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1 The Challenge of Revenue Maximization

1.1 Welfare-Maximization, Revisited

Thus far, we’ve focused on the design of mechanisms that maximize, exactly or approxi-
mately, the welfare objective

n∑

i=1

vixi (1)

over all feasible outcomes (x1, . . . , xn) in some set X. Revenue is generated in welfare-
maximizing auctions, but only as a side effect, a necessary evil to incentivize participants
to report their private information. This lecture begins our discussion of auctions that are
explicitly designed to raise as much revenue as possible.

We started with the welfare objective for several reasons. One is that it’s a fundamen-
tal objective function, relevant to many real-world scenarios. For instance, in government
auctions (e.g., to sell wireless spectrum), the primary objective is welfare maximization —
revenue is also important but is usually not the first-order objective. Also, in competi-
tive markets, it is often thought that a seller should focus on welfare-maximization, since
otherwise someone else will (potentially stealing their customers).

The second reason we started with welfare-maximization is pedagogical: welfare is special.
In every single-parameter environment (and even more generally, see Lecture #7), there is a
DSIC mechanism for maximizing welfare ex post — as well as if the designer knew all of the
private information (the vi’s) in advance. In this sense, one can satisfy the DSIC constraint
“for free.” This is an amazingly strong performance guarantee, and it cannot generally be
achieved for other objective functions.
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1.2 One Bidder and One Item

The following trivial example is illuminating. Suppose there is one item and only one bidder,
with a private valuation v. With only one bidder, the space of direct-revelation DSIC auctions
is small: they are precisely the “posted prices”, or take-it-or-leave-it offers.1 If the seller posts
a price of r, then its revenue is either r (if v ≥ r) or 0 (if v < r).

Maximizing the welfare in this setting is trivial: just set r = 0, so that you always give
the item to the bidder for free. Note that this optimal posted price if independent of v.

Suppose we wanted to maximize revenue. How should we set r? Ex post (i.e., telepath-
ically knowing v), we would set r = v. But with v private, what should we do? It’s not
obvious how to reason about this question.

The fundamental issue is that, for the revenue objective, different auctions do better on
different inputs. With a single item and bidder, a posted price of 20 will do very well on inputs
where v is 20 or a little larger, and terribly on smaller inputs (for which smaller posted prices
will do better). Such trade-offs are familiar to students of algorithms. For example, different
sorting algorithms (e.g., InsertionSort vs. QuickSort) run faster on different inputs. Different
heuristics for the Traveling Salesman Problem (e.g., local search vs. linear programming)
have smaller solution error on different inputs. Welfare-maximization, where there is an
input-independent optimal DSIC mechanism, is special indeed.

1.3 Bayesian Analysis

Comparing different auctions for revenue maximization requires a model to reason about
trade-offs across different inputs. Today we introduce the most classical and well-studied
model for doing this: average-case or Bayesian analysis. Our model comprises the following
ingredients:

• A single-parameter environment (see Lecture #3).

• The private valuation vi of participant i is assumed to be drawn from a distribution Fi

with density function fi with support contained in [0, vmax].
2 We assume that the

distributions F1, . . . , Fn are independent (but not necessarily identical). In practice,
these distributions are typically derived from data, such as bids in past auctions.

• The distributions F1, . . . , Fn are known in advance to the mechanism designer. The
realizations v1, . . . , vn of bidders’ valuations are private, as usual. Since we focus on
DSIC auctions, where bidders have dominant strategies, the bidders do not need to
know the distributions F1, . . . , Fn.3

1Precisely, these are the deterministic such auctions. One can also randomize over posted prices, but the
point of the example remains the same.

2Recall Fi(z) denotes the probability that a random variable drawn from Fi has value at most z.
3The main results in today’s lecture apply more generally to “Bayes-Nash incentive-compatible” auctions;

in this case, the bidders must also know the distributions F1, . . . , Fn.
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In a Bayesian environment, it is clear how to define the “optimal” auction — it is the auction
that, among all DSIC auctions, has the highest expected revenue, where the expectation is
with respect to the given distribution F1 ×F2 × · · · ×Fn over valuation profiles v (assuming
truthful bidding).

1.4 One Bidder and One Item, Revisited

With our Bayesian model, single-bidder single-item auctions are now easy to reason about.
The expected revenue of a posted price r is simply

r
︸︷︷︸

revenue of a sale

· (1 − F (r))
︸ ︷︷ ︸

probability of a sale

.

Given a distribution F , it is usually a simple matter to solve for the best r. The optimal
posted price is called the monopoly price of the distribution F . Since DSIC mechanisms
are posted prices (and randomizations thereof), posting the monopoly price is the revenue-
maximizing auction. For instance, if F is the uniform distribution on [0, 1] (i.e., F (x) = x

on [0, 1]), then the monopoly price is 1
2
, achieving an expected revenue of 1

4
.

The plot thickens even with two bidders, where the space of DSIC auctions is larger. For
example, consider a single-item auction with two bidders with valuations drawn i.i.d. from
the uniform distribution on [0, 1]. We could of course run the Vickrey auction; its revenue
is the expected value of the smaller bid, which is 1

3
(exercise).

We could also supplement the Vickrey auction with a reserve price, analogous to the
“opening bid” in an eBay auction. In a Vickrey auction with reserve r, the allocation rule
awards the item to the highest bidder, unless all bids are less than r, in which case no one gets
the item. The corresponding payment rule charges the winner (if any) the second-highest bid
or r, whichever is larger. From a revenue vantagepoint, adding a reserve price r is both good
and bad: you lose revenue when all bids are less than r, but you gain revenue when exactly
one bid is above r (since the selling price is higher). In our case, adding a reserve price of
1
2

turns out to be a net gain, raising the expected revenue from 1
3

to 5
12

(exercise). But can
we do better? Perhaps using a different reserve price, or perhaps usually a totally different
auction format? While the rich space of DSIC auctions makes this an intimidating question,
the rest of this lecture provides a complete solution, originally given by Myerson [2].

2 Expected Revenue Equals Expected Virtual Welfare

Our goal is to characterize the optimal (i.e., expected revenue-maximizing) DSIC auction
for every single-parameter environment and distributions F1, . . . , Fn.4 We begin with a
preliminary observation.

4We won’t prove it today, but the auctions we identify are optimal in a much stronger sense; see the
discussion in Section 3.2.
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Step 0: By the Revelation Principle from last lecture, every DSIC auction is equivalent
to — and hence has the same expected revenue as — a direct-revelation DSIC mechanism
(x,p). We can therefore consider only direct-revelation mechanisms from here on. We
correspondingly assume truthful bids (i.e., b = v) for the rest of the lecture.

The expected revenue of an auction (x,p) is

Ev

[
n∑

i=1

p(v)

]

, (2)

where the expectation is with respect to the distribution F1×· · ·×Fn over bidders’ valuations.
It is not clear how to directly maximize the expression (2) over the space of DSIC mechanisms.
In this section, we derive a second formula for the expected revenue of an auction. This second
formula only references the allocation rule of a mechanism, and not its payment rule, and
for this reason has a form that is far easier to maximize.

As a starting point, recall Myerson’s payment formula from Lecture #3:

pi(bi,b−i) =

∫ bi

0

z · x′

i(z,b−i)dz. (3)

We derived this equation assuming that the allocation function xi(z,b−i) is differentiable. By
standard advanced calculus, the same formula holds more generally for an arbitrary mono-
tone function xi(z,b−i), including piecewise constant functions, for a suitable interpretation
of the derivative x′

i(z,b−i) and the corresponding integral. Similarly, all of the following
proof steps, which make use of calculus maneuvers like integration by parts, can be made
fully rigorous for arbitrary bounded monotone functions without significant difficulty. We
leave the details to the interested reader.5

Equation (3) states that payments are fully dictated by the allocation rule. Thus, at
least in principle, we can express the expected revenue of an auction purely in terms of its
allocation rule, with no explicit reference to its payment rule. Will the resulting revenue
formula will be easier to maximize than the original one? It’s hard to know without actually
doing it, so let’s do it.

Step 1: Fix i and v−i; recall that v−i is a random variable (as is vi), and we’ll integrate out
over it later.

By Myerson’s payment formula (3), we can write the expected payment by bidder i for
a given value of v−i as

Evi∼Fi
[pi(v)] =

∫ vmax

0

pi(v)fi(vi)dvi =

∫ vmax

0

[∫ vi

0

z · x′

i(z,v−i)dz

]

fi(vi)dvi.

Note that in the first equality we’re exploiting the independence of bidders’ valuations —
the fixed value of v−i has no bearing on the distribution Fi from which vi is drawn.

5For example, every bounded monotone function is integrable, and is differentiable except on a set of
measure zero.
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This step is exactly what we knew was possible in principle — rewriting the payment in
terms of the allocation rule. For this to be useful, we need some simplifications.

Step 2: Whenever you have a double integral (or double sum) that you don’t know how to
interpret, it’s worth reversing the integration order. Here, reversing the order of integration
leads to a nice simplification, suggesting we’re on the right track:

∫ vmax

0

[∫ vi

0

z · x′

i(z,v−i)dz

]

fi(vi)dvi =

∫ vmax

0

[∫ vmax

z

fi(vi)dvi

]

z · x′

i(z,v−i)dz

=

∫ vmax

0

(1 − Fi(z)) · z · x′

i(z,v−i)dz.

Step 3: Integration by parts is also worth trying when attempting to massage an integral into
a more interpretable form, especially if there’s an obvious derivative hiding in the integrand.
Here, we again get some encouraging simplifications:

∫ vmax

0

(1 − Fi(z) · z)
︸ ︷︷ ︸

f

·x′

i(z,v−i)
︸ ︷︷ ︸

g′

dz

= (1 − Fi(z)) · z · xi(z,v−i)|
vmax

0
︸ ︷︷ ︸

=0−0

−

∫ vmax

0

xi(z,v−i) · (1 − Fi(z) − zfi(z))dz

=

∫ vmax

0

(

z −
1 − Fi(z)

fi(z)

)

︸ ︷︷ ︸

:=ϕi(z)

xi(z,v−i)fi(z)dz.

Notice that we can interpret the final expression as an expected value, where z is drawn
from the distribution Fi.

Step 4: To simplify and help interpret the expression above, we introduce some new nota-
tion. The virtual valuation ϕi(vi) of bidder i with valuation vi drawn from Fi is

ϕi(vi) = vi −
1−Fi(vi)

fi(vi)
.

Note that the virtual valuation of a bidder depends on its own valuation and distribution,
and not on those of the others.

For example, consider a bidder i with valuation drawn from the uniform distribution
on [0, 1]. Then Fi(z) = z, fi(z) = 1, and ϕi(z) = z − 1−z

1
= 2z − 1 in [0, 1]. Notice that a

virtual valuation can be negative! See the exercises for more examples.

Steps 1–4 Summary: For every bidder i and valuations v−i,

Evi∼Fi
[pi(v)] = Evi∼Fi

[ϕi(vi) · xi(v)] . (4)
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Remark 2.1 Virtual valuations play a central role in the design of Bayesian optimal auc-
tions. Is there any intuition for what they mean? One coarse way to interpret the formula

ϕi(vi) = vi
︸︷︷︸

what you’d like to charge i

−
1 − Fi(vi)

fi(vi)
︸ ︷︷ ︸

“information rent” earned by bidder i

is to think of vi as the maximum revenue obtainable from bidder i, and the second term as
the inevitable revenue loss caused by not knowing vi in advance (a.k.a. “information rent”).
A second and more accurate interpretation of ϕi(vi) is as the slope of a “revenue curve” at vi,
where the revenue curve plots the expected revenue obtained from an agent with valuation
drawn from Fi, as a function of the probability of a sale. The exercises elaborate on this
second interpretation.

Step 5: Take the expectation, with respect to v−i, of both sides of (4) to obtain:

Ev[pi(v)] = Ev[ϕi(vi) · xi(v)] .

Step 6: Apply linearity of expectations (twice) to finish the derivation:

Ev

[
n∑

i=1

pi(v)

]

=
n∑

i=1

Ev[pi(v)] =
n∑

i=1

Ev[ϕi(vi) · xi(v)] = Ev

[
n∑

i=1

ϕi(vi) · xi(v)

]

. (5)

The final term in (5) is our second formula for the expected revenue of an auction, and
we should be pleased with its relative simplicity. Note that if we removed the ϕi’s from the
expression, we would be left with an old friend: the expected welfare of the auction. For this
reason, we refer to

∑n

i=1 ϕi(vi) · xi(v) as the virtual welfare of an auction on the valuation
profile v. We have proved that, for every auction,

EXPECTED REVENUE = EXPECTED VIRTUAL WELFARE. (6)

In particular, maximizing expected revenue over the space of DSIC auctions reduces to
maximizing expected virtual welfare.

3 Bayesian Optimal Auctions

It is shocking that a formula as simple as (6) holds. It says that even though we only
care about payments, we can focus on an optimization problem that concerns only the
mechanism’s allocation rule. This second form is far more operational, and we proceed to
determine the auctions that maximize it.

6



3.1 Maximizing Expected Virtual Welfare

As a warm up, let’s make two extra assumptions. First, consider a single-item auction.
Second, assume that the bidders are i.i.d. That is, all Fi’s are a common F , and thus all
virtual valuation functions ϕi are the same.

How should we choose the allocation rule x to maximize the expected virtual welfare

Ev∼F

[
n∑

i=1

ϕi(vi)xi(v)

]

? (7)

We have the freedom of choosing x(v) for each input v, and have no control over the input
distribution F or the virtual values ϕi(vi). Thus, the obvious approach is to maximize
pointwise: separately for each input v, we choose x(v) to maximize the virtual welfare
∑n

i=1 ϕi(vi)xi(v) obtained on the input v (subject to feasibility of (x1, . . . , xn) ∈ X). We
call this the virtual welfare-maximizing allocation rule.

In a single-item auction, where the feasibility constraint is
∑n

i=1 xi(v) ≤ 1 for each v, the
virtual welfare-maximizing rule just awards the item to the bidder with the highest virtual
valuation. Well not quite: recall that virtual valuations can be negative (e.g., ϕi(vi) = 2vi−1
when vi is uniform between 0 and 1), and if every bidder has a negative virtual valuation
then the virtual welfare is maximized by not awarding the item to anyone. (We already saw
in the single-bidder example that maximizing revenue entails not selling the item in some
cases.)

Choosing x(v) separately for each v to maximize
∑n

i=1 ϕi(vi)xi(v) defines an allocation
rule that maximizes the expected virtual welfare (7) over all allocation rules (monotone or
not). The key question is: is this virtual welfare-maximizing rule monotone? If so, then
it can be extended to a DSIC auction, and by (6) this auction has the maximum-possible
expected revenue.

The answer to this key question depends on the valuation distribution F . If the cor-
responding virtual valuation function ϕ is increasing, then the virtual welfare-maximizing
allocation rule is monotone.

Definition 3.1 A distribution F is regular if the corresponding virtual valuation function
v − 1−F (v)

f(v)
is strictly increasing.

For most applications, Definition 3.1 can be relaxed to allow nondecreasing virtual valuation
functions.

We saw that the uniform distribution on [0, 1] has virtual valuation function 2v − 1
and hence is regular. So are other uniform distributions, exponential distributions, and
lognormal distributions. Irregular distributions include many multi-modal distributions and
distributions with sufficiently heavy tails. See the exercises for concrete examples.

Let’s return to a single-item auction with i.i.d. bidders, under the additional assumption
that the valuation distribution is regular. The virtual-welfare maximizing allocation rule,
which allocates to the bidder with highest nonnegative virtual valuation (if any), is monotone
and yields the optimal auction. Moreover, since all bidders share the same increasing virtual
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valuation function, the bidder with the highest virtual valuation is also the bidder with
the highest valuation. This allocation rule is thus equivalent to the Vickrey auction with a
reserve price of ϕ−1(0). Thus, for i.i.d. bidders and a regular valuation distribution, eBay
(with a suitable opening bid) is the optimal auction format! Given the richness of the DSIC
auction design space, it is amazing that such a simple and practical auction pops out as the
optimal one.

More generally, consider an arbitrary single-parameter environment and valuation dis-
tributions F1, . . . , Fn. The virtual welfare-maximizing allocation rule is now defined as that
which, for each input v, chooses the feasible allocation that maximizes the virtual welfare
∑n

i=1 ϕi(vi)xi(v). If every distribution Fi is regular, then this allocation rule is monotone
(see the exercises). Coupling it with the unique payment rule to meet the DSIC constraint,
we obtain the optimal auction. In this sense, we have solved the Bayesian optimal auction
problem for every single-parameter environment with regular valuation distributions.

3.2 Extensions

The theory developed in this lecture, which is due to Myerson [2], is even more general.
First, it can be extended to accommodate valuation distributions that are not regular.6

Since the virtual welfare-maximization allocation rule is not monotone in this case, one has
to work harder and solve for the monotone allocation rule with the maximum expected
virtual welfare. This can be done by “ironing” virtual valuation functions to make them
monotone, while at the same time preserving the virtual welfare of the auctions that matter.
See Hartline [1, Chapter 3] for a textbook treatment.

Second, while today’s lecture restricted attention to DSIC auctions for simplicity, the
(DSIC) optimal auctions we identified are optimal even amongst the much larger set of
“Bayesian incentive compatible” mechanisms. For example, first-price auction formats can-
not achieve more revenue (at equilibrium) than the best DSIC auction. Thus, for revenue-
maximization in single-parameter problems, the DSIC constraint comes for free. This exten-
sion does not require significant new ideas beyond what we covered today, and we’ll discuss
it in CS364B.
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