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While “pleasure” and “enjoyment” are often used to characterize one’s
efforts in science, failures, frustrations, and disappointments are equally, if
not the more, common ingradeints of scientific experience. Overcoming dif-
ficulties, undoubtedly, contributes to one’s final enjoyment of success.

S. Chandrasekhar.

“If people do not believe that mathematics is simple, it is only because
they do not realize how complicated life is.”

John von Neumann

Following is expected from you.

Reach the class room on time.

If you have to be absent, find out what was done — before you
come to the next class. Also let me know why you were absent.

Every week there will be home assignment, please go through, think,
work out, pen solutions and Finally read what you have written.

If you have trouble understanding an exercise, keep reading
again and again. You are sure to succeed.

If an exercise asks you to do something complicated, see
if you can do a simpler thing and build on your success.

Regarding discipline and hard work, stick to your school routine.
Regarding Math, breathe an air of freedom,
start thinking and questioning.
What is a proof? How to communicate your proof to others?

Make a habit to consult books in the library, for example,
Tom Apostol; Robert Bartle; Bartle and Donald Sherbert
Richard Courant and David Hilbert; Courant and Fritz John;
Walter Rudin; George Simmons etc etc, unlimited!

* * * * * *
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1. (a) Show

xy ≤ 1

2
(x2 + y2) x, y ∈ R.

2
√
xy ≤ x+ y x > 0, y > 0.

|x1 + x2 + · · ·+ x97| ≤ |x1|+ |x2|+ · · ·+ |x97|.
(b) If x1 ≥ x2 ≥ · · · ≥ xn ≥ 0 and y1 ≥ y2 ≥ · · · ≥ yn ≥ 0, show that

n
∑

xiyi ≥ (
∑

xi)(
∑

yi).

(c) If x, y, z are non-negative numbers, show that

x2 + y2 + z2 ≥ xy + yz + zx,

(x+ y)(y + z)(z + x) ≥ 8xyz,

x2y2 + y2z2 + z2x2 ≥ xyz(x+ y + z).

2. I have a finite set S. Anand tells me that S has 13 elements, that
is, he has a function f : S → {1, 2, · · · , 13}; one-to-one and onto.
Bhakta tells me that S has 11 elements, that is, he has a function
g : S → {1, 2, · · · , 11}; one-to-one and onto. We all believe that one of
them (at least) must be wrong. They refuse to show us their functions.
How do you convince them that one of them must be wrong?

3. Given a real number x ∈ [0, 1] show that there exists a sequence of
integers ǫ1, ǫ2, · · · , ǫn, · · · each ǫi being one of 0, 1, · · · , 9 such that

x =
ǫ1
10

+
ǫ2
102

+ · · ·+ ǫn
10n

+ · · · .

This sequence (ǫ1, ǫ2, · · ·) is called the decimal expansion of x. It is
usually written as ·ǫ1ǫ2 . . ..
Show that if a number x has two expansions, then one expansion must
‘end’ with all zeros (called terminating expansion) and the other must
end with all 9 (called non-terminating expansion). Further, a number
can not have more than two expansions.

4. We have described decimal expansions of numbers in the interval [0, 1].
To complete the picture, show that every non-negative integer can be
expressed as a finite sum ηk(10)

k + ηk−1(10)
k−1 + · · · + η1(10) + η0

where each ηi is one of the numbers {0, 1, 2 · · · , 9}. Moreover such an
expression is unique subject to ηk 6= 0, in case k ≥ 1. We consider only
such expressions.
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Conclude that if x ∈ R and x ≥ 0, then we can express

x = ηk(10)
k + ηk−1(10)

k−1 + . . .+ η0 + ǫ1(
1

10
) + . . .+ ǫj(

1

10
)j + . . . ,

where each of the numbers ǫ and η are among {0, 1, · · · , 9} (with ηk 6= 0
in case k ≥ 1). If we were to denote 1/10 by z, and ηi by ǫ−i then this
expression takes the pleasing form

x =
ǫ−k

zk
+ · · ·+ ǫ−1

z
+ ǫ0 + ǫ1 z + ǫ2z

2 + · · · .

symbolically, x = ǫ−kǫ−k+1 . . . ǫ0 · ǫ1ǫ2 . . . ǫj . . . .

5. To conclude this circle of ideas about decimal representation, let us
consider once again decimal expansion of numbers x ∈ (0, 1). Say that
a decimal expansion ·ǫ1ǫ2 . . . is recurring if (a block repeats after some
stage) there are integers k ≥ 0 and l ≥ 1 such that

(ǫk+1 · · · ǫk+l) = (ǫk+l+1 · · · ǫk+2l) = (ǫk+2l+1 · · · ǫk+3l) = · · · .

Show that x is rational iff it has a recurring expansion.

6. Recall the axioms for real number system (R,+, ·, <) which we have
adapted.

Axiom set I: for addition (+). Additive identity is denoted 0 and ad-
ditive inverse of x is denoted −x.

Axiom set II: for multiplication (·). Multiplicative identity is denoted
1( 6= 0), multiplicative inverse for x 6= 0 is denoted 1/x.

Axiom set III: says (+, ·) are friendly. x · (y + z) = x · y + x · z.
Axiom set IV: (<). For any x, y exactly one of x < y, x = y, y < x
holds. If x < y and y < z then x < z.
We use x ≤ y as abbreviation for ‘x < y or x = y’.

Axiom set V: says (<) is friendly with (+, ·), namely,
(y < z implies x+ y < x+ z ) and (0 < x, 0 < y ⇒ 0 < x · y) .
Final Axiom set VI: is the least upper bound axiom. Let S ⊂ R be
non-empty. Suppose S has an upper bound — (∃y)(∀x ∈ S)(x ≤ y).
Then S has a least upper bound —
(∃z) {[∀x ∈ S, x ≤ z] & [(∀x ∈ S, x ≤ y) ⇒ z ≤ y] }.
Sometimes this axiom is also called ‘continuity axiom’ or ‘completemess
axiom’, because it tells us that our geometric picture of real numbers
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as a line without breaks/gaps is justified.

Fix such a system (R,+, ·, <) once and for all. Elements of R are called
real numbers.

Here are some questions that need to be answered immediately. (1)
Did we not know real numbers already? (2) What is this business of
axioms? (3) Is there such a system at all? (4) How many such systems
are there? (5) What is the relation of such a system to the real numbers
we have been using all along, in particular, in school?

In a nutshell here are the answers. (1) Yes, we have working knowledge
of real numbers, afterall we have been working with real numbers. We
know real numbers just as we know ‘colour’ or ‘green colour’ and so on.
Think about it. (2) The axioms are the rules we accept once and for
all about numbers. You can be assured that when we have a question
(about real numbers) to be answered, we only use these few rules and
would not make new rules. (3) Yes, such a system exists. We postpone
construction to the end of the course, not because it is difficult,but be-
cause it is boring/dull. We need to collect some bricks, arrange them,
throw in some cement, water and so on. (4) Such a system is unique,
in the sense, if there are two such systems then there is an isomorphism
between them that preserves the operations (+) and (·) as well as the
relation ≤. (5) What we have been using all along is just such a system,
no more and no less. You need not panic. To justfy this, we need to
show that everything we used so far about real numbers can be deduced
from the few axioms listed above. This is interesting, though tiresome
at times. We see some examples in the class, just to convince ourselves.

Show sum and product of rational numbers is rational. Show that sum
and product of two algebraic numbers is algebraic. Do you think this
will be true if algebraic (through out the sentence) is replaced by irra-
tional?

Is there a rational number whose square is 42? Write a rigorous ar-
gument for your answer so that others are convinced after reading it.
(You will not be there to explain what you meant, they only read what

you have written).

4
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Let me remind you that having square roots and cube roots (for positive
numbers) is not our birth-right. Think of the set of rational numbers.
It does not have a number whose square is 3. The set of reals R can
provide a number whose square is 3, but is unable to provide a number
whose square is (-3). Later, you will know that the set of complex
numbers provides this also. Think about these matters till you are
convinced that what we are doing in class needs to be done.

I would also like you to appreciate the subtle point in showing that
there is no one-to-one map on {1, 2, · · · , 11} onto {1, 2, · · · , 13}. You
may start thinking: if I associate with 1, then with 2 etc, I run out of
numbers in the domain but numbers remain in the range etc etc. It is
fine, but does not solve our problem. It is important and necessary to
feel what goes wrong, but you have to support the feeling with argu-
ment that no-one can refute. For example, some one says, I have such
a function, but I will not show you. How do you convince him: you
can not fool me; I know, for sure, you are wrong?

I am calling your attention to tricky points in arguments so that you
get a hang of ‘what is a proof’ and ‘how to write a proof.’.

You have to keep two things separate: abstraction and clarity. We are
not trying to be abstract. We want to be clear about what we are
saying. The purpose of saying something is to get across that thing
to another person. If he/she did not understand what you said, the
purpose is lost. That is why clarity is important. For this, you should
first know what you are saying.

One important thing to keep in mind is that, in the middle of all this,
we should not loose track of the inherent beauty of ideas and arguments.

7. Given a real number x ∈ [0, 1] show that there exists a sequence of
integers ǫ1, ǫ2, · · · , ǫn, · · · each ǫi is either zero or one such that

x =
ǫ1
2
+

ǫ2
22

+ · · ·+ ǫn
2n

+ · · · .
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This sequence (ǫ1, ǫ2, · · ·) is called binary expansion of x. It is usually
written as ·ǫ1ǫ2 . . ..
Show that if a number x has two expansions, then one expansion must
‘end’ with all zeros (called terminating expansion) and the other must
end with all ones (called non-terminating expansion). Further, a num-
ber can not have more than two expansions.

8. Let us now fix an integer r ≥ 2. Let me repeat that this integer is
fixed. Given a real number x ∈ [0, 1] show that there exists a sequence
of integers ǫ1, ǫ2, · · · , ǫn, · · · each ǫi being one of 0, 1, · · · , r−1 such that

x =
ǫ1
r
+

ǫ2
r2

+ · · ·+ ǫn
rn

+ · · · .

This sequence (ǫ1, ǫ2, · · ·) is called expansion of x to the base r. It is
usually written as ·ǫ1ǫ2 . . ..
Show that if a number x has two expansions, then one expansion must
‘end’ with all digits being zero after some stage (called terminating
expansion) and the other must end with all digits being r − 1 after
some stage (called non-terminating expansion). Further, a number can
not have more than two expansions.

When r = 2 you get binary expansion; r = 10 gives decimal expansion;
r = 3 gives ternary expansion for the number x.

Why are you boring us with all these expansions? Well, if there is a
main center in a town, it is good /important to know several roads that
lead to the place — later you can choose whatever road is convenient
for you.

9. Let S be a non-empty subset of R.

Say that S is bounded below if there is an a ∈ R such that a ≤ x holds
for every x ∈ S. Any such number is called a lower bound for the set
S. Greatest lower bound (glb), if exists, is a number l such that it is a
lower bound for S and m ≤ l holds for every lower bound m of S. glb
of S is also called infimum of the set S.

Say that S is bounded above if there is an b ∈ R such that x ≤ b holds
for every x ∈ S. Any such number is called an upper bound for the set
S. lub of S is also called supremum of the set S.

Say that S is bounded if there is an a ∈ R and an b ∈ R such that
a ≤ x ≤ b holds for every x ∈ S.
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Show that the lub axiom for R, which we have assumed, implies the
following:
(i) Every non-empty subset of R which is bounded below has a glb.
(ii) Every non-empty subset of R which is bounded has a glb
(iii) Every non-empty subset of R which is bounded has a lub.
Show conversely the following: If you did not assume the lub axiom
for R, but instead assumed any one of the above three statements then
you can prove lub axiom as a theorem.

Moral: We did not show any partiality in assuming lub axiom, ti is
same as glb axiom.

10. It will be good to have a criterion to recognize lub of a set. Let S be a
non-empty set bounded above. Show the following. A number s is lub
of S iff the following two conditions hold: (i) If x ∈ S then x ≤ s and
(ii) if ǫ > 0 then there is at least one element x ∈ S such that x > s−ǫ.

Let S be a non-empty subset of R which is bounded below. A number
m is glb of S iff following two conditions hold: (i) If x ∈ S then m ≤ x
and (ii) if ǫ > 0, there is at least one element x ∈ S such that x < m+ǫ.

11. I have an interval [a, b]. Can there be two numbers x, y in this interval
such that x − y > b − a?. Suppose I have two intervals [a, b] and
[c, d]. Suppose every element of [a, b] belongs to [c, d]. In other words
[a, b] ⊂ [c, d]. Show that c ≤ a ≤ b ≤ d.

12. Let S be a non-empty subset of R. Define a new set, T = {−x : x ∈ S}.
If S is bounded above then show that T is bounded below. Also show
that, if s is lub of S, then −s is glb of T .

13. Let A and B be two non-empty sets of positive real numbers. Let us
make a new set, C = {xy : x ∈ A, y ∈ B} If s is lub of A and t is lub
of B, show that st is lub of C.
Do you think this will be true if A and B are arbitrary (not necessarily
positive) non-empty subsets?

14. Let A and B be two non-empty sets of real numbers. Let us make a
new set, C = {x+ y : x ∈ A, y ∈ B} If s is lub of A and t is lub of B,
show that s+ t is lub of C.

15. Let x ∈ R, x 6= 0, x 6= 1. Consider the sequence an = xn for n =
1, 2, 3, · · ·. Show that this is an increasing sequence iff x > 1. Show
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that this is a decreasing sequence iff 0 < x < 1. Show that this is a
monotone sequence iff x > 0.

16. Let x 6= 0. Find conditions on x so that the set {xn : n ∈ Z} is bounded.
Find conditions on x so that the set {xn : n ∈ N} is bounded.

17. Show that the set P , of polynomials in one variable x with integer
coefficients, is a countable set. Show that the set of algebraic numbers
is a countable set.

Numbers which are not algebraic are said to be transcendental.

18. Show that every interval (a, b) with a < b is uncountable. In fact show
that every such interval has the same number of elements as the interval
(0, 1).

Show that between any two distinct real numbers there is a transcen-
dental number.

We shall discuss some of these problems next week.
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CMI(BSc I) Calculus/Analysis HA-3 21-08-2013

I hope you are paying attention to the first page of the first assignment.
In particular, solve and write the solution and equally important, read
what you have written. This last instruction is to be executed sincerely.

Sometimes I do not understand what I have written. Obviously, I can
not expect others to understand.

Sometimes I understand, but it is incorrect.

Sometimes I understand, it is correct, but there are some steps for
which I have not provided justification. If I did not justify, then the
proof is incomplete (and also the reader might think that I am bluffing
my way through).

Remember, you will not be sitting next to the reader explaining what
you meant! Writing a proof needs practice and you have plenty of time
(unless, you want to convert exam as practice session!).

If you have any doubts, you are free to discuss with other students or
meet me.

19. Draw the number line and plot the following set.

(i) {x : x2 − 5x+ 6 > 0} (ii) {x : x2 − 5x+ 6 ≤ 0}
(iii) {x : −5 < x4 < 16}.

20. I am sure you all know the following. Prove them.

n
∑

1

i =
n2

2
+

n

2
;

n
∑

1

i4 =
n5

5
+

n4

2
+

n3

3
− n

30
.

n
∑

1

i2 =
n3

3
+

n2

2
+

n

6
;

n
∑

1

i3 =
n4

4
+

n3

2
+

n2

4
.

21. For each of the intervals I: (−23,+85) [−23,+85) (−23,+85]
[−23,+85] show that supA = +85 and inf A = −23.

22. For a number x > 0 we defined n
√
x = sup{z > 0 : zn < x}.

Show that n
√
x = inf{z > 0 : zn > x}.

23. Solve: x > 0, x2 − x− 1 = 0.
We are taught in school how to solve quadratic equations. We get
x = 1±

√
5

2
. Since we want positive solution we take (1 +

√
5)/2. Solving

quadratics with the formula [−b ±
√
b2 − 4ac]/2a is very important.
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It is such an excellent answer, we stopped thinking further about the
problem. Let us think afresh. First of all x can not be zero.

Want x2 = x+1. That is, x = 1 +
1

x
. This is very interesting equation.

It does not give us the value of x, but explains x in terms of x. We
can use this information for ‘self improvement’. Use this value of x on
right side,

x = 1 +
1

1 +
1

x

; x = 1 +
1

1 +
1

1 + 1
x

It is natural to believe that the solution is

x = 1 +
1

1 +
1

1 + 1

1+
...

Non-sense or meaningful? We are the masters to give a meaning.

Put x0 = 1, put inductively for n ≥ 1, xn = 1 +
1

xn−1

. Shall show the

sequence (xn), so defined, converges to the solution.

If 3
2
≤ xn−1 ≤ 2 then show that the same holds for xn too. Show x1

satisfies these inequalities and hence all xn for n ≥ 1, satisfy. Show

|xn+1 − xn| ≤ (
2

3
)2|xn − xn−1|; n ≥ 3.

Use this to show (xn) converges. If the limit is a, show 3
2
≤ a ≤ 2 and

a = 1 + 1
a
and hence a = (1 +

√
5)/2.

24. We have seen that a real number has several dresses — binary, decimal
and so on — in which it can appear.

For example, consider a, the multiplicative inverse of 1 + 1 + 1, you
can write as 1/3 or 1

3
or 3−1. When it wears decimal dress it appears

to you as 0.33333333 · · · · · ·. When it wears binary dress, it appears
as 0.0101010101 · · · · · ·. In ternary dress it has two different styles of
appearance 0.100000 · · · · · · and 0.0222222222222 · · · · · · ..
We discuss one more colourful dress possessed by numbers.

For any non-negative number a, let 〈a〉 and (a) denote the largest
integer not exceeding a and the fractional part of a respectively. Thus,
(a) = a − 〈a〉. It is customary to denote 〈x〉 by [x]. Unfortunately, in
the present context, the brackets [ ] are reserved for something else.
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Fix x ∈ (0, 1), we define a sequence (finite or infinite) of integers
(n1, n2, · · · , ), where each ni ≥ 1, as follows. Set

n1 = 〈1/x〉; r1 = (
1

x
) =

1

x
− n1.

In general, having defined ni and ri for 1 ≤ i ≤ k; put

nk+1 = 〈1/rk〉; rk+1 = (
1

rk
) =

1

rk
− nk+1.

If at some stage we find rk = 0, we stop and say that [n1, n2, . . . , nk]
is the continued fraction expansion of x. If this process continues for
ever, then we say that the infinite sequence [n1, n2, . . .] is the continued
fraction expansion of x. In the first case, we say that x has a terminat-
ing expansion and in the second case, we say it has a non-terminating
expansion.

We write x = [n1, n2, n3, · · ·] or also as (which occupies more space)

x =
1

n1 +
1

n2 +
1

n3 +
1

...

.

What is the meaning of left side above? If each ai > 0, we define
[a1, · · · , ak] by induction on k as follows. (pause/think)

[a1] = 1/a1; for k > 1, [a1, · · · , ak] = [a1, · · · , ak−2, ak−1 +
1

ak
].

We define [n1, n2, n3, · · ·] = lim
k

[n1, · · · , nk]. Does this limit exist? Yes,

and equals x. We postpone these matters, but do the following.

Show that x ∈ (0, 1) is rational iff the expansion is terminating. What
is the expansion for 4/5?, 144/89? What number is [1, 2, 3, 4]?

If x > 1 and not an integer, then its continued fraction expansion is
given by [n0;n1, n2, · · ·] where n0 = 〈x〉 and [n1, n2, · · ·] is the expansion
of (x). Notice that n0 is separated from the rest by a semi-colon, so
there is no confusion. If x ≥ 1 is an integer, we simply say [x; ] is its
continued fraction expansion (funny, semicolon followed by bracket?).

25. If {xn} converges, show that {|xn|} converges. Is the converse true?

26. For which real numbers x does the sequence {xn} converge. In such a
case, what is the limit?
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27. Show

(n+ 47)589

2n
→ 0;

n
√
n43 → 1; lim

2n+1
√
n2 + n = 1.

28. If
59
∑

1
ai = 0, show that lim

59
∑

1
ai
√
n+ i = 0.

29. Show
√
2,

√

2 +
√
2,

√

2 +
√

2 +
√
2, · · · → 2.

30. If an > 0 and lim(an+1/an) = L > 0, then show that n
√
an → L. Use

this to evaluate limits of n
√
n; n

√
n5 + n4, n

√

n!/nn

Use the last limit to show that n! = nne−nan where n
√
an → 1.

(Much later, you will learn something called Stirling’s formula which
gives a better understanding of n!).

31. Purba defines: a sequence (xn) converges to a number x iff given any
integer m = 1, 2, · · · there is an integer n0 (possibly depending on m)
such that |xn − x| < 9−m for all n ≥ n0.

Uma defines: a sequence (xn) converges to a number x iff given any
integer m = 1, 2, · · · there is an integer n0 (possibly depending on m)
such that |xn − x| < 2−m for all n ≥ n0.

Do you think they are related to our definition? What if they replace
< by ≤?

32. Let f : {1, 2, 3, · · ·} → Q ∩ (0, 1) be a bijection. Let xn = f(n). Cal-
culate lim inf xn and lim sup xn. Find the set of all limit points of the
sequence.

*******************************************
12345678910111213141516171819202122232425
*******************************************
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CMI(BSc I) Calculus/Analysis HA-4 28-08-2013

For R we have adopted six axiom sets. A system (R,+, ·) satisfying the
first three sets is called an algebraic field or simply, a field. A system
(R,+, ·, <) satisfying the first five sets of axioms is called an ordered

field. A system satisfying all the six sets is called a complete ordered

field or complete Archimedean ordered field. Thus Real number system
is nothing but a complete ordered field.

These terms or useful when you communicate with others. You need
not pay much attention to these technical terms, especially because all
your teachers would probably be introducing many new words and it
becomes hard for you. As far as our course is concerned, it is important
to remember what the rule or axiom says and what can be done with
those; rather than remembering just these technical names.

I am not yet sure if you have started writing solutions for exercises. If
you could not solve an exercise and we did it in class, then you should,
after the class, spend a few minutes analyzing why you could not solve
and what is it that you missed. This is important.

33. Suppose that a sequence (xn) converges. show that the following se-
quence also converges.

x1, x1, x2, x2, x3, x3, x4, x4, x5, x5, · · · · · · .

What is the n-th term of this sequence?

What if I repeated each term ten times.

What if I repeated n-th term n times, like

x1, x2, x2, x3, x3, x3, x4, x4, x4, x4, x5, · · · · · · .

You may, at first sight, think that these are trivial and I am show-
ing you the same sequence again and again. But please do recall the
definition of sequence and convince yourself that these are all different
sequences.

What if I deleted all odd terms, that is, consider the sequence,

x2, x4, x6, x8, x10, x12 · · · · · · .
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What if I take integers 1 ≤ n1 < n2 < n3 < n4 < · · · and defined a
sequence yk = xnk

for k = 1, 2, 3, 4, · · · .

34. I have a sequence (xn). I know that the sequence yn = x2n (n ≥ 1)
converges. I know that the sequence zn = x2n−1 (n ≥ 1) converges.
That is, the sequence of even terms converges and the sequence of odd
terms converges.

Do you think the sequence (xn) converges. Under what conditions on
the limits of these two sequences can you conclude that the sequence
(xn) converges?

Can you think of a generalization of the above.

35. Suppose a sequence (an) of real numbers converges to a number a. I
have a polynomial of one variable P (x). Show that the sequence of
numbers {P (an)} converges to the number P (a).

36. Later we shall define the sine function rigorously. But starting with
your knowledge, discuss the following. For which real numbers x does
the sequence {(sin x)n} converge. In case the sequence does not con-
verge, explain what are all its limit points.

37. (not easy) If your sequence of numbers are getting close to a then
successive averages of your numbers also get close to a.

If a sequence {xn} converges, then show that the sequence {an} where

an = 1
n

n
∑

1
xk also converges. Actually, these averages also converge to

the same limit as the original sequence.

If a seqeunce {xn} is such that the sequence of successive averages
converges, then the sequence {xn} is said to converge in the sense of
Cesaro. Thus any convergent sequence is also convergent in the sense
of Cesaro.

Show that the converse is not true by considering the ±1 sequence.

38. Show, without using the fact that Cauchy sequences converge, that
sum and product of Cauchy sequences is again Cauchy. That is, if (xn)
and (yn) are Cauchy sequences, then so are the sequences (xn + yn)
and (xnyn). should not use the difficult fact that Cauchy sequences
converge.

Suppose that (xn) is a Cauchy sequence and xn 6= 0 for every n. do
you think (1/xn) is a Cauchy sequence?

14



The reason, I did not want you to use convergence of Cauchy sequences
is the following. Afterall, if your world consists of the set of rationals
(and no more) then also the definition of Cauchy sequence makes sense;
but of course in this world now there are Cauchy sequences that do not
converge.

39. Let (xn) be a sequence and a ≤ xn ≤ b for each n. If xn → x, then
show that a ≤ x ≤ b.

More generally, show that the above inequality holds for any limit point
of the sequence.

40. Write complete proof of the fact explained in class: The limsup and
liminf of a bounded sequence are indeed limit points of the sequence.
Remember these are defined as the supremum and infimum of the set
of limit points. (We showed that this set is non-empty).

41. Let (xn) be a bounded sequence.

A number s is limsup of the sequence if and only if the following two
conditions hold:

(i) for any ǫ > 0, there are only finitely many n such that xn > s+ ǫ.

(ii) for any ǫ > 0, there are infinitely many n such that xn > s− ǫ.

A number l is liminf of the sequence if and only if the following two
conditions hold:

(i) for any ǫ > 0, there are only finitely many n such that xn < l − ǫ.

(ii) for any ǫ > 0, there are infinitely many n such that xn < l + ǫ.

42. Let (xn) and (yn) be bounded sequences. Show that

lim inf(xn + yn) ≥ lim inf xn + lim inf yn.

lim sup(xn + yn) ≤ lim sup xn + lim sup yn.

lim inf xn = − lim sup(−xn).

lim sup xn = − lim inf(−xn).

lim sup(29xn) = 29 lim sup xn.

lim inf(29xn) = 29 lim inf xn.

15



43. Let (xn) be a bounded sequence.

Define yn = sup{xn, xn+1, xn+2, · · ·}. Show that (yn) is decreasing and
bounded below and hence converges to a limit. Show that this limit is
indeed lim sup xn. Thus limsup is actually limit of the supremums of
the ‘tails’(?) of the sequence (not only supremum of limit points).

Define zn = inf{xn, xn+1, xn+2, · · ·}. Show that (yn) is increasing and
bounded above and hence converges to a limit. Show that this limit is
indeed lim inf xn. Thus liminf is actually limit of the infimums of the
‘tails’ of the sequence (not only infimum of limit points).

44. A sequence (xn) converges if and only if it is bounded and
lim sup xn ≤ lim inf xn.

This last inequality is same as saying that the bounded sequence has
excatly one limit point.

************************************************
23571113171923293137414347535961677173798397101
************************************************
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45. Fix a number h. Let us define (x)n for n ≥ 0 by

(x)0 = 1, ; (x)n = x(x− h)(x− 2h) · · · (x− [n− 1]h).

Show the following for n = 1, 2, 3 · · ·.

(x+ y)n = (x)n +

(

n

1

)

(x)n−1(y)1 +

(

n

2

)

(x)n−2(y)2 + · · ·+ (y)n.

How does this read if h = 0?

46. Do you think a convergent sequence (an) must have a maximum, that
is, an k such that ak ≥ an for all n?

Do you think a convergent sequence (an) must have a minimum, that
is, an k such that ak ≤ an for all n?

Show that a convergent sequence (an) must have either a maximum or
a minimum.

47. Suppose that an > 0 for each n and lim inf an = 0. Show that for
infinitely many values of n the following happens:
an is strictly smaller than a1, a2, a3, · · · , an−1.

48. Suppose that an > 0 for each n and the sequence (an) converges to
zero. Show that for infinitely many values of n the following happens:
an is strictly larger than an+1, an+2, an+3, · · · · · · .

49. Suppose an ≤ bn ≤ cn. if lim an = α = lim cn, then show that lim bn
exists and equals α. If you are only told that lim an and lim cn exist,
then can you conclude that lim bn exists?

50. Test for convergence of
∑

an where,

an =
2n

2n+ 1
− 2n− 1

2n
, an = (−1)n

n

n+ 1
.

51. If
∑

an and
∑

bn are series of strictly positive terms and lim an
bn

→ 1,
show that that the series

∑

an converges iff the series
∑

bn converges.
What if the limit were 1000 instead of one.

17



52. Test the following for convergence.

∑ 2000
3
√
29n4 − 35

;
∑ 2000

4
√
29n3 − 35

;

∑ 1

n(1.01)n
;

∑ log n

n1.0001
;

∑ n100000

n!
;

∑ (100000)n

n!
.

You may need to use facts about log function, that we have not yet
discussed.

53. Let P (x)and Q(x) be two polynomials in one variable x. Assume that

Q(n) 6= 0 for n = 1, 2, 3, · · ·. Discuss convergence of
∑ P (n)

Q(n)
.

54. If
∑

a2n converges, show that
∑ an

n
converges.

Sometimes a more general formulation will help solve the problem,
because it gives an idea. If

∑

a2n and
∑

b2n converge, then show that
the series

∑

anbn converges absolutely.

If
∑ |an| converges, show that

∑

a2n converges. If
∑

an converges, do
you think that

∑

a2n converges?

55. Show that the series below converge iff p > 1.

∑

n≥100

1

n log n (log log n)p
∑

n≥10000

1

n log n log log n (log log log n)p

56. If 0 < r < 1, you already know that
∑

rn converges. Show that
∑

n100rn converges. More generally, if P (x) is any polynomial in one
variable x, show that

∑

P (n)rn converges.

57. Show that for 0 < x < 1, the series

x− x2

2
+

x3

3
− x4

4
+ − · · ·

converges.

58. Show that the series

∑

(−1)n
sin(19/n)

log log(100 + n)
.

∑ 1

n
sin

1

n
.

converge. You can proceed with your knowledge of sine function,
though we develop this function rigorously later. Do you think this
series is absolutely convergent?
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59. discuss convergence of the following two series.

∑

n≥2

log(n+ 1)− log n

(log n)2
;

∑

n≥1

1 · 2 · 3 · · · · · n
(α + 1)(α + 2) · · · (α + n)

.

For the first series, you need to know a little more than the definition
of log function.

60. Let 0 < a < b < c < 1. Show that the following series converges.

a+ b+ c+ a2 + b2 + c2 + a3 + b3 + c3 + · · · · · · .

Show that the series
∑

xn also converges, where xn = an+bn+cn. Note
that this series is different from the series above (just ask yourself: what
is the first term, what is the second term). Do these two series have
the same limit? Justify your answer.

61. Sometimes the statement of the problem is long and probably fright-
ening, but the solution is immediate. Here are two such problems.

Let
∑

an be a series of non-zero numbers.

Suppose that there is an ǫ > 0 and and an integer n0 such that for
every n ≥ n0

log 1
|an|

log n
> 1 + ǫ.

Then show that the series
∑

an converges.

Suppose that there is an ǫ > 0 and and an integer n0 such that for
every n ≥ n0

log 1
|an|

log n
< 1− ǫ.

Then show that the series
∑

an does not converge.

62. One suggestion to show convergence of the series

1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ · · ·

is to write it as

(1− 1

2
) + (

1

3
− 1

4
) + (

1

5
− 1

6
) + · · ·

and show that this series converges. This needs justification, because
the two series are different (ask yourself: what is the first term etc).
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Justify by doing the following. Show that the second series converges.
So partial sums are Cauchy. Then argue that for the first series also
partial sums are Cauchy.

63. The theorem on alternating series said the following: If an ↓ 0, then
the series

a1 − a2 + a3 − a4 +− · · ·
converges.

Here is a generalization. Let
∑

bn be a series with bounded partial
sums. Let an ↓ 0. Then the series

∑

anbn converges. Note that by
taking the series

∑

bn to be
∑±1 series, you get the theorem on alter-

nating series (remember, we are not demanding convergence of
∑

bn).

To prove this generalization, procees ad follows. Let (sn) be the partial
sums of the series

∑

bn. Show for m > n

an+1bn+1 + an+2bn+2 + an+3bn+3 + · · ·+ am−1bm−1 + ambm =

−snan+1 + sn+1(an+1 − an+2) + sn+2(an+2 − an+3)

+ · · ·+ sm−1(am−1 − am) + smam.

Use this to show convergence of the series
∑

anbn.

This generalization comes to our rescue in difiicult situations.

Using your understanding of sine and cosine functions, show that the
series

∑

sinnx has bounded partial sums. (Hint: multiply and divide
partial sum by sin(x/2) and see.) Conclude that the series

∑ sinnx
n

converges.

64. Using Cauchy product of series, show
sin(x+ y) = sin x cos y + cos x sin y, and
cos(x+ y) = cos x cos y − sin x sin y.

*********************************************************
717379838997101103107109113127131137139149151157163167173
*********************************************************
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65. Suppose that (an) is a Cauchy sequence. Suppose that a subsequence
converges to a. This means, there are n1 < n2 < · · · · · · and if bk = ank

then the sequence (bk) converges to a. Show that an → a.

66. Suppose xn → a. Let π be a permutation of {1, 2, · · ·}. Put yn = xπ(n).
Show that yn → a. (This is just to make sure that you do not confuse
between sequences and series).

67. We have shown that Cauchy product of two absolutely convergent series
is convergent. Show that it is absolutely convergent.

68.
∑

an is a convergent series of strictly positive numbers, show
∑

√
an
n

converges.

69.
∑

an is a series of positive numbers which does not converge. Show
that

∑ an
1+an

does not converge.

If sn = a1 + · · ·+ an, show that

an+1

sn+1

+ · · ·+ an+k

sn+k

≥ 1− sn
sn+k

Deduce that
∑ an

sn
does not converge.

Show that
an
s2n

≤ 1

sn−1

− 1

sn
.

Deduce that
∑ an

s2n
converges.

Discuss convergence of
∑ an

1 + nan

∑ an
1 + n2an

.

70.
∑

an is a convergent series of strictly positive numbers. Put rn =
∑

m≥n
am. If m < n show that

am
rm

+ · · ·+ an
rn

> 1− rn
rm

.

Deduce that
∑ an

rn
does not converge.

Show that
an√
rn

≤ 2(
√
rn −

√
rn+1).

Deduce that
∑ an√

rn
converges.
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71. Let a > 0. Choose a number x1 >
√
a. Define recursively

xn+1 =
1

2
(xn +

a

xn

), n ≥ 2

Show xn ↓ √
a.

If ǫn = xn −
√
a, show

ǫn+1 =
ǫ2n
xn

≤ ǫ2n√
a
.

72. Fix a > 1. Choose a number x1 >
√
a. Define recursively

xn+1 =
a+ xn

1 + xn

= xn +
a− x2

n

1 + xn

.

Show x1 > x3 > x5 · · · · · · .
Show x2 < x4 < x6 < · · · · · · .
Show lim xn =

√
a.

73. Let f : R → R.
Verify: : f is continuous at a is same as

(∀ǫ > 0)(∃δ > 0)(∀x)
{

[|x− a| ≥ δ]
∨

[|f(x)− f(a)| < ǫ]
}

.

understand the symbols as well as its meaning in words.
How do you understand its negation: f is not continuous at a. Remem-
ber, it is not simply putting a negation symbol ¬ before this formula.
You need to write positive statement, that is, where negations do not
appear for quantifiers.
Explain in symbols as well as words. (I repeat: expressing in words is
not simply saying: f is not continuous at a. It means, first express in
symbols as mentioned above without negation symbols for quantifiers
and then write it in words).

Verify: f is continuous on R is same as

(∀a ∈ R)(∀ǫ > 0)(∃δ > 0)(∀x)
{

[|x− a| ≥ δ]
∨

[|f(x)− f(a)| < ǫ]
}

.

understand the symbols as well as its meaning in words.
How do you understand its negation: f is not continuous on R. Ex-
plain in symbols as well as words.
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74. Verfiy: xn → x is same as

(∀ǫ > 0)(∃k)(∀n ≥ k)(|xn − x| < ǫ).

Understand the symbols as well as the meaning in words.
Express its negation, xn 6→ x both in symbols as well as words.

75. Verify: x is a limit point of (xn) is same as

(∀ǫ > 0)(∀k)(∃n > k)(|xn − x| < ǫ).

Express its negation: x is not a limit point of (xn) both in symbols as
well as words.

76. x is limsup of (xn) is same as

(∀ǫ > 0)
{[

(∀k)(∃n > k)(xn > x− ǫ)
]

∧

[

(∃k)(∀n > k)(xn ≤ x+ ǫ)
]}

.

77. Let f : R → R. We say that f is uniformly continuous if given ǫ > 0,
there is a δ > 0 such that f(x)− f(y) < ǫ whenever |x− y| < δ. Verify
the following formula expresses this.

(∀ǫ > 0)(∃δ > 0)(∀x, y)
{

[|x− y| ≥ δ]
∨

[|f(x)− f(y)| < ǫ]
}

.

What is its negation (in symbols as well as words).

78. Just like limit point of a sequence, you can define limit poiint of a set.
Let A ⊂ R. Say that a number a is a limit point of the set A if there
are infinitely many points of A close to a, more precisely, given ǫ > 0,
there are infinitely many points of A in (a − ǫ, a + ǫ). Verify that the
following formula expresses the same thing.

(∀ǫ > 0)(∀k)
(

cardinality
{

(a− ǫ, a+ ǫ)
⋂

A
}

≥ k
)

.

What does it mean to say that a is not a limit point of the set A.?

79. Define f : R → R by f(x) = 0 if x is rational and f(x) = 1 if x is
irrational.

Describe the set of all points a such that f is continous at a.

Do the same thing for the following functions:
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(a) f(x) = 0 if x is an integer and f(x) = 1 when x is not an integer.

(b) f(x) = 1 if x ≥ 0 and f(x) = 55 if x < 0.

(c) f(x) = 1 if x > 0; f(x) = 55 if x < 0 and f(0) = 44.

(d) f(x) = [x], the greatest integer not exceeding x.

(e) f(x) = x− [x], the fractional part of x.

80. You know that the function f(x) = x2 is continuous. If I give a = 2
and ǫ = 1 what will be your δ? What if a = 20 and same ǫ. What if
a = 200 and same ǫ?

Let f(x) = 1/x defined on the interval (0, 33). Take ǫ = 0.1 and a = 5,
find δ. With the same ǫ and a = 1, a = 1/5 and a = 1/100 find δ.

******************************************************************
179181191193197199211223227229233239241251257263269271277281283293
******************************************************************
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Most of you have done reasonably well in the midsem.

Some of you (those who got at least 30) have done very well, and
should maintain this level. Remember maintaining current level also
needs effort.

Some of you (those who got at least 20, but below 30) have done well.
You can improve if you work/think slightly harder. Remember, you
should not try to stay where you are.

Some of you (those who got less than 20) are not doing well at this
stage. However, you are definitely capable, but you need to put in your
best efforts. You can recover and do well. Remember, if you can learn
to stand, it is not difficult to walk and then it is not difficult to run!

I hope you have all realized that the story of calculus is continuation of
high school story with essential differences — concept of proof, clarity
regarding what you can use and what you can not, understanding of
the ideas, the freedom to question things (and not to blindly reproduce
what teacher says), accept responsibility to what we write (and not to
blame the book or someone else), developing the ability to communi-
cate what you want to say, etc etc.

Some exercises in this set need thinking on your part, they are not
routine.

81. Show that
(1 +

√
5)n − (1−

√
5)n

2n
√
5

is an integer. Here n is a natural number.

82. Let a1, a2, · · · , an be strictly positive numbers.

Show that 2
√
a1a2 ≤ (a1 + a2)/2.

When n is an integer of the form 2, 22, 24, 28, 216, · · · (the exponent of 2
is itself a power of 2), show that

n
√
a1a2 · · · an ≤ a1 + a2 + · · ·+ an

n
.
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Actually this is true for all integers n ≥ 2. You need not do.

However, let me explain how to do it for n = 3, if you know for n = 22.
Start with a1, a2, a3 and take a4 = 3

√
a1a2a3 and try your luck.

83. For each natural number n, show that there is a natural number k (of
course, depending on the given n) such that

(
√
2− 1)n =

√
k −

√
k − 1.

84. In introducing the number e we found that it is limit of a series of

numbers and also it is limit of the increasing sequence
(

1 + 1
n

)n
.

Show that the sequence
(

1 + 1
n

)n+1
is decreasing. What is its limit?

85. If f is a montone function defined on an interval and has the interme-
diate value property, show that f is a continuous function.

Intermediate value property means the following: If a < b; and u is
a number between f(a) and f(b), then there is a number c between a
and b such that f(c) = u.

Do you think that intermediate value property without monotonicity
will imply continuity?

Remember continuous function defined on an interval has the interme-
diate value property.

86. Let f(x) be defined on the real line as follows: if x is irrational number
then f(x) = 0. If x is a rational number p/q in lowest terms, then
f(x) = 1/q. Show that f is continuous at a iff a is irrational number.

p/q in lowest terms means p and q are integers without common factor.
This means: if x is a natural number that divides both p and q, then
|x| = 1.

87. Let ABC be a triangle in the plane (A,B,C not on a line) . Suppose
that a line L in the plane is given. Show that there is a line parallel to
L that bisects the triangle into two parts of equal area.

88. Consider the sequence

1

1
,
3

2
,
7

5
,
17

12
, · · · .

If the n-th number is pn/qn, then pn+1 = pn + 2qn and qn+1 = pn + qn.

Show that all the fractions are in lowest terms.

Show that pn/qn converges to
√
2.
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89. Let 0 < a < b be given. Define

a1 =
√
ab b1 =

a+ b

2
.

a2 =
√

a1b1 b2 =
a1 + b1

2
.

and in general,

an+1 =
√

anbn bn+1 =
an + bn

2
.

Show that the sequence (an) converges. Show that the sequence (bn)
converges. Show that these two limits are equal.

This is called arithmetic-geometric mean or arithmetico-geometric mean
of the two given numbers.

90. For x, y > 0 show that

xn + yn

2
≥
(

x+ y

2

)n

.

What does this mean geometrically?

91. Let 0 ≤ x ≤ 1. Put

s1 = x; sn+1 =
1

2

(

sn +
x

sn

)

n ≥ 1.

Show |x−√
x| ≤ 1/4 and |sn+1 −

√
2| ≤ |sn −

√
2|/2 and deduce

|sn −
√
x| ≤

(

1

2

)n+1

.

Thus rn = sn/
√
x → 1. How fast does it converge? Show

rn+1 − 1 =
1

2rn
(rn − 1)2; sn+1 −

√
x =

1

2sn
(sn −

√
x)2

Deduce that

0 ≤ rn+1 − 1 ≤ 1

2
(rn − 1)2.

92. Suppose f : R → R is differentiable and f ′ is a polynomial of degree
n− 1. Show that f must be a polynomial of degree n.
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93. Let f(x) = x2 + bx + c. Show that f is increasing for x > −b/2 and
decreasing for x < −b/2.

94. Let f : R → R be a function. Then f is said to be an even function
if f(−x) = f(x) for every x ∈ R. f is said to be an odd function if
f(−x) = −f(x).

Give two examples of even functions and two examples of odd functions.

If f is differentiable and is even, show that f ′ is an odd function.

If f is differentiable and is odd, then show that f ′ is an even function.

If f ′ is odd show that f is even function.

If f ′ is even and f(0) = 0, show that f is odd.

95. Find the point of intersection of: tangent to the curve y = x2 − x at
the point (2, 0) and tangent to the curve y = 1− x2 at the point (1, 0).

96. Show that the functions

f(x) =
√
x2 − 1 defined on the interval (1,∞) and

g(y) =
√
y2 + 1 defined on the interval (0,∞)

are inverses of each other. Verify

f ′(g(y))g′(y) = 1; g′(f(x))f ′(x) = 1.

97. Show that the function

f(x) = x2 + 3x+ 1 defined on the interval (1,∞) is invertible.

Find its inverse g. Verify

f ′(g(y))g′(y) = 1; g′(f(x))f ′(x) = 1.

98. (difficult to understand but trivial to solve) Let r1, r2, · · · be an enu-
meration of the set fo rationals on the real line. For each x ∈ R, let us
put

f(x) =
∑

n:rn≤x

1

2n
.

That is, given a number x do the following: see if r1 ≤ x, if so put 1/2
in your bag, if not do not put;see if r2 ≤ x, if so put 1/22 in your bag,
if not do not put. Continue this way. Now add all the numbers you
have put in your bag. It is meaningful. What you get is declared as
f(x).

Show f is continuous at a point a iff a is irrational. for every x ∈ (0, 1)
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99. Continuing the previous exercise, show the following: Let D ⊂ R be a
countable set given to you. Find a monotone function on R whose set
of discontinuity points is exactly the given set D.

(The idea is not to complicate life, but to see if you understood the
previous exercise.)

100. Let f be a strictly increasing continuous function on a closed bounded
interval [a, b]. Let c = f(a) and d = f(b). Show that range of f is ex-
actly [c, d]. Show that the inverse function g, defined on [c, d] is strictly
increasing and is again continuous.

Let f be as above but is moreover differentiable at every point in (a, b).
Show that the inverse function g defined on [c, d] is differentiable at
every point in (c, d). show that

g′(y) =
1

f ′(g(y))
, c < y < d; and f ′(x) =

1

g′(f(x))
, a < x < b.

Prove a similar statement for strictly decreasing continuous function
on [0, 1].

Suppose that f is a continuous function on [0, 1]. Assume that it is
one-to-one. That is, if x 6= y then f(x) 6= f(y). Then show that f
must either be strictly increasing or strictly decreasing.

( Idea is to see if you can unravel the meaning of: suppose f is neither
increasing nor decreasing · · ·.)

101. Can you define a continuous function on the interval [0, 1] whose range
is the set of natural numbers.

Let S be the set of irrational numbers on the interval [0, 1]. Is there
a continuous function defined on S having its range the set of natural
numbers.

(The idea is not to understand continuous functions defined on arbi-
trary subset S. Who cares about this in a first course of calculus. The
idea is to see if you made friends with real numbers.)
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102. Let f(x) = x230e−x. Show that f(x) → 0 as x → ∞. This means the
following: given any ǫ > 0, we can find x0 so that |f(x)| ≤ ǫ for all
x ≥ x0.

(Idea is to see if you are comfortable with numbers. Do not complicate
life.)

Use the above to calcuate

lim
x→0

1

x
e−1/x2

.

Let P (x) be any polynomial. Show that P (x)e−x → 0 as x → ∞.

103. We have defined two functions f and g in the class and named them as
sin x and cos x — without any evidence that they are indeed sine and
cosine functions, in fact you may find it confusing. By looking at the
series, it is not even clear that they take values in the interval [−1,+1].

In any case, f(−x) = −f(x) and g(−x) = g(x) follow from definition.

You saw one evidence in the class: f ′ = g and g′ = −f .

Here is another evidence: Show that f 2(x) + g2(x) = 1 for every x.
Deduce that these functions indeed take values in the interval [−1,+1].
Also when one of them takes the value zero, then the other one must
take a value ±1.

Hre is another evidence. Using power series, argue

f(x)

x
→ 1 as x → 0.

Here is another evidence, this is only for fun because we have no plans,
now, of doing complex numbers. However let us see what can be
achieved if we knew complex numbers. Write the series definition of
exponential function, with ix instead of x, let us name it eix. Calcu-
late its real part and imaginary parts. What do you see? Remember
i2 = −1.

Do you know something called DeMoivre’s formula? do you see any
glimpse of it?
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104. I have a function f defined on the interval [0, 1]. I do not know what
exactly is the function, but I know the following:

|f(x)− f(y)| ≤ 589 sin(|x− y|235); x, y ∈ [−1, 1].

Show that f is a continuous function. Show that f is differentiable.
Show that f is a constant function.

105. Let f be a continuous function on the interval [0, 1] which is differ-
entiable at every point of (0, 1). Assume that |f ′(x)| ≤ 33 for every
x ∈ (0, 1). Show that

|f(x)− f(y)| ≤ 33|x− y|; x, y ∈ [0, 1].

106. Consider the two power series:

P (x) = α0 + α1x+ α2x
2 + α3x

3 + · · · .

Q(x) = α1 + α2x+ α3x
2 + · · · .

Show that for any x ∈ R, the first series converges iff the second series
converges. Conclude that both have the same radius of convergence.
Thus

lim sup n

√

|αn| = lim sup n

√

|αn+1|.

Let (an) and (bn) be sequences of positive numbers. Suppose that
the sequence {an} converges to a finite non-zero number a. Then
lim sup anbn = a lim sup bn.
Use this to show that the following power series also has the same
radius of convergence as the earlier two.

T (x) = α1 + 2α2x+ 3α3x
2 + 4α4x

3 + · · · .

107. Let f(x) = sin(1/x) defined for x 6= 0. Can you prescribe a number
f(0) so that f is continuous on R?

Let f(x) = x sin(1/x) defined for x 6= 0. Can you prescribe a number
f(0) so that f is continuous on R. Then will your function be differ-
entiable at zero?

Let f(x) = x2 sin(1/x) defined for x 6= 0. Can you prescribe a value
f(0) so that f is continuous on R. Then will your function be differ-
entiable at zero? Is the functuion f ′(x) continuous at zero?
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Answer the same questions if f(x) = x3 sin(1/x).

This story can go on — why not higher powers? why only integer
powers of x? why not powers for 1/x too within the sine function?

108. Consider the function

f(x) =

{

e−1/x2

if x > 0
0 if x ≤ 0

Show f is differentiable function on R.

More generally, Let P be a polynomial in one variable.

f(x) =

{

P (1/x) e−1/x2

if x > 0
0 if x ≤ 0

Show f is differentiable function on R.

109. Since you are learning linear algebra, here is an interesting formula.
suppose I have nine differentiable functions {fij; 1 ≤ i, j ≤ 3} on R.
Define a function ϕ on R by

ϕ(x) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

f11(x) f12(x) f13(x)

f21(x) f22(x) f23(x)

f31(x) f32(x) f33(x)

∣

∣

∣

∣

∣

∣

∣

∣

∣

Here |A| is determinant of A. Show that ϕ is differentiable and

ϕ′ =

∣

∣

∣

∣

∣

∣

∣

∣

∣

f ′
11 f ′

12 f ′
13

f21 f22 f23

f31 f32 f33

∣

∣

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

∣

∣

f11 f12 f13

f ′
21 f ′

22 f ′
23

f31 f32 f33

∣

∣

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

∣

∣

f11 f12 f13

f21 f22 f23

f ′
31 f ′

32 f ′
33

∣

∣

∣

∣

∣

∣

∣

∣

∣

***307311313317331337347349353359367373379383389397***
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Some exercises below are computational, you need to think how large
or how small are things. Some are theoretical, but they are easy. If
you open your pen without understanding the problem or try random
paths blindly, you will get frustrated. Please do not do so.

110. Find derivatives of the following functions.

e(x
33). (ex)33. sin(cos x).

ecosx

1 + x2
.

111. Let f(x) = −x log x− (1− x) log(1− x) (0 < x < 1). Is it possible to
define this function at the points zero and one so that it is continuous
on the closed interval [0, 1]? Where is the function increasing, where
is it decreasing, Where is its maximum value, what is it? Sketch its
graph.

112. Prove the following formula, called Leibnitz’s formula.

If f and g are each differentiable n times, then so is the product fg
and

(fg)(n) = f (n) +

(

n

1

)

f (n−1)g(1) +

(

n

2

)

f (n−2)g(2) + · · ·+ g(n).

113. For any real number α let us define
(

α

0

)

= 1;

(

α

n

)

=
α(α− 1) · · · (α− n+ 1)

1× 2× 3× · · · × n
.

If α is a positive integer, does this agree with what you know from high
school?

Eventhough there is a formula for radius of convergence of power series,
many times it is convenient to use ratio test. Let us fix any α 6= 0.
Consider the power series

∞
∑

0

(

α

n

)

xn.

If α ≥ 1 is an integer, this is actually a finite sum and so has radius of
convergence ∞ and equals (1 + x)n. Prove it.
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If α is not an positive integer, show that its radius of convergence is
one. Show that for any |x| < 1, sum of the above series is (1 + x)α.
Ask Taylor for help.

Here are special cases.

1√
1 + x

= 1− x

2
+

1× 3

2!

(

x

2

)2

+
1× 3× 5

3!

(

x

2

)3

+ · · ·

1√
1− x2

= 1 +
x2

2
+

1× 3

2!

x4

22
+

1× 3× 5

3!

x6

23
+

1× 3× 5× 7

4!

x8

24
+ · · · .

114. Find the radius of convergence of the following power series (ratio test
is better than the formula). All are easy, serve to test if you made
friends with numbers.

∑ 1 · 3 · 5 · · · · (2n− 1)

2 · 4 · 6 · · · · (2n) xn

∑ (2n)!

n!n!
xn.

∑ (n+ 1)!− n!

2n
xn.

∑ (n!)2

(n2)!
xn.

∑ n!

nn
xn.

∑ en
2

n!
xn.

∑ n3

en
xn.

∑ en

n!
xn.

∑ 2n

(n!)
√
2
xn.

115. Evaluate
lim
x→0+

x1/3(log x)3. lim
x→0+

x(log x)2. lim
x→0

(sin x)x.

Taking help of L’Hopital, evaluate

lim
x→0+

log sinx
log(ex−1)

. lim
x→0

(

1
x
− 1

sinx

)

.

116. You know that a sequence of real numbers converges iff it is a Cauchy
sequence. Similar result is true for uniform convergence of functions
too. Let (fn) be a seqence of functions on a set S. Say that the sequence
is uniformly Cauchy if the following holds: given ǫ > 0, there is n0 such
that |fn(x)− fm(x)| < ǫ for every n,m ≥ n0 and every x ∈ S.

Show that (fn) converges uniformly on S to some function iff it is
uniformly Cauchy sequence.

117. There are several important ideas in proof of the main theorem on
power series.

Suppose, I have a series of functions
∑

fn on a set S. Suppose there are
numbers Mn such that

∑

Mn converges and for each n, the function
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fn is bounded by Mn, That is, |fn(x)| ≤ Mn for every n and every
x ∈ S. Show that the series

∑

fn converges uniformly. This is called
Weierstrass M -test.

Suppose I have a sequence (fn) of differentiable functions on (−30,+30)
and fn(0) → 17. Suppose that f ′

n → g uniformly on (−30,+30). Then
show that the sequence {fn} converges uniformly to a function f ; f is
continuous, f is differentiable; f ′ = g.

118. Show that if

f(x) =
∞
∑

1

cosnx

n7/3

then

f ′(x) = −
∑ sinnx

n4/3
.

119. find if the following sequences/series converge unformly on the intervals
menioned.

(a) Sequence (fn) where fn(x) =
n2x

1 + n3x2
, [−1, 1]? [0,∞)?

(b)
∞
∑

1
(x log x)n on (0, 1).

(c)
∑

n77e−nx on (0.001,∞)? on (0,∞)?.

(d) The series
∞
∑

1
[1− cos(x/n)] converges uniformly on the interval

[−1010,+1010] but does not converge uniformly on R.

120. Similar to series which are made up of powers of x, there are important
class of series which are made up of powers of n.

Let (an : n ≥ 1) be real numbers. A series of the form
∑ an

nx
is

called Dirichlet series. We shall not complicate our life and be content
with a simple instance.

Show that the series, f(x) =
∑ 1

nx , converges uniformly on the interval
[1 + ǫ,∞), whatever be ǫ > 0.

Show that the series g(x) = −∑ logn
nx also converges uniformly on the

interval [1 + ǫ,∞) for every ǫ > 0.
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Argue that f is a continuous function on (1,∞); indeed f is differen-
tiable on (0,∞); indeed f ′ = g.

121. A man in a boat on one shore of a river wishes to reach a point on
the other shore that is 4 miles down the stream. The river is 2 miles
wide and has negligible current. He can row at 4 mph and run along
the opposite bank at 8 mph. If he rows along a straight line path to a
point on the opposite bank and then runs along the opposite bank to
his destination, where should he land to minimize time taken to reach
destination.

122. A window in the form of a rectangle surmounted by an isosceles triangle
(with top side of the rectangle as base), the altitude of the triangle being
(3/8)-th of its base. If the perimeter of the window is 30 ft, find the
dimensions of the window for admiting maximum light.

123. A wire bent in the form of a circle of radius a exerts an attractive force
upon a particle on the axis of the circle (that is on the line through
center and perpendicular to the plane of the circle). From the theory of
attraction (let us believe it), this force is proportional to h/(a2+h2)3/2

where h is the height of the particle above the plane of the circle. At
what height is the attraction maximum?

{Birkbeck college once announced an evening lecture by John Buchan, with the

title ‘Margins of life’ and I expected the speaker to talk about some scientific field,

perhaps about viruses or very large molecules on the border line between inorganic

matter and living organisms. Not a bit: what he spoke about, to my growing

astonishment, was the importance for a student not to work too hard! A student

should not devote his entire time to the study of his subject; he should leave a

margin on which he could scribble notes on what went around him. I was quite

amazed that such advice should be regarded as necessary; I felt that students were

generally a scatter-brained lot and in my view ought to be encouraged to stick

to their books. But the lecturer obviously thought that the opposite advice was

necessary to prevent them from becoming narrow-minded. (Otto Frisch)}
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The problems in this set are of two kinds — Profound looking state-
ments which are trivial; not too complicated applications of the ma-
chinery we developed.

124. Show

∞
∑

1

1

(n+ x)(n+ x+ 1)(n+ x+ 2)
=

1

2(x+ 1)(x+ 2)
.

Here x is a number which is not negative integer.

∞
∑

2

log[(1 + 1
n
)n(1 + n)]

log nn log(n+ 1)n+1
= − log 4.

∞
∑

2

1

n2 − 1
=

3

4
;

∑ n2xn

n!
= (x2 + x)ex.

∞
∑

1

nxn =
x

(1− x)2
;

∑

(n+ 1)xn =
1

(1− x)2
. |x| < 1.

Simplify
∑ (n− 1)(n+ 1)

n!
.

125. Test the following series for convergence.

∑ log n

n
√
n+ 1

;
∑ n!

(n+ 2)!
;

∑ 1

(log n)1000
;

∑ 1 +
√
n

(n+ 1)3 − 1
.

∑ sin(1/n)

n
;

∑

[1− n sin(1/n)];
∑

log(n sin(1/n)).

∑

an where an equals 1/n if n is a square and equals 1/n2 if n is not a
square.

∑

an where an equals 1/n2 if n is odd and −1/n if n is even.

126. if
∑

an is a convergent series of positive terms, show that the series
∑√

anan+1converges.
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127. If the series
∑

an is absolutely convergent, show that the following series
are also convergent. For the second eeries below we assume that all the
a’s are different from −1.

∑

a2n;
∑ an

1 + an
;

∑ a2n
1 + a2n

.

128. Evaluate the following limits using L’Hopital when needed.

lim
x→0

log(cos ax)

log(cos bx)
. lim

x→1

n
∑

1
xk − n

x− 1
. lim

x→0+

x− sin x

(x sin x)3/2
.

lim
x→a

√
x−√

a+
√
x− a√

x2 − a2
. lim

x→1+

xx − x

1− x+ log x
lim
x→∞ x1/x.

129. Taking the help of Taylor, when needed (sometimes you do not need),
prove the following.

(i) For |x| < 1,

log(1 + x) = x− x2

2
+

x3

3
− x4

4
+ · · · .

log
1

1− x
=
∑ xn

n
.

1

2
log

1 + x

1− x
=

∞
∑

1

x2n−1

2n− 1
.

(1 + x) log(1 + x) = x+
∞
∑

2

(−1)n
xn

n(n− 1)
.

log(x+
√
1 + x2) = x− 1

2

x3

3
+

1

2

3

4

x5

5
+ · · ·

+(−1)n+11× 3× 5× · · · × (2n− 1)

2nn!

x2n+1

2n+ 1
+ · · · .

(ii) For x ∈ R,

(1 + x)e−x = 1 +
∞
∑

2

(−1)n−1n− 1

n!
xn
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ex − 1

x
= 1 +

x

2!
+

x2

2!
+ · · ·+ xn−1

n!
+ · · ·

sin2 x =
2x2

2!
− 23x4

4!
+

25x6

6!
− · · ·+ (−1)n−12

2n−1x2n

(2n)!
+ · · · .

cos2 x = 1 +
1

2

∞
∑

1

(−1)n
(2x)2n

(2n)!
.

ex sin x = x+ x2 +
2x3

3!
− 4x5

5!
+ · · ·

I do not think the general term is ±(n− 1)xn/n!, have not checked.

130. Starting from z0 = 2 use newton’s approximation for finding
√
2. Cal-

culate the first ten approximations using acalculator. Square them and
see.

Do the same thing for 3
√
2 starting from 2 again.

131. We defined uniform convergence of a sequence of functions, uniform
continuity of a function. Here is another ‘uniformity’ phenomenon.

Let f be a function differentiable on [0, 1]. Thus at zero and one the
left and right derivatives exist Asssume that f ′ is continuous. Show
the following. Given ǫ > 0, there is a δ > 0 such that

x, a ∈ [0, 1]; x 6= a; |x− a| < δ ⇒
∣

∣

∣

∣

∣

f(x)− f(a)

x− a
− f ′(a)

∣

∣

∣

∣

∣

< ǫ.

This verifies the ratio [f(x)−f(a)]/[x−a] converges to f ′(a). However
given ǫ > 0, we can find δ that works for all point intervals in this
interval.

132. Is the function f(x) = sin(1/x) uniformly continuous on the interval
(0, 1). What about the function g(x) = x sin(1/x) on the same interval
(0, 1). Is the function f(x) = sin(1/x) uniformly continuous on the
interval (1,∞)?

133. This exercise is not difficult. However, if you do not want to do, it is
fine.

(i) For 0 < a ≤ 1 put

ζ(s, a) =
∞
∑

0

(n+ a)−s.
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Show that the series converges absolutely for s > 1. the function
ζ(s) = ζ(s, 1) is the Riemann zeta function. Prove

k
∑

h=1

ζ

(

s,
h

k

)

= ksζ(s).

Prove ∞
∑

1

(−1)n−1 1

ns
= (1− 21−s)ζ(s); s > 1.

(ii) If
∑

an is a convergent series of positive numbers show that the
series

∑√
an n−p converges for p > 1/2.

(iii) Just like Cauchy product of power series, we can talk about product
of Dirichlet series. Suppose that

A(s) =
∞
∑

1

an
ns

; B(s) =
∞
∑

1

bn
ns

are two absolutely convergent Dirichlet series. Show that

∞
∑

1

cn
ns

= A(s)B(s); cn =
∑

d|n
adbn|d.

(iv) Show that for the Riemann zeta function ζ(s) satisfies,

ζ2(s) =
∞
∑

1

d(n)

ns
,

where d(n) is the number of divisors of n — including 1 and n.
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