
CMI(BSc I/2013) Calculus/Analysis Third Week

discussion of HA2.

Q7: Expansions to base other than 10 (to which we are used to) are also
important. The basic idea is same as for the decimal expansion. For example,
here is how you get binary expansion. If x = 0 take all digits zero. Let us
consider x, 0 < x ≤ 1.

Divide the interval (0, 1] into two parts: (0, 1/2] and (1/2, 1]. If x is in the
first part (left) declare ǫ1 = 0 and if it is in the second part (right) declare
it to be 1. Observe |x − ǫ/2| ≤ 1/2. Divide each of these two first level
intervals into two halves. Declare ǫ2 = 0 or 1 according as the point x is in
the left or right second level intervals within the first level interval. Observe
|x− ǫ1/2− ǫ2/2

2| ≤ 1/22. continue and complete proof.
Again the division points are esentially the ones having more than one

expansion.

Q9: To show that a non-empty set bounded below has greatest lower
bound.

Take all lower bounds of S, denote this set by T .
Is T non-empty? Yes, by hypothesis there are lower bounds for S.
Is T bounded above? Yes, any point x ∈ S is an upper bound, because if

y is any lower bound of S then y ≤ x for every point x of S.
Let z be least upper bound of T .
Is z a lower bound of S? Yes, if there is a x ∈ S such that x < z, then

every poiny of S being an upper bound of T , we see z can not be least upper
bound of T , a contradiction.

Is z greatest lower bound of S? Yes, If there is a lower bound y of S with
z < y then y ∈ T and z is not an upper bound of T , a contradiction.

Q14: Given s is lub of A and t is lub of B, to show s + t is the lub of
C = {x+ y : x ∈ A, y ∈ B}.

Is s + t an upper bound of C? Yes, if x ∈ A and y ∈ B, then x ≤ s and
y ≤ t so that x+ y ≤ s+ t.

Let ǫ > 0. Are there points of C above s+ t− ǫ? (we are using the crite-
rion already derived for lub). Yes, because there is x ∈ A with x > s − ǫ/2
and y ∈ B with y > t− ǫ/2. This x+ y ∈ C will do.
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Q13: We now have C = {xy : x ∈ A; y ∈ B}. Of course we were told A
and B have only positive numbers.

If A or B consists of only one point, namely, {0} then easy to see that C
also consists of one point {0} and so the result is true. We assume that both
A and B have strictly positive numbers. Hence s > 0 and t > 0.

Is st an upper bound of C? Yes everything being positive x ≤ s and y ≤ t
implies that xy ≤ st.

Let ǫ > 0, Are there points of C above st− ǫ. (we are using the criterion
for lub derived already). We can safely assume that st − ǫ > 0, otherwise
any non-zero point of C would do. Since we are in the ‘multiplicative set
up’ (an intuitive expression, just to motivate what we are doing), we shall
write st− ǫ as αst with 0 < α < 1. We are just saying take α = (st− ǫ)/st.
Express α = α1α2 with 0 < α1 < 1 and 0 < α2 < 1. Can we do this?
Yes. If you wish take

√
α as both α1 and α2. (Did you realize we are imi-

tating the ǫ/2 argument of the previous ‘additive set up’?). Of course, you
can take any α2 with 0 < α < α2 < 1 and put α1 = α/α2. Since α1s < s
and α2t < t get x ∈ A and y ∈ B with x > α1s and y > α2t so that xy > αst.

Is this result true without assuming that we have sets of positive num-
bers? Not necessarily, take A = B = [−1, 0].

set operations.

In the last class we talked about cardinality of sets, countable union of
sets etc. Since some of you are not sure about set theoretical jargon, let us
briefly digress a little bit and recall certain definitions and notations.

As I said in the first class, we shall not define what is a set. We still
proceed with our understanding that a set is a well-defined collection of
objects. Given something, we should be able to say whether it is in the set
or not. If we can not tell, then we do not know what our set is. In that
case any discussion of such a set does not make sense (essentially because,
we would not know what we are discussing about!)

I have used too much English, but do not worry. We can, if challenged,
precisely define what a set is. But we decided not to do it now.

Suppose A is a set. To express that an object x is in the set A, we use
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x ∈ A. To say x is not in the set A we use x 6∈ A.
Suppose A and B are two sets. We say A ⊂ B (read: A is a subset of B,

or A is contained in B) in case the following happens: whenever an object
is in A, then it is in B also. In symbols x ∈ A implies x ∈ B. Sometimes
the same thing is expressed by writing B ⊃ A (read: B is superset of A or
B contains A or B includes A). For example

1

2
∈ (0, 1); 2 6∈ (0, 1); (0, 1) ⊂ [0, 1]; [0, 1] ⊃ (0, 1).

Suppose A and B are two sets. Then their union is the collection of all
objects which either belong to the set A or objects which belong to the set
B. This union includes all objects which are in both the sets, because such
an object satisfies both the clauses. In symbols

A ∪B = {x : x ∈ A or x ∈ B}

The intersection of the two sets, is the collection of those objects which belong
to both the sets. In symbols

A ∩ B = {x : x ∈ A and x ∈ B.}

The concepts of union and intersection can be defined for any collection
of sets, not necessarily two. Suppose I have a collection of sets. Then their
union is the set of all objects which belong to at least one of the sets in the
collection. The intersection of the collection of sets consists of those objects
which belong to all sets in the collection.

If we have a sequence of sets A1, A2, · · ·, one set for each n ∈ N , we denote
their union by A1 ∪A2 ∪A3 ∪ · · · or ∪An or

⋃

n≥1

An. Similar notation is used

for intersection; A1 ∩ A2 ∩ A3 ∩ · · · , or ∩An or
⋂

n≥1

An.

Real Numbers.

Some of you may still not be feeling comfortable with our real numbers.
After all, we are used to thinking real numbers 3, 355/576,

√
29 as ‘real’ things

(with flesh and blood, as if). But now I said: take a set R with the opera-
tions of addition +, multiplication ·, and comparision <, satisfying the rules
we prescribed; and elements of the set are called real numbers. You might
feel some sheen has disappeared. Before giving further explanation, let me
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remind you the following. We have immediately observed that whatever we
have so far done (or are doing) with numbers are all correct with our present
rules and so we can continue doing without any hesitation. The geometric
picture that we have in mind representing numbers as points on a line is
still correct and we continue to think of numbers placed on a line. There is
absolutely no cause for alarm.

To re-inforce these things, we have also agreed to denote the multiplica-
tive identity by the usual 1; 1 + 1 by the usual 2, 1 + 1 + 1 by the usual 3
and so on; the same things we have been using all along. The number which
when multiplied by 5 gives 1, is still denoted by 1/5. We did not bring any
unknown notation or novel objects. Thus keep away any fears you may have.

Then why did we do this? The answer lies in the first lecture. We want
to understand what we are talking about. It is important to have a clear
(at least, as clear as possible) idea of real numbers. Let us not enter into
philosophy, but just pause for a moment to think. Afterall, you see green
coloured shirt, green coloured sari, green coloured leaf and from these you
abstract (without your knowledge) the concept ‘green colour’ and use this
word. Really speaking, you never see green colour in practice (closest to see-
ing green colour is experiments with prism). Again by seeing green colour,
red colour, yellow colour etc you make a further abstraction and invent the
concept of colour. You never see something and say ‘yes, this is colour’. In
the same way ‘three’ is an abstraction. You can have three apples, you can
have three goats, but you never have just three. Afterall, what is ‘three’;
think about it; some write it as 3 and some as III; there are still other ways
of writing it.

In a sense, we have laid down the ground rules, that is all, no more. We
have made clear to ourselves, what can be assumed and what can not be.
Did not our school teachers lay down the rules? Whatever they taught us is
completely correct, there is nothing wrong. They did an excellent job. We
have been given working knowledge, we have been working with numbers
without making mistakes. Did we understand fully why certain things work.
Let me give an example.

One of the simplest things we learnt is addition. To add 7 and 8 we did
the following: kept eight fingers in mind, opened seven fingers, Thus we have
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7 and 8. we need to put them together to add. So started counting after the
eight fingers 9, 10, · · · , 15. Suppose you wanted to add 67 and 58. Then how
do we go? Strictly speaking, we should bring 67 things, say beads, and 58
beads; put them together and count the total. But some one was smart and
found out that there is a simpler way. You can carry out this procedure by
adding just single digits at a time. Thus you add 7 + 8 = 15, put down 5
and say 1 is carried over. Then you add digits at the next place 6 + 5 = 11
and now add the carry over to this to get 11 + 1 = 12. Put it down getting
the answer 125. Did we ever ask: what is this carry over? why does this
method give correct answer? It was not expected at such an immature level.
Of course, we are now mature and should ask. Should we not? Similarly,
if we want to multiply 67 by 58 we should bring 58 bundles of beads each
bundle having 67 beads; put all of them together and count. But some smart
fellow found a better way, is it not?

When you learn matrices, you find that sometimes xy = yx is false! But
this is one of our rules for numbers. As you learn more, you will find more
and more funny things.

sequences.

After understanding numbers, there are two paths one can take. Some
enter the path of continuous functions, differentiable functions; and integra-
tion and then turn to sequences and series of numbers. Others enter the
path of sequences, series and then turn to functions. Both paths are fine,
but I prefer the second path. This is because, I believe that sequences are
simpler than functions. There is something in support of the first path too.
In school, you probably never used the word sequence; but you definitely
used the word function. You are familiar with sine, cosine, exponential func-
tions. So perhaps taking the first path may appear as continuation of the
high school course.

I consider ‘sequences’ as still understanding numbers. Let us consider real
numbers. How many can we see? Well, all rational numbers 4/5 or 889/101
etc. Can we name others? Yes, for example you can show that exactly one
positive number satisfies x2 − 2 = 0 and you can say consider that number.
Or you can show that there are exactly two positive numbers satisfy the
equation x4− 5x2+6 = 0 and you can say consider larger of the two positive
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numbers that satisfy this equation. In other words, you can name algebraic
numbers.

If you are allowed geometric constructions, you can show that for any
circle, the ratio of circumference to diameter, does not depend on the circle
and you can ask me to consider that ratio. But at this moment let us not
talk about geometric constructions.

Thus, there are very few numbers which we can name. How do we name,
understand, and work with other numbers. How do we discover numbers?
Afterall, there are uncountably many numbers which are not algebraic. We
follow the usual procedure, an unknown thing is described in terms of known
things. We show that every number has a sequence of rational numbers
converging to it (and only to it), thus explaining that number in terms of
rationals. Of course, such a description is too general to be of value. Better
descriptions give better understanding. We shall also use sequences to dis-
cover new numbers.

What is a sequence.
Definition: A sequence is a function f : N = {1, 2, · · ·} → R. We are

talking only about sequences of real numbers. Later (when we are more ma-
ture) we talk about sequences of functions etc.

Since it is a function defined on a very simple set, one uses a better
notation than the abstract symbol f . Let us denote the value f(n) by xn.
The sequenec is denoted as (xn) or {xn} or (xn : n ≥ 1) etc. The meaning
is that it is the function whose value at n is the number xn. In other words,
we specify the value at n, namely, xn call it the n-th term of the sequence.
Here are some examples:

x1 = 1, x2 = 1/2, x3 = 1/3, · · · , xn = 1/n or { 1
n
}.

x1 = −1, x2 = 1/2, x3 = −1/3, · · · , xn = (−1)n1/n or {(−1)n
1

n
}.

x1 = −1, x2 = +1, x3 = −1, · · · xn = (−1)n or {(−1)n}.

x1 = (1/2), x2 = (1/2)2, x3 = (1/2)3, · · · xn = (1/2)n or { 1

2n
}.
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Remember the word sequence has within it an implicit order on the terms.
You have to distinguish it from the set which you may think of by putting all
the values xn together. For example, for the first sequence above, if you make
a set by putting all the terms you get the set {1, 1/2, 1/3, · · ·} but there is
no implicit order on the members of this set. Just because you have written
in a particular order, you should not be under the illusion that there is an
order and that everyone would write in the same order. A set is simply a
collection of objects and there is no a priori order for its elements. If you
consider the third sequence above, the set consists of just two points {±1}.
The first sequence above is different from the sequence

x1 = 1/2, x2 = 1, xn = 1/n for n ≥ 3.

There is something interesting with the first sequence. If you plot them on
the number line, then the numbers of the sequence are getting closer and
closer to zero. So is the second sequence. Sometimes it is to the left of zero
and sometimes it is to the right of zero. But no matter which side it is, the
numbers are getting again closer and closer to zero. On the other hand, the
third sequence does not get closer to any number what-so-ever. We shall
make this concept of ‘getting closer to something’ precise and give a name
to it.

Definition: A sequence (xn) is said to converge/ approach/tend to a num-
ber x if given any ǫ > 0 there exists an integer n0 such that |xn − x| < ǫ for
all n ≥ n0. That is, x− ǫ < xn < x+ ǫ for all n ≥ n0. We write xn → x.

What this means is the following: No matter what the amount of error
prescribed is, the terms of the sequence are for ever close to x after some
stage, close meaning within the error prescribed. If the error prescribed is
ǫ > 0 the terms are within x− ǫ to x+ ǫ. The only thing to note is that we
do not allow ǫ to be zero.

if you do not like error etc, you can think of x − ǫ and x + ǫ as walls
built around x. Thus no matter what walls are erected around the point x,
the sequence stays within the two walls eventually. Of course, you may say
we have symmetrically placed walls, at x− ǫ and x+ ǫ. It does not matter,
suppose that you give me any walls, say x − δ1 and x + δ2 around x, where
δ1, δ2 > 0. We take ǫ = min{δ1, δ2} and apply the definition to get an n0 and
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observe that after the stage n0 the sequence stays within the given walls.

Definition: We say that a sequence (xn) is convergent if there is some
number x such that xn → x.

Let us first show that a sequence can not converge to two different limits.

Fact: Suppose that xn → x and xn → y. Then x = y.

Proof: if possible let x < y. Then take ǫ = (y − x)/2 > 0. Then both
the intervals (x − ǫ, x + ǫ) and (y − ǫ, y + ǫ) should contain the sequence
eventually. But the intervals are disjoint and this can not happen.

Examples:
The sequence (1/n) converges to zero.

In fact given any ǫ > 0, we already knew that there is an integer n0 such
that n0 > 1/ǫ, that is, 1/n0 < ǫ. But then −ǫ < 1/n < ǫ for all n ≥ n0.

Fact: Fix number 0 < a < 1. The sequence (an) converges to zero.

In particular. the sequence (1/2n) converges to zero.

Let 1/a = 1 + h where h > 0. Remember, (1 + h)n ≥ nh, by binomial
expansion, so that

an = (
1

1 + h
)n ≤ 1

n

1

h
.

Given ǫ > 0 we can choose n0 so that 1/n < ǫh for all n ≥ n0. For this n0

we see an < ǫ for all n ≥ n0.

Sometimes careful observation of the proof gives better results.
If 0 < a < 1, the sequence (nan) converges to zero.

Use exactly same steps as above. But say (1 + h)n ≥
(

n

2

)

h2

nan = n(
1

1 + h
)n ≤ n

(

n

2

)h2 =
1

n− 1

2

h2

Given ǫ > 0, choose n0 so that 1/(n0 − 1) < ǫh2/2. this will do.
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If a > 1, then the sequence ( n

√
a) converges to 1.

Since n

√
a > 1, let n

√
a = 1 + hn where hn > 0. Thus

a = (1 + hn)
n ≥ nhn; hn ≤ a

n
→ 0.

Thus n

√
a = 1+ hn → 1. We have used the simple fact that 1+ hn → 1 using

that hn → 0.

When a = 1, clearly n

√
a = 1 and hence converges to 1. This happens also

for 0 < a < 1. This follows by a rseult we prove soon.

Example: n

√
n → 1.

This follows from careful observation of the earlier proof. Let n

√
n = 1+hn

where 0 < hn < 1 for n > 1. To see that hn < 1 just note that 2n > n. Thus
for n ≥ 2 we have

n = (1 + hn)
n ≥

(

n

2

)

h2

n
; h2

n
≤ n
(

n

2

) =
2

n− 1
→ 0.

Thus h2
n
→ 0. From this we can deduce that hn → 0 as follows. Let ǫ > 0

Choose n0 so that h2
n
≤ ǫ2 for n ≥ n0. Clearly then, 0 < hn < ǫ for n ≥ n0.

Definition: We say that a sequence (xn) is increasing if x1 ≤ x2 ≤ x3 ≤
· · ·. Of course, if you want to avoid using dots, then you can rephrase to say:
xn ≤ xn+1 for every n ≥ 1.

We say that a sequence (xn) is decreasing if x1 ≥ x2 ≥ x3 ≥ · · ·.
Of course, if you want to avoid using dots, then you can rephrase to say:
xn ≥ xn+1 for every n ≥ 1.

A sequence is monotone if it is either increasing or decreasing sequence.
Note that in the definition of increasing sequence we did not use strict in-
equalities. Thus a constant sequence is both increasing and decreasing. In
fact, if a sequence (xn) is both increasing and decreasing, then there is a
number a such that xn = a for every n ≥ 1.
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Definition: A sequence is bounded above if the set consisting of terms
of the sequence is bounded above. Similarly, we can define the concept of
bounded below and bounded.

The sequence xn = 1/n is a decreasing sequence. The sequence yn =
(−1)n is not monotone. Both sequences are bounded. Note that for the
sequence (yn) the set consisting of its terms has only two members in it,
namely +1 and −1. If zn = 1/n when n is odd, zn = −n when n is even;
then the sequence (zn) is bounded above but not bounded below. Here is an
important fact.

Fact:Every increasing sequence which is bounded above is convergent, in

fact, it converges to its supremum.

Proof: Let (xn) be an increasing sequence and s be its supremum. Let
ǫ > 0. We show n0 such that xn ∈ (s− ǫ, s+ ǫ) for all n ≥ n0. This is easy.
Since s − ǫ is not an upper bound for the sequence, there is a term of the
sequence, say xn0

> s − ǫ. The sequence being increasing we conclude that
xn > s− ǫ for all n ≥ n0. Of course, xn ≤ s < s+ ǫ for all n.

Fact:Every decreasing sequence which is bounded below is convergent, in

fact, it converges to its infimum.

Example: Let

x1 = 1; xn = 1 +
1

1!
+

1

2!
+

1

3!
+ · · ·+ 1

(n− 1)!
, n ≥ 1.

Then the sequence (xn) is increasing and bounded above and hence converges.

xn+1 = xn +
1

n!

shows that the sequence is increasing. Since n! = 1 · 2 · 3 · 4 · · ·n ≥ 2n−1, we
see using sum of finite geometric series,

xn = 1 + 1 +
1

2
+

1

22
+

1

23
+ · · ·+ 1

2n−2
≤ 3.

The limit of this sequence is denoted by e.
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Example: Let

yn = (1 +
1

n
)n.

Then the sequence (yn) is increasing and bounded above and hence converges.

Proof: Using binomial theorem

yn = 1 +

(

n

1

)

1

n
+

(

n

2

)

1

n2
+ · · ·+

(

n

n

)

1

nn

= 1 + 1 + +
1

2!
(1− 1

n
) +

1

3!
(1− 1

n
)(1− 2

n
) + · · ·

+
1

n!
(1− 1

n
) · · · (1− n− 1

n
).

Observe that yn+1 is obtained by replacing n by n+ 1. In particular, we see
that yn+1 has one extra positive term than yn. Moreover each of the preced-
ing terms are more than the corresponding terms of yn. Thus the sequence
is increasing. We also see that yn ≤ xn+1 and since the (xn) sequence is
bounded above, we conclude that the same bound shows that (yn) sequence
is bounded above too.

Soon we shall see that the limit of this sequence is also same as the earlier
number e.

First let us ask if the notion of convergence is friendly with the operations
we have. For example if two sequences converge, would their ‘sum sequence’
converge to the expected number? Yes.

Fact: Suppose xn → x and yn → y.
Then xn + yn → x+ y; −xn → −x; xn − yn → x− y
Heere by the sequence (xn + yn) we mean the obvious thing, namely, the

sequence whose n-th term is xn + yn.

Proof: Let ǫ > 0. We show n0 such that |(xn + yn)− (x + y)| < ǫ for all
n ≥ n0. To do this, get m such that |xn−x| < ǫ/2 for n ≥ m and get k such
that |yn − y| < ǫ/2 for n ≥ k. Take n0 = max{m, k}. If n ≥ n0, then

|(xn + yn)− (x+ y)| ≤ |xn − x|+ |yn − y| ≤ ǫ

2
+

ǫ

2
= ǫ.
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Since |(−xn) − (−x)| = |xn − x| second statement is clear. Either you can
repeat the above proof for xn−yn or use the first two statements toi conclude
the third statement.

The concept of convergence is friendly with multiplication also. First we
need to observe an auxiliary fact of independent interest.

Fact: A convergent sequence is bounded.

Proof: Let xn → x. Taking ǫ = 1, first get n0 so that |xn − x| ≤ 1 for
n ≥ n0. Thus we have |xn| ≤ |xn − x|+ |x| ≤ |x|+ 1 Thus the number

M = max{|x|1, |x|2, · · · , |x|n0
, |x|+ 1}

will show boundedness of the sequence.

Fact: Suppose xn → x and yn → x. Then xnyn → xy.
If each xn 6= 0 and x 6= 0, then 1/xn → 1/x.
As earlier (xnyn) is the sequence whose n-th term is the product xnyn.

Similarly (1/xn).

Proof: Let ǫ > 0. We show n0 such that for |xnyn − xy|ǫ for n ≥ n0.
Furst observe that

|xnyn − xy| ≤ |xnyn − xny + xny − xy| ≤ |xn||yn − y|+ |y||xn − x|.

Since the convergent sequence (xn) is bounded, fix M such that |xn| ≤ M
for all n. Choose m and k so that

|yn − y| ≤ ǫ

2(M + 1)
, n ≥ m; and |xn − x| ≤ ǫ

2(|y|+ 1)
, n ≥ k.

Choose n0 = max{m, k} and verify this does.
To prove the second part, observe

| 1
xn

− 1

x
| = |xn − x|

|xn||x|
.

First we show that there is a number a > 0 such that |xn| ≥ a for all n and
|x| ≥ a. If this is done we can argue required convergence as follows. Fix
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ǫ > 0. Since xn → x, fix n0 such that |xn − x| ≤ a2ǫ for n ≥ n0. This will do
in view of the equality displayed above and the fact that 1/(|xnx| is at most
1/a2.

But to get such an a is easy. Let us consider the case x > 0. get n0 such
that xn ∈ (x/2, 3x/2) for n ≥ n0 (if you take ǫ = x/2 then this interval is
just (x− ǫ, x+ ǫ)). Thus xn > x/2 for all n ≥ n0. Now take a as

a = min{|x1|, |x2|, · · · , |xn0
|, x
2
}.

This completes the proof.
Finally, does convergence respect order relation? It respects ≤ and ≥ but

not < and >.

Fact: Suppose xn → x and yn → y.
If xn ≤ yn for each n then we have x ≤ y.
If xn < yn for each n, we can not in general conclude that x < y.

Proof: The second statement is easily observed by taking xn = 0 for all
n and yn = 1/n. To prove the first statement, it is enough to show that if
zn → z and each zn ≤ 0, then z ≤ 0. If z > 0, then you see that the interval
(z/2, 3z/2) does not contain any point of our sequence, because z/2 > 0.
Now take zn = xn − ynand conclude the result.

Fact: Limit of the sequence yn = (1 + 1

n
)n is also e.

Proof: Recall that e is the name given to the limit of the sequence (xn)
where

xn = 1 + 1 +
1

2!
+

1

3!
+ · · ·+ 1

(n− 1)!
.

We have seen that yn ≤ xn+1 so that lim yn ≤ lim xn+1 = e. If we show that
lim yn ≥ e we can conclude equality. For this it is enough to show that , for
each k the following holds.

lim yn ≥ 1 + 1 +
1

2!
+

1

3!
+ · · ·+ 1

k!
.

Because, the right side is xk+1 and if it is smaller than the number lim yn for
each k then so will be the sup of the sequence xk+1 and this is precisely e.
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For every n > k we have

yn = 1 + 1 + +
1

2!
(1− 1

n
) +

1

3!
(1− 1

n
)(1− 2

n
) + · · ·

+
1

n!
(1− 1

n
) · · · (1− n− 1

n
).

≥ 1 + 1 + +
1

2!
(1− 1

n
) +

1

3!
(1− 1

n
)(1− 2

n
) + · · ·

+
1

k!
(1− 1

n
) · · · (1− k − 1

n
).

Since k is fixed, let us denote the last expression by zn. Thus we have yn ≥ zn
for every n > k. Whatever be n, the number zn is sum of a fixed number
k + 1 terms and each term converges , so

lim zn = 1 + 1 + +
1

2!
) +

1

3!
+ · · ·+ 1

k!
.

Since yn ≥ zn for all n ≥ k we conclude (?) that lim yn ≥ lim zn completing
the proof.

We have only proved that if xn ≥ yn for every n, and if limits exist, then
lim xn ≥ lim yn. But is this true if we only have xn ≥ yn only for n > k?
Yes, consider the sequences un = xk+n and vn = yk+n for n ≥ 1. then we see
un ≥ vn for every n. The question is whether these new sequences have the
same limits as the original ones? Yes. This is easy.

Fact: Limits will not change if we delete or add or alter finitely many

terms. That is Let xn → x.
Put un = xn+10000 for n ≥ 1. Then un → x.
Let vn = xn−10000 for n > 10000 and any numbers of your choice for

n ≤ 10000. then vn → x.
Let wn = xn for n > 10000 and any numbers of your choice for n ≤ 10000

Then wn → x.

Proof: Do it.

Fact: Given any real number x, there is a sequence of rational numbers

(rn) such that rn → x.
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You can take a rational rn in the interval In = (x− 1

n
, x+ 1

n
). This will do

because, given any ǫ > 0, you get n0 such that 1/n0 < ǫ then for any n > n0

the interval In is contained in In0
which is contained in (x− ǫ, x+ ǫ).

Alternatively you can consider the decimal expansion. For example if
x > 0 and x = n · ǫ1ǫ2 · · · and consider the sequence of rationals

n, n+
ǫ1
10

, n+
ǫ1
10

+
ǫ2
102

, · · · .

Actually, each of the expansions, including the continued fraction expansion,
are providing a simple sequence of rationals converging to the number x.

If you wish you can get an increasing sequence of rationals as follows.
Pick a rational r1 in I1 = (x− 1, x). If r1 < x− 1/2 then choose a rational r2
in I2 = (x− 1/2, x). If r1 > x− 1/2, then choose r2 in (r1, x) and continue.
You should be able to write down and show that the resulting sequence is
increasing and converges to x.

You can also do the following. Choose a rational sn ∈ (x − 1/n, x). Of
course, the sequence (sn) is definitely converging to x but need not be in-
creasing. so put rn = max{s1, s2, · · · , sn}. This sequence would do.

Thus every real number can be explained using appropriate sequence of
rational numbers. This will be a way of discovering new numbers as hap-
pened with e.

Yu must keep in mind that the theorem above is only a reassurance that
every number has rational numbers as close to it as we please. It is only
theoretical, in the sense, each of them assumes that you know the number
before hand. for example, the first method asks you to take a number within
x−1/n and x+1/n. This is possible only if you already knew the number x.
For example how do you pick up such a rational in (e−0.000001, e+0.000001).

Similarly, the decimal expansion method works if you already knew the
decimal expansion. Of course we do not know. so this theorem is only a
reassurance that the rational numbers we all know can be used to describe
other numbers.
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