)/2] and (right half)
[(a1 + b1)/2, b1]. If right half has points of S take it as [a2, b2]. Otherwise
take the left half as [a2, b2]. Since [a1, b1] has points of S, we conclude that
if the right half does not contain points of S, then left half must necessarily
contain points of S. Thus we have

[a2, b2] contains points of S and no point of S is larger than b2.

If we have obtained [ai, bi] for 1 ≤ i ≤ k − 1 such that for each i ≤ k − 1

(i) The interval [ai, bi] is either the left half or right half of [ai−1, bi−1].
(ii) [ai, bi] contains points of S and no point of S is larger than bi.

Then, we consider the right half of [ak−1, bk−1] if it contains points of
S, otherwise consider the left half and designate it as [ak, bk]. Then the
condition above holds for i = k also showing that we can continue construct-
ing a sequence of intervals satisfying the above two conditions for every i.
Eventhough their lengths may not satisfy the required hypothesis, we can
get a point common to all these as follows. The n-th interval has length
(b − a)/2n−1. Using 2n > n and Archimedean property get k so that k-th
interval has length smaller than 1 and consider only intervals after this stage.
You see the hypothesis on lengths is satisfied.

so that we have exactly one point s common to all therse in tervals.

We shall now show that s is an upper bound of S. Let x > s. So fix i
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such that x 6∈ [ai, bi]. Of course, s is in this interval, x is not, x > s will
force x > bi. But no point of S is larger than bi. Thus x 6∈ S. Similarly, if
x < s, then you get an i such that, x < ai. Since there are points of S in
this interval, x can not be an upper bound of S. Thus s is lub.

Fact: Let us delete the lub axiom from the axioms of real number system.
Instead, assume the following:

Every increasing sequence bounded above converges.

Conclusion: The lub axiom holds.

Proof: Again, we start showing that Archimedean property holds. Since
the sequence (xn = n; n ≥ 1) is increasing. It can not converge because for
any x, the interval (x− 1/4, x+1/4) can contain at most one integer. Thus,
(xn) is not bounded above. In other words given any x > 0, there is n such
that n > x.

Now we take a non-empty set S which is bunded above. Proceed as in
the earlier proof, get [ai, bi]. Observe that the sequence (ai) is increasing and
bounded above; each bi is an upper bound. Use hypothesis to get its limit s.
You only need to note that ai ≤ s ≤ bi for each i to conclude that s is lub of S.

Fact: Let us delete the lub axiom from the axioms of real number system.
Instead, assume the following:

(i) Archimedean property holds and (ii) every Cauchy sequence converges.

Conclusion: The lub axiom holds.

Proof: Again start with a non-empty set S bounded above and do the
construction to get intervals [aibi] for i ≥ 1. We only need to show that (ai)
is a Cauchy sequence. If this is done it converges to a pont s and one can
show that ai ≤ s ≤ bi for all i and then conclude that s is lub of S. But
length of the k-th interval is (b− a)/2n−1 and by Archimedean property this
sequence of lengths converges to zero. Note that {ai : i ≥ n} ⊂ [an, bn].
These two comments can be used to show that (ai) is a Cauchy sequence.

discussion of HA:

Q1: x1 ≥ x2 ≥ · · · ≥ xn ≥ 0 and y1 ≥ y2 ≥ · · · ≥ yn ≥ 0. Need to show
n
∑

xiyi ≥ (
∑

xi)(
∑

yi).
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Since (xi − xj) and (yi − yj) have the same sign we have
∑

i,j

(xi − xj)(yi − yj) ≥ 0, that is,

∑

i,j

xiyi +
∑

i,j

xjyj ≥
∑

i,j

xiyj +
∑

i,j

xjyi.

The two terms on left side are same, each equals n
∑

xiyi. The two terms on
right side are also equal, each equals (

∑

xi)(
∑

yi).

You can also prove by induction. For n = 1 it is trivial. You can try
n = 2 also just to understand. Assume for n.

(
n+1
∑

1

xi)(
n+1
∑

1

yi) = (
n
∑

1

xi)(
n
∑

1

yi) + xn+1(
n
∑

1

yi) + yn+1(
n
∑

1

xi) + xn+1yn+1.

≤ n
n
∑

1

xiyi +
n
∑

1

(xiyn+1 + yixn+1) + xn+1yn+1

≤ n
n
∑

1

xiyi +
n
∑

1

(xiyi + xn+1yn+1) + xn+1yn+1

Q 18. any two non-empty open intervals have the same number of elements.

Given (a, b) with (a < b) establish bijection with (0, 1) by the map
F (x) = (x− a)/(b− a).

Q 23. To solve x2 − x− 1 = 0.

We setup, x0 = 1 and for n ≥ 1, xn = 1 + (xn−1)
−1 If 3/2 ≤ xn−1 ≤ 2,

then 1 + 1/2 ≤ 1 + (xn−1)
−1 ≤ 1 + 2/3.

|xn+1 − xn| =
∣

∣

∣

∣

∣

1

xn

− 1

xn−1

∣

∣

∣

∣

∣

=
|xn − xn−1|
xnxn−1

≤
(

2

3

)2

|xn − xn−1|.

Thus, letting c = 4/9, we have |x3 − x2| ≤ c|x2 − x1|; |x4 − x3| ≤ c2|x2 − x1|
and |x5 − x4| ≤ c3|x2 − x1|. More generally, letting |x2 − x1| = A

|xn − xn−1| ≤ cn−2A.

This will help showing that (xn) is Cauchy sequence. Indeed, take any N ,
then for m > N

|xn − xN | ≤ |xN+1 − xN |+ |xN+2 − xN+1|+ · · ·+ |xn−2 − xn−1||xn−1 − xn|
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≤
?

∑

N−1

ciA ≤
∞
∑

N−1

ciA ≤
(

A

1− c

)

cN−1.

If you make this last quantity small, by good choice of N , then any two terms
after the N -th stage are small too.

Q 24. If you have a rational m/n, as you implement the algorithm for
the expansion, each time you have smaller remainder than the previous one
and sonn you will hit one and stop the process. Conversely, if the expansion
is terminating, then inducting on its length, you can show it is rational.

Q 28. You already know
∑

ai
√
n = 0, whatever be n. Thus it suffices to

show that
∑

ai[
√
n+ i−√

n] → 0. Each term converges to zero and we have
a fixed number of terms. You can use sum of sequences.

limit points:

it is, in general, difficult to decide whether a sequence converges or not.
Even if we argue that it converge, it is difficult, in general, to find out the
number to which it converges. If the sequence does not converge what can we
do. Well, if it is not converging, then it is not staying close to any number;
it may probably be going close to several numbers. For example consider the
sequence: +1,−1,+1,−1, · · ·. It does not stay near any number, but it goes
to +1 infinitely often and also goes to −1 infinitely often,. Here is another
example.

1

2
,

2

3
,

1

4
,

5

4
,

1

8
,

9

8
,

1

16
,

17

16
,

1

32
,

33

32
,

1

64
,

65

64
, · · · · · ·

This sequence visits as close to zero as you please infinitely often, but does
not stay there; it visits as close to one as you please infinitely often. Such
numbers where the sequence goes close infinitely often are called limit points
of the sequence. The interesting point is that for bounded sequences we may
not be able to talk about limit unless the sequence converges; but we can
always talk about limit points. The useful aspect is that we can hang on to
the largest and smallest limit points to get a feel of how the sequence be-
haves. If both are same, that is, if there is only one limit point for a bounded
sequence, then the sequence necessarily converges to that point.

Definition: Let (xn) be a bounded sequence. A number a is a limit point
of the sequence if the following holds. Given any ǫ > 0, for infinitely many
values of n we have xn ∈ (a− ǫ, a+ ǫ). If L denotes the set of all limit points
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of the bounded sequence, then the following fact shows that L is a non-empty
bounded set. Its supremum is called the limit superior or limsup of the se-
quence. The infimum of L is called the limit inferior or liminf of the sequence.

Fact: Let (xn) be a bounded sequence. Then L, the set of its limit points
is non-empty and bounded.

Proof: Since the sequence is bounded, suppose that c ≤ xn ≤ d for all
n. If you take a < c, then for ǫ = (c − a)/4 we see that (a − ǫ, a + ǫ) does
not contain any point of the sequence. That no number smaller than c can
be a limit point. Similarly, no number larger than d can be a limit point.
Thus L is bounded. We now show that L 6= ∅. This is a standard argument,
imitating Cantor intersection theorem.

Denote a1 = c, b1 = d. Let [a2, b2] be the left half or right half whichever
contains xn for infinitely many n. Since the entire sequence lives in [a1, b1],
one of these two halfs must contain infinitely many terms of the sequence.
Of course, both may contain infinitely many terms of the sequence, in which
case, you take the left half. If we have obtained intervals [ai, bi] for 1 ≤ i ≤
k such that each interval is either left half or right half of the preceeding
interval and each interval contains xn for infinitely many n, then we define
[ak+1, bk+1] as the left half of [ak, bk] if it contains infinitely many terms of
the sequence; otherwise we degine it to be right half. These intervals have
lengths decreasing to zero and so have exactly one number a in common.

We show that a is a limit point of the sequence. Take ǫ > 0. Take k so
that [ak, bk] ⊂ (a − ǫ, a + ǫ) (this happpens if, for example, bk − ak < ǫ/4).
By construction of the intervals we see that (a− ǫ, a+ ǫ) contains infinitely
many terms of the sequence. This completes the proof.

Fact: lim inf xn ≤ lim sup xn.
This is easy.

Fact: If a is a limit point of (xn), then there are integers

1 ≤ n1 < n2 < n3 < n4 < · · ·

such that if we define

y1 = xn1
, y2 = xn2

, y3 = xn3
, · · ·

then yi → a.
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Proof: Since infinitely many terms of the sequence are in the interval
(a− 1, a+1), take n1 so that xn1

∈ (a− 1, a+1). Using the same argument,
pick n2 > n1 so that xn2

∈ (a−1/2, a+1/2). Having got n1 < n2 < · · · < nk−1

so that xni
∈ (a − 1/i, a + 1/i) for 1 ≤ i ≤ k − 1; using the fact that in-

finitely many terms of the sequence are in the interval (a−1/k, a+1/k) pick
nk > nk−1 so that xnk

is in this interval. This will do. Observe that all the
(yi) are in (a− 1, a+1); all but the first are in (a− 1/2, a+1/2); all but the
first two terms are in (a− 1/3, a+ 1/3) etc. This shows yi → a.

on limits and convergence:

I have presented the concept of convergence as a way to discover new
numbers, like e. Actually, this concept is much more basic, much more
fundamental than I made it out. Everything that we do (well, almost ev-
erything) depends on this limit concept — continuous functions, derivative,
integral etc. Even to define functions rigorously we resort to infinite sums,
essentially we consider polynomials of infinite degree. Limits arise in all dis-
ciplines where maths makes its appearance.

Of course, you are having a course in physics and know how it appears.
Right now, you are probably using derivatives and integrals which are defined
through limits. Even if you want to discuss about the air in this lecture hall,
you will not write down equations of motion for each of the paticles. Instead
you will try to understand the question when there are only n particles and
then take limits.

If you are doing computations and providing an algorithm for finding root
of an equation or for finding minimum of a cost function over a certain re-
gion, typically your algorithm would give an iterative procedure and runs like
this: start with x1, do some thing to end up with x2, then keep on repeating
the instructions to get x2, x3, · · ·. Hope is that you will be heading to the
quantity you are looking for.

Even in biological sciences it makes its appearance in an overwhelming
manner. For example, you might be interested in: what happens to the
species in the long run? (do they survive or become extinct) what happens
to the mutant gene, in the long run, over generations (will it spread to the
whole population?). Of course, most pertinent question is: what happens in
the long run if we keep on using available natural resources at the current
rate!
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The rigorous development of Calculus was initiated by Newton and Leib-
nitz. But they were using infinitesimals, very small quantities etc. It was
Cauchy and Bolzano who provided clear meaning of limits, though, of course,
Euler, Fourier, Gauss, Poisson and several others before them already used
infinite series and products. Did we not see that already Archimedes used
the concept of limit, without saying so.

You should pay attention to this concept and think about it till you feel
comfortable and till the concept appears natural to you.

The main difference between maths and reality is the following. In maths
we can think of the following sequence: First trillion terms are zero and all
later terms are equal to one. Obviously, this sequence is converging to one,
but looking at the first trillion terms gives no indication of this fact. How-
ever, such a thing does not occur in nature. That is, sequences that arise in
most of the practical problems do give an indication of what is happening —
with its first ten thousand or so terms. This can be considered as the gift of
nature to us.

series:

By virtue of the rules regarding real numbers, we can add any finitely
many real numbers. But many times, we do see that infinitely many real
numbers can be ‘theoretically’ added, that is, we feel that the sum must be
a particular number.

For example, let us consider adding

1 +
1

2
+

1

22
+

1

23
+

1

24
+

1

25
+

1

26
+ · · · .

Of course, we do not have time to add all these infinitely many numbers one
by one. But, if we do start adding, we get

1, 2− 1

2
, 2− 1

22
, 2− 1

23
, 2− 1

24
, 2− 1

25
, 2− 1

26
, · · · .

Eventhough we are unable to add all the infinitely many numbers above, we
see that the successive sums are nearing 2. To put it differently, it seems
reasonable to define the infinite sum to be 2. This is what we are going to
do now.

Definition: A series is simply an expression a1 + a2 + a3 + · · · or ∑

an or
∑

n≥1

an.
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Here the ai are numbers. Actually, as with sequences, we are only talking
about series of real numbers. The number an is called the n-th term of the
series.

There is no meaning yet for a series. Here are some examples of series:

1 +
1

2
+

1

22
+

1

23
+

1

24
+

1

25
+

1

26
+ · · · .

1 + 1 + 1 + 1 + · · · .
1 + (−1) + 1 + (−1) + 1 + (−1) + 1 + (−1) + · · · .

This series is usually written as

1− 1 + 1− 1 + 1− 1 + 1− 1 + 1 · · · .

1 +
1

22
+

1

32
+

1

42
+

1

52
+ · · · .

The first series appears meaningful and we should get the number 2, if
we add all those terms. It is not obvious, but true and will be proved, that
the last series also has a meaning.

However, the second series has the following sums if we keep on adding
the terms: 1, 2, 3, 4, 5, 6, 7, · · · . The value of the sum, as we keep on adding,
exceeds anything that you can think of — remember the Archimedean prin-
ciple, namely, given any number x, after some stage all the integers are larger
than x. Since there is a particular direction in which we are going — on the
number line — if we keep on and on adding, it is tempting to say that the
sum is infinity. Yes, it is convenient and we shall do that later. This needs
introduction of funny animal +∞, and for symmetry another animal −∞.
But remember, it is not just a matter of introducing these characters into the
drama, we should also agree upon the rules as to what we can and cannot
do with these new things. Otherwise, there may come a stage when we do
not understand each other.

The third series is interesting. If we keep on adding we get 1, 0, 1, 0, 1, 0, · · ·.
The addition of successive numbers is not leading us away, in a particular
direction or to a particular number. The sums oscillate between zero and
one. In any case, if we keep on adding the sums are not approaching any
number.

Thus a series is simply a sugggestion to add certain numbers. Whether
we can really add or not is a different matter. Sometimes we have a feeling
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as to what we should get if we really add. We shall make this feeling precise
(Most mathematical definitions are just precise way of expressing some feel-
ing we have).

Definition: Let
∑

an be a series. We define its partial sums to be the
sequence of numbers,

s1 = a1; sn = a1 + a2 + · · ·+ an n ≥ 1.

We say that the series
∑

an converges if the sequence (sn) converges. If
sn → a, we say that the values of the series is a. We express this by writing
in any of the following ways.

∑

an = a;
∑

n≥1

an = a; a1 + a2 + a3 + · · · = a.

You should keep in mind that we said the value of the series is a. We did
not say the series approaches a or nearly a or close to a etc. It is a.

You should note the distinction between series and sequence. Both have
numbers in a particular order. The order is important in both of them. If
you change the order, it becomes a different thing. In a sequence, we simply
have numbers standing in a line or in a row. In a series, we have numbers
again in a row with a suggestion to add them. This suggestion is shown by
putting the plus sign between the terms. Of course, you should know, by
now, that adding includes subtraction too, adding (−5) is same as subtract-
ing 5. Whether we can execute the suggestion is a different matter and that
is why we made the next definition regarding convergence or value of a series.

So, a sequence is not a series and a series is not a sequence. Of course,
you may think that a series is just a sequence with plus signs between terms,
instead of the commas. This is only a typographical or superficial recognition
— though correct and helps you in remembering, it is not the spirit in which
these concepts are to be understood.

We shall now discuss convergence of some specific series. Of course, there
is no criterion to tell exactly which series converge and which do not. In-
stead, we have several rules that help recognize whether a particular series
converges. These do not cover all possible series you cabn think of, but will
include some important series we come across in practice.

Fact:

1 +
1

2
+

1

22
+

1

23
+

1

24
+

1

25
+

1

26
+ · · · = 2.
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We knew this already. We are lucky, because we could actually calculate all
the partial sums and see what exactly is happening.

Fact: Let
∑

an be a series where each an ≥ 0. If the partial sums are
bounded, then the series converges.

Since the numbers an are positive (non-negative), the partial sums are
increasing and by hypothesis, they are bounded above. So they converge
from a theorem proved earlier.

Actually, for series of positive terms, convergence holds iff the partial
sums are bounded.

Fact: The series

1 + 1 +
1

2!
+

1

3!
+

1

4!
+

1

5!
+

1

6!
+

1

7!
+ · · · .

converges. We have, of course, seen this already earlier.

Fact: Suppose that the series
∑ |an| converges. Then the series

∑

an
converges.

Let sn be the partial sums of the series
∑

an. We show that the sequence
(sn) is a Cauchy sequence. Let ǫ > 0. Let tn be the partial sums of the series
∑ |an|. We know that this sequence (tn) is a Cauchy sequence, because it
converges by hypothesis. So fix n0 so that |tn − tm| < ǫ for n,m ≥ n0. This
n0 does for the sequence (sn) as well because of the following. Let m > n,
then

|sm − sn| = |
m
∑

n+1

ai| ≤
m
∑

n+1

|ai| = tm − tn.

Fact: The series

1± 1

2
± 1

22
± 1

23
± 1

24
± 1

25
± 1

26
± · · · .

converges. Here the signs are left to your choice. You need not follow any
rule, make up your mind at each term whether to put plus sign or minus
sign. The resulting series converges.

This follows from the previous fact. Now you see, it is not possible to
produce the number to which it converges, even if there were a rule in your
putting signs. For example, if you put minus sign for all prime powers and
plus for others, probably I do not know the value.

Fact: Let 0 < r < 1. Take any bounded sequence of numbers (αn). Then
the series

α0 + α1r + α2r
2 + α3r

3 + α4r
4 + α5r

5 + α6r
6 + · · · .
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converges.
If |αn| ≤ c, then the series

∑ |αn|rn has all partial sums bounded by
M/(1 − r) and hence converges. Now apply an earlier fact to see that the
orginal series, which has no modulus signs, also converges.

Fact: Let (αn;n ≥ 0) be a bounded sequence as above. Then the following
series converge.

α0 + α1

1

2
+ α2

1

22
+ α3

1

23
+ α4

1

24
+ · · · .

α0 + α1

1

10
+ α2

1

102
+ α3

1

103
+ α4

1

104
+ · · · .

In particular, if you restrict the numbers to α0 = 0 and αn ∈ {0, 1, 2, 3, · · · , 9}
for n ≥ 1, in the second series, then all the resulting series converge. By tak-
ing particular choices, you can get all the numbers in the interval [0, 1] and
no more.

Actually when we did decimal expansion, I have already used the notion
of convergence. With this discussion, it is now precise. Whatever we have
done there is just showing the convergence of the expansion that we sug-
gested.

Sometimes by observing the proof, we can get a better result.

Fact: Suppose |an| ≤ cn for each n ≥ 1 and the series
∑

cn converges.
Then, the series

∑ |an| converges and hence the series
∑

an also converges.

In fact the partial sums of the series
∑

cn is bounded and hence so are
the partial sums of the series

∑ |an|. This can be used to complete the proof.

***********
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