
CS364A: Algorithmic Game Theory

Lecture #14: Robust Price-of-Anarchy Bounds in

Smooth Games∗

Tim Roughgarden†

November 6, 2013

1 Canonical POA Proofs

In Lecture 12 we proved that the price of anarchy (POA) in every atomic selfish routing game
with affine cost functions is at most 5

2
. To review, the proof had the following high-level

steps.

1. Given an arbitrary pure Nash equilibrium (PNE) s, the PNE hypothesis is invoked
once per player i with the hypothetical deviation si

∗, where s∗ is an optimal outcome,
to derive the inequality Ci(s) ≤ Ci(si

∗, s−i) for each i. Importantly, this is the only
time that the PNE hypothesis is invoked in the entire proof.

2. The k inequalities that bound individuals’ equilibrium costs are summed over the
players. The left-hand side of the resulting inequality is the cost of the PNE s; the
right-hand side is a strange entangled function of s and s∗ (involving terms of the form
fef

∗

e ).

3. The hardest step is to relate the entangled term
∑k

i=1 Ci(si
∗, s−i) generated by the

previous step to the only two quantities that we care about, the costs of s and s∗.
Specifically, we proved an upper bound of 5

3
cost(s∗) + 1

3
cost(s). Importantly, this step

is just algebra, and is agnostic to our choices of s and s∗ as a PNE and an optimal
outcome, respectively.

4. Solve for the POA. Subtracting 1
3
· cost(s) from both sides and multiplying through by

3
2

proves that the POA is at most 5
2
.
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Figure 1: Location game with 3 locations (F ), 2 markets (M) and 2 players.

This proof is canonical, in a sense that we formalize in this lecture. Many other POA proofs
are canonical in the same sense. The main point of this lecture is that POA proofs that
follow this general recipe automatically generate “robust POA bounds.” That is, the proved
guarantee applies not only to all PNE of the game, but also to, among other things, all of
its coarse correlated equilibria — the biggest set of equilibria defined in the last lecture.

2 A Location Game

Before proceedings to the general theory, it will be helpful to have another concrete example
under our belt. Consider a location game with the following ingredients:

• A set F of possible locations. These could represent possible locations to build a Web
cache in a network, an artisinal chocolate shop in a gentrifying neighborhood, and so
on.

• A set of k players. Each player i chooses one location from a set Fi ⊆ F from which
to provide a service. All players provide the same service; they differ only in where
they are located. There is no limit on the number of markets that a player can provide
service to.

• A set M of markets. Each market j ∈ M has a value vj that is known to all players.
This is the market’s maximum willingness-to-pay for receiving a service.

• For each location ℓ ∈ F and market j ∈ M , there is a known cost cℓj of serving j

from ℓ. This could represent physical distance, the degree of incompatibility between
two technologies, and so on.

Given a strategy profile — a location choice by each player — each player tries to capture
as many markets as possible, at the highest prices possible. To define the payoffs precisely, we
start with an example. Figure 1 shows a location game with F = {1, 2, 3} and M = {1, 2}.
There are two players, with F1 = {1, 2} and F2 = {2, 3}. Both markets have value 3. The
cost between location 2 and either market is 2; locations 1 and 3 have cost 1 to the nearer
market (1 and 2, respectively) and infinite cost to the other market.

Continuing the example, suppose the first player chooses location 1 and the second player
chooses location 3. Then, each player has a monopoly in the market that they entered. The
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only thing restricting the price charged is the maximum willingness-to-pay of the market.
Thus, each player can charge 3 for its service to its market. Since the cost of service is 1 in
both cases, both players have a payoff of 3 − 1 = 2.

Alternatively, suppose the first player switches to location 2, while the second player
remains at location 3. Player 1 still has a monopoly in market 1, and thus can still charge 3.
Its service cost has jumped to 2, however, so its payoff from that market has dropped to 1.
In market 2, player 2 can no longer charge a price of 3 without consequence — at any price
strictly bigger than 2, the player 1 can profitably undercut the price and take the market.
Thus, player 2 will charge the highest price it can get away with, which is 2. Since its cost
of serving the market is 1, player 2’s payoff is 2 − 1 = 1.

In general, in a strategy profile s of a location game, the payoff of player i is defined as

πi(s) =
∑

j∈M

πij(s),

where, assuming that C is the set of chosen locations and i chooses ℓ ∈ C,

πij(s) =

{

0 if cℓj ≥ vj or ℓ is not the closest location of C to j

d
(2)
j (s) − cℓj otherwise,

(1)

where d
(2)
j (s) is the highest price that player i can get away with, namely the minimum of vj

and the second-smallest cost between a location of C and j.1

The payoff πij(s) is thus the “competitive advantage” that i has over the other players
for market j, up to a cap of vj minus the service cost. The definition in (1) assumes that
each market is served by the potential provider with the lowest service cost, at the highest
competitive price. This assumption can also be justified from first principles by setting up
a three-stage game and proving that its “subgame perfect equilibria” have these properties;
see [2] for more details.

The objective function in a location game is to maximize the social surplus. The surplus
V (s) of a strategy profile s — a location choice by each player — is defined as

V (s) =
∑

j∈M

vj − dj(s), (2)

where dj(s) is the minimum of vj and the smallest cost between a chosen location and j. The
definition (2) assumes that each market j is served by the chosen location with the smallest
cost of serving j, or not at all if this cost is at least vj.

Note that the surplus V (s) depends on the strategy profile s only through the set of
locations chosen by some player in s. Indeed, the definition (2) makes sense more generally
for any subset of chosen locations T , and we sometimes write V (T ) for this quantity.

The rest of this section proves that every PNE of every location game has social surplus
at least 50% times that of an optimal outcome.

1In contrast to selfish routing games, these location games are most naturally described as payoff-
maximization games. POA bounds are equally interesting in both formalisms. The POA of a payoff-
maximization game is at most 1, the closer to 1 the better.
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Theorem 2.1 ([3]) The POA of every location game is at least 1
2
.

We next identify three properties possessed by every location game; these are the only
properties that our proof of Theorem 2.1 relies on.2

(P1) For every strategy profile s, the sum
∑k

i=1 πi(s) of players’ payoffs (i.e., the net revenue)
is at most the social surplus V (s).

This follows from the fact that each j ∈ M contributes vj − dj(s) to the surplus and

d
(2)
j (s) − dj(s) to the payoff of the closest location, and that d

(2)
j (s) ≤ vj by definition.

(P2) For every strategy profile s, πi(s) = V (s)−V (s−i). That is, a player’s payoff is exactly
the extra surplus created by the presence of its location.3

To see this property, observe that the contribution of a particular market j to the right-
hand side V (s)−V (s−i) is the extent to which the closest chosen location to j is closer in
s than in s−i (with the usual upper bound vj), namely min{vj, dj(s−i)}−min{vj, dj(s)}.
This is zero unless player i’s location is the closest to j in s, in which case it is

min{vj, d
(2)
j (s)} − min{vj, dj(s)}. (3)

Either way, this is precisely market j’s contribution πij(s) to player i’s payoff in s.
Summing over all j ∈ M proves the property.

(P3) The function V (·) is monotone and submodular, as a function of the set of chosen
locations. Monotonicity just means that V (T1) ≤ V (T2) whenever T1 ⊆ T2; this
property is evident from (2). Submodularity is a set-theoretic version of diminishing
returns, defined formally as

V (T2 ∪ {ℓ}) − V (T2) ≤ V (T1 ∪ {ℓ}) − V (T1) (4)

for every location ℓ and subsets T1 ⊆ T2 of locations (Figure 2).

Submodularity follows immediately from our expression (3) for the surplus increase
caused by one new location ℓ — the only interesting case is when ℓ is closer to a
market j than any location of T2, in which case the bigger the set of locations to which
ℓ is being added, the smaller the value of d

(2)
j (s) and hence of (3).

Proof of Theorem 2.1: We follow the same four-step outline we used for atomic selfish routing
games in Lecture 12 (see Section 1). Let s denote an arbitrary PNE and s∗ a surplus-
maximizing outcome. In the first step, we invoke the PNE hypothesis once per player, with
the outcome s∗ providing hypothetical deviations. That is, since s is a PNE,

πi(s) ≥ πi(s
∗

i , s−i) (5)

2Games that possess these three properties are sometimes called basic utility games [3].
3Note the similarity to VCG payments (Lecture 7). This equality implies that every location game

is a potential game (see Exercises). In our proof of Theorem 2.1, we only need the inequality πi(s) ≥
V (s)−V (s−i). Games satisfying this inequality and properties (P1) and (P3) are called valid utility games [3].
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Figure 2: Submodularity: adding ℓ to T2 yields a lower increase in value than adding ℓ to
T1 because T1 ⊆ T2.

for every player i. This is the only step of the proof that uses the assumption that s is a
PNE.

The second step is to sum (5) over all the players, yielding

V (s) ≥
k

∑

i=1

πi(s) ≥
k

∑

i=1

πi(si
∗, s−i), (6)

where the first inequality is property (P1) of location games.
The third step is to disentangle the final term of (6), and relate it to the only two

quantities we really care about, V (s) and V (s∗). By property (P2) of location games, we
have

k
∑

i=1

πi(si
∗, s−i) =

k
∑

i=1

[V (s∗i , s−i) − V (s−i)] . (7)

To massage the right-hand side into a telescoping sum, we add extra locations to the terms.
By submodularity of V (·) (property (P3)), we have

V (si
∗, s−i) − V (s−i) ≥ V (s∗1, . . . , s

∗

i , s) − V (s∗1, . . . , s
∗

i−1, s).

Thus, the right-hand side of (7) can be bounded below by

k
∑

i=1

[

V (s∗1, . . . , s
∗

i , s) − V (s∗1, . . . , s
∗

i−1, s)
]

= V (s∗1, . . . , s
∗

k, s1, . . . , sk) − V (s) ≥ V (s∗) − V (s),

where the inequality follows from the monotonicity of V (·) (property (P3)). This completes
the third step of the proof.

The fourth and final step of the proof is to solve for the POA. We’ve proved that

V (s) ≥ V (s∗) − V (s),

so
V (s)

V (s∗)
≥

1

2

and the POA is at least 1
2
. This completes the proof of Theorem 2.1. �
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3 Smooth Games

There is a general recipe for deriving POA bounds, which includes our analyses of atomic
selfish routing games and location games as special cases. There are also many other exam-
ples of this recipe that we won’t have time to talk about. The goal of formalizing this recipe
is not generalization for its own sake; as we’ll see, POA bounds established via this recipe
are automatically “robust” in several senses.

The following definition is meant to abstract the third “disentanglement” step in the
POA upper bound proofs for atomic selfish routing games and location games.

Definition 3.1 (Smooth Games)

1. A cost-minimization game is (λ, µ)-smooth if

k
∑

i=1

Ci(s
∗

i , s−i) ≤ λ · cost(s∗) + µ · cost(s) (8)

for all strategy profiles s, s∗.4 Here cost(·) is an objective function that satisfies
cost(s) ≤

∑k

i=1 Ci(s) for every strategy profile s.5

2. A payoff-maximization game is (λ, µ)-smooth if

k
∑

i=1

πi(s
∗

i , s−i) ≥ λ · V (s∗) − µ · V (s) (9)

for all strategy profiles s, s∗. Here V (·) is an objective function that satisfies V (s) ≥
∑k

i=1 πi(s) for every strategy profile s.6

Justifying a new definition requires examples and consequences. We have already seen
two examples of classes of smooth games; two consequences are described in the next section.
In Lecture 12, we proved that every atomic selfish routing game with affine cost functions is a
(5

3
, 1

3
)-smooth cost-minimization game. In Section 2, we proved that every location game is a

(1, 1)-smooth payoff-maximization game. The conditions (8) and (9) were established in the
third, “disentanglement” steps of these proofs. At the time, we had in mind the case where s
and s∗ are a PNE and an optimal outcome of the game, respectively, but the corresponding
algebraic manipulations never used those facts and hence apply more generally to all pairs
of strategy profiles.

4As long as (8) holds for some optimal solution s
∗ and all strategy profiles s, all of the consequences in

Section 4 continue to hold.
5In atomic selfish routing games, this inequality holds with equality.
6This is property (P1) of location games.
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4 Robust POA Bounds in Smooth Games

In a (λ, µ)-smooth cost-minimization game with µ < 1, every PNE s has cost at most λ
1−µ

times that of an optimal outcome s∗. To see this, use the assumption that the objective func-
tion satisfies cost(s) ≤

∑k

i=1 Ci(s), the PNE condition (once per player), and the smoothness
assumption to derive

cost(s) ≤
k

∑

i=1

Ci(s) ≤
k

∑

i=1

Ci(si
∗, s−i) ≤ λ · cost(s∗) + µ · cost(s), (10)

and rearrange terms. Similarly, every PNE of a (λ, µ)-smooth payoff-maximization game
has objective function value at least λ

1+µ
times that of an optimal outcome. These are

generalizations of our POA bounds of 5
2

and 1
2

for atomic selfish routing games with affine
cost functions and location games, respectively.

We next describe two senses in which the POA bound of λ
1−µ

or λ
1+µ

for a (λ, µ)-smooth
game is “robust.” For the first, we recall last lecture’s definition of coarse correlated equilibria
(CCE).

Definition 4.1 A distribution σ on the set S1×· · ·×Sk of outcomes of a cost-minimization
game is a coarse correlated equilibrium (CCE) if for every player i ∈ {1, 2, . . . , k} and every
unilateral deviation s′i ∈ Si,

Es∼σ[Ci(s)] ≤ Es∼σ[Ci(si
′, s−i)] . (11)

The equilibrium condition in (11) compares the expected cost of playing according to the
distribution σ to that of an unconditional deviation. In Lecture 17, we’ll show that simple
and natural learning algorithms drive the time-averaged history of joint play to the set
of CCE. In this sense, CCE are a quite tractable set of equilibria, and hence a relatively
plausible prediction of realized play. See also Figure 3.

A drawback of enlarging the set of equilibria is that the POA, which is defined via a
worst-case equilibrium, can only get worse. In smooth games, however, CCE are a “sweet
spot” — permissive enough to be highly tractable, and stringent enough to enable good
worst-case bounds.

Theorem 4.2 ([1]) In every (λ, µ)-smooth cost-minimization game, the POA of CCE is at
most λ

1−µ
.

That is, the exact same POA bound that we derived in (10) for PNE holds more generally
for all CCE. Similarly, in (λ, µ)-smooth payoff-maximization games, the POA bound of λ

1+µ

applies more generally to all CCE (the details are left as an exercise). Our POA bounds
of 5

2
and 1

2
for atomic selfish routing games and location games, respectively, may have

seemed specific to PNE at the time, but since the proofs established the stronger smoothness
condition (Definition 3.1), these POA bounds hold for all CCE.

Given the definitions, the proof of Theorem 4.2 is not difficult; let’s just follow our nose.
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Figure 3: The Venn-diagram of the hierarchy of equilibrium concepts.

Proof of Theorem 4.2: Consider a (λ, µ)-smooth cost-minimization game, a coarse correlated
equilibrium σ, and an optimal outcome s∗. We can write

Es∼σ[cost(s)] ≤ Es∼σ

[

k
∑

i=1

Ci(s)

]

(12)

=
k

∑

i=1

Es∼σ[Ci(s)] (13)

≤

k
∑

i=1

Es∼σ[Ci(s
∗

i , s−i)] (14)

= Es∼σ

[

k
∑

i=1

Ci(s
∗

i , s−i)

]

(15)

≤ Es∼σ[λ · cost(s∗) + µ · cost(s)] (16)

= λ · cost(s∗) + µ · Es∼σ[cost(s)] , (17)

where inequality (12) follows from the assumption on the objective function, equalities (13), (15),
and (17) follow from linearity of expectation, inequality (14) follows from the definition (11)
of a coarse correlated equilibrium (applied once per player i, with the hypothetical devia-
tion s∗i ), and inequality (16) follows from the assumption that the game is (λ, µ)-smooth.
Rearranging terms completes the proof. �

Theorem 4.2 is already quite satisfying — we now have good POA bounds for an equilib-
rium concept that is guaranteed to exist and is easy to compute. It turns out that smooth
games have a number of other nice properties, as well. We conclude this lecture by noting
that the POA bound of λ

1−µ
or λ

1+µ
for a smooth game applies automatically to approximate

equilibria, with the bound degrading gracefully as a function of the approximation param-
eter. For instance, define an ǫ-pure Nash equilibrium (ǫ-PNE) of a cost-minimization game
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as a strategy profile s in which no player can decrease its cost by more than a (1 + ǫ) factor
via a unilateral deviation:

Ci(s) ≤ (1 + ǫ) · Ci(s
′

i, s−i) (18)

for every i and s′i ∈ Si. Then, the following guarantee holds.

Theorem 4.3 For every (λ, µ)-smooth cost-minimization game G, every ǫ < 1
µ
− 1, every

ǫ-PNE s of G, and every outcome s∗ of G,

C(s) ≤
(1 + ǫ)λ

1 − µ(1 + ǫ)
· C(s∗).

The proof of Theorem 4.3 is not difficult and we leave it as an exercise. Similar results hold
for smooth payoff-maximization games, and for approximate versions of other equilibrium
concepts.

To illustrate Theorem 4.3, consider atomic selfish routing games with affine cost functions,
which are (5

3
, 1

3
)-smooth. Theorem 4.3 implies that every ǫ-PNE of such a game with ǫ < 2

has expected cost at most 5+5ǫ
2−ǫ

times that of an optimal outcome.
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