PhD Defense

First Order Preservation Theorems in Finite Model Theory: Locality, Topology, and Limit Constructions

Aliaume Lopez September 12, 2023, IRIF, France

Under the supervision of Jean Goubault-Larrecq, and Sylvain Schmitz.

INTRODUCTION

A NUCLEAR QUESTION

© schoella, panoramio

© schoella, panoramio

© schoella, panoramio

"IS THE MAXIMAL INSTALLED POWER OBTAINED WITH THE HIGHEST NUMBER OF REACTORS?"

2/42

"What about the new ones?"

OUR THEOREM MIGHT BECOME FALSE!

1 Reactor / 7000 MWe

Current 🗸

1 Reactor / 7000 MWe

Do we have to think before tweeting?

INTRODUCTION

NOT ALL QUERIES ARE BORN EQUAL

In First Order Logic (Theoretical Computer Science)

 $\exists c. \exists n. \exists p. \\ \mathsf{IsAPowerplant}(c, n, p) \land \\ (\forall c', n', p'. \\ \mathsf{IsAPowerplant}(c', n', p') \\ \implies (p' \leq p \land n' \leq n)) .$

In First Order Logic (Theoretical Computer Science)

 $\exists c. \exists n. \exists p.$ IsAPowerplant(c, n, p)∧ $(\forall c', n', p'.$ IsAPowerplant(c', n', p') $\implies (p' \le p \land n' \le n))$.

SQL (Applied Computer Science)

```
SELECT sc.num_reactor, sc.installed_power
FROM scenario AS sc
WHERE sc.num_reactor =
(SELECT MAX(scm.num_reactor)
FROM scenario AS scm)
AND sc.installed_power =
(SELECT MAX(scm.installed_power)
FROM scenario AS scm)
```

$$\varphi := \top \mid \perp \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \neg R(x_1, ..., x_n) \mid R(x_1, ..., x_n) \mid \exists x.\varphi$$

$$\varphi := \top \mid \perp \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \neg R(x_1, ..., x_n) \mid R(x_1, ..., x_n) \mid \exists x.\varphi$$

Lemma (folklore)

These can be evaluated naïvely, in any context: for every existential sentence φ , $\llbracket \varphi \rrbracket = \uparrow \llbracket \varphi \rrbracket$. Equivalently, $\llbracket \varphi \rrbracket$ is upwards closed, or φ is preserved under extensions (i.e., injective strong homomorphisms).

$$\varphi := \top \mid \perp \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \neg R(x_1, ..., x_n) \mid R(x_1, ..., x_n) \mid \exists x.\varphi$$

Lemma (folklore)

These can be evaluated naïvely, in any context: for every existential sentence φ , $[\![\varphi]\!] = \uparrow [\![\varphi]\!]$. Equivalently, $[\![\varphi]\!]$ is upwards closed, or φ is preserved under extensions (i.e., injective strong homomorphisms).

$$\varphi := \top \mid \perp \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \neg R(x_1, ..., x_n) \mid R(x_1, ..., x_n) \mid \exists x.\varphi$$

Lemma (folklore)

These can be evaluated naïvely, in any context: for every existential sentence φ , $\llbracket \varphi \rrbracket = \uparrow \llbracket \varphi \rrbracket$. Equivalently, $\llbracket \varphi \rrbracket$ is upwards closed, or φ is preserved under extensions (i.e., in justice streng become being)

injective strong homomorphisms).

Theorem (Łoś-Tarski)

For every first order sentence φ , the following are equivalent

- 1. $\llbracket \varphi \rrbracket = \uparrow \llbracket \varphi \rrbracket$ ($\llbracket \varphi \rrbracket$ is upwards closed, φ is preserved under extensions), and
- 2. there exists an existential sentence ψ such that $\llbracket \varphi \rrbracket = \llbracket \psi \rrbracket$.

Theorem (Łoś-Tarski)

For every first order sentence φ , the following are equivalent

- 1. $\llbracket \varphi \rrbracket = \uparrow \llbracket \varphi \rrbracket$ ($\llbracket \varphi \rrbracket$ is upwards closed, φ is preserved under extensions), and
- 2. there exists an existential sentence ψ such that $\llbracket \varphi \rrbracket = \llbracket \psi \rrbracket$.

 $``[[FO]] + \uparrow \leftrightsquigarrow [[EFO]]''$
A non-existential query

 $\begin{aligned} \exists c. \exists n. \exists p. \\ \text{IsAPowerplant}(c, n, p) \land \\ (\forall c', n', p'. \\ \text{IsAPowerplant}(c', n', p') \\ \implies (p' \leq p \land n' \leq n)) \end{aligned}$

A non-existential query

 $\exists c. \exists n. \exists p.$ IsAPowerplant(c, n, p)∧ (∀c', n', p'. IsAPowerplant(c', n', p') $\implies (p' \le p \land n' \le n)) \quad .$

Łoś-Tarski does not relativise! (e.g., finite models)

- Can be naïvely evaluated in the subclass \mathcal{C} : $\llbracket \varphi \rrbracket \cap \mathcal{C} = \uparrow \llbracket \varphi \rrbracket \cap \mathcal{C}$
- Is equivalent to an existential sentence in the subclass C: $\llbracket \varphi \rrbracket \cap C = \llbracket \psi \rrbracket \cap C$.

Preservation theorems: variations around Łoś-Tarski

- Different possibilities to order structures: \uparrow ,
- Different fragments of FO: EFO,
- $\cdot\,$ Different subsets of interest: $\mathcal C$ (e.g., finite models).

Preservation Under

homomorphisms

injective homomorphisms (Tarski-Lyndon) strong injective homomorphisms (Łoś-Tarski) surjective homomorphisms (Lyndon) strong surjective homomorphism ∀FO-embeddings (dual Chang-Łoś-Suszko)

Preservation Under	Relativises to $Fin(\sigma)$
homomorphisms	✔ [Ros08]
injective homomorphisms (Tarski-Lyndon) strong injective homomorphisms (Łoś-Tarski surjective homomorphisms (Lyndon) strong surjective homomorphism ∀FO-embeddings (dual Chang-Łoś-Suszko)	 ★ [AG94a, Theorem 10.2] ★ [Tai59; Gur84; DS21] ★ [AG87a; Sto95] ★ [Cap+20] ★ [San+12]

Positive and Negative Results in the Finite

Not used to rewrite queries!

- Better understand Finite Model Theory (compared to Model Theory),
- Provide completeness of proof techniques ([Lib11; DNR08]).

Understand how and why preservation theorems relativise to some classes of (finite) structures.

DIVING IN

Three Specific Examples Among Classes of Finite Undirected Graphs

Ordering!

Ordering!

 P_5 P_4 P_2 P_1

ORDERING!

Lemma (folklore)

For every $\varphi \in FO$, there exists N_0 , such that for all $n, m \ge N_0$, $C_m \in [\![\varphi]\!] \iff C_n \in [\![\varphi]\!]$.

Lemma (folklore)

For every $\varphi \in FO$, there exists N_0 , such that for all $n, m \ge N_0$, $C_m \in [\![\varphi]\!] \iff C_n \in [\![\varphi]\!]$. $[\![\varphi]\!] \cap Cycles = [\![\exists^{=4}x.\top \lor \exists^{\geq 6}x.\top]\!] \cap Cycles$

The Łoś-Tarski Theorem relativises to every class ${\cal C}$ of finite structures such that:

- 1. There exists a bound d on the maximal degree in the structures
- 2. The class is hereditary (neither Paths, nor Cycles)
- 3. The class is closed under disjoint unions (neither Paths, nor Cycles)

The Łoś-Tarski Theorem relativises to every class ${\cal C}$ of finite structures such that:

- 1. There exists a bound d on the maximal degree in the structures
- 2. The class is hereditary (neither Paths, nor Cycles)
- 3. The class is closed under disjoint unions (neither Paths, nor Cycles)

The Łoś-Tarski Theorem relativises to every class C of finite structures such that:

- 1. There exists a bound d on the maximal degree in the structures
- 2. The class is hereditary (neither Paths, nor Cycles)
- 3. The class is closed under disjoint unions (neither Paths, nor Cycles)

The Łoś-Tarski Theorem relativises to every class C of finite structures such that:

- 1. There exists a bound d on the maximal degree in the structures
- 2. The class is hereditary (neither Paths, nor Cycles)
- 3. The class is closed under disjoint unions (neither Paths, nor Cycles)

The Łoś-Tarski Theorem relativises to every class C of finite structures such that:

- 1. There exists a bound d on the maximal degree in the structures
- 2. The class is hereditary (neither Paths, nor Cycles)
- 3. The class is closed under disjoint unions (neither Paths, nor Cycles)

The Łoś-Tarski Theorem relativises to every class C of finite structures such that:

- 1. There exists a bound d on the maximal degree in the structures
- 2. The class is hereditary (neither Paths, nor Cycles)
- 3. The class is closed under disjoint unions (neither Paths, nor Cycles)

The Łoś-Tarski Theorem relativises to every class C of finite structures such that:

- 1. There exists a bound d on the maximal degree in the structures
- 2. The class is hereditary (neither Paths, nor Cycles)
- 3. The class is closed under disjoint unions (neither Paths, nor Cycles)

The Łoś-Tarski Theorem relativises to every class C of finite structures such that:

- 1. There exists a bound d on the maximal degree in the structures
- 2. The class is hereditary (neither Paths, nor Cycles)
- 3. The class is closed under disjoint unions (neither Paths, nor Cycles)

Вотн!

The Łoś-Tarski Theorem relativises to every class C of finite structures such that:

- 1. There exists a bound d on the maximal degree in the structures
- 2. The class is hereditary (neither Paths, nor Cycles)
- 3. The class is closed under disjoint unions (neither Paths, nor Cycles)

Вотн!

Three Non Overlapping Internal Approaches

- 1. Upwards closed subsets are "simple" (Paths)
- 2. Definable subsets are "simple" (Cycles)
- 3. The two interact "nicely" ([ADG08])

 $-\uparrow E$ where E is finite

- (complements of) finite subsets

Three Non Overlapping Internal Approaches

- 1. Upwards closed subsets are "simple" (Paths)
- 2. Definable subsets are "simple" (Cycles)
- 3. The two interact "nicely" ([ADG08])

An external approach?

Is it possible to avoid starting from scratch every time?

• Cycles \cup Paths? None of the above apply!

 $-\uparrow E$ where E is finite

- (complements of) finite subsets

DIVING IN

EXPECTATIONS

Definability	External Approach	Тороlogy
Local To Global Łós-Tarski relativisation	Logically presented pre-spectral spaces	Topology Expanders for Noetherian spaces
Positive Gaifman Normal Form	Composition theorems for LPPS	Limit Constructions of Noetherian spaces

LOCAL APPROACH

THE LOCALITY THEOREM

Usage in Finite Model Theory

- It is a combinatorial tool that works in finite classes.
- Abstracts the low-level "game" arguments of first-order logic.
- Already has been used to prove the relativisation of preservation theorems [ADK06; ADG08, e.g.].

A structure \mathfrak{A} .

A structure \mathfrak{A} , with 2 selected nodes.

A structure \mathfrak{A} , with 2 selected nodes, and a 1-local neighborhood.

 $\mathcal{N}_{\mathfrak{A}}(a_1a_2,1) \subseteq_i \mathfrak{A}.$
LOCAL NEIGHBOURHOODS OF CYCLES

Every first order sentence (FO) is equivalent to a Boolean combination of basic local sentences.

Basic Local Sentence

Every first order sentence (FO) is equivalent to a Boolean combination of basic local sentences.

Basic Local Sentence

Every first order sentence (FO) is equivalent to a Boolean combination of basic local sentences.

Basic Local Sentence

Every first order sentence (FO) is equivalent to a Boolean combination of basic local sentences.

Basic Local Sentence

Every first order sentence (FO) is equivalent to a Boolean combination of basic local sentences.

Basic Local Sentence

$$\operatorname{Loc}_{k}^{r}(\mathcal{C}) \stackrel{def}{=} \{ \mathcal{N}_{A}(\vec{a}, r) \mid A \in \mathcal{C}, \vec{a} \in A^{k} \}$$

$$\operatorname{Loc}_{k}^{r}(\mathcal{C}) \stackrel{def}{=} \{ \mathcal{N}_{A}(\vec{a}, r) \mid A \in \mathcal{C}, \vec{a} \in A^{k} \}$$

Localise Bounded Degree

C is of bounded degree if and only if $Loc_k^r(C)$ is finite for all $k, r \ge 0$, i.e., locally finite.

$$\operatorname{Loc}_{k}^{r}(\mathcal{C}) \stackrel{def}{=} \{ \mathcal{N}_{A}(\vec{a}, r) \mid A \in \mathcal{C}, \vec{a} \in A^{k} \}$$

Localise Bounded Degree

C is of bounded degree if and only if $Loc_k^r(C)$ is finite for all $k, r \ge 0$, i.e., locally finite.

Theorem ([ADG08])

The Łoś-Tarski theorem relativises to hereditary classes of finite structures that are closed under ⊎ and **locally** finite.

Theorem ([Lop22, Theorem 6.7])

For a hereditary class of finite structures *C* that is closed under disjoint unions, the following are equivalent:

- 1. The Łoś-Tarski Theorem relativises to *C*.
- 2. The Łoś-Tarski Theorem **locally** relativises to C, i.e., $\text{Loc}_k^r(C)$ for all $r, k \ge 0$.

Theorem ([Lop22, Theorem 6.7])

For a hereditary class of finite structures *C* that is closed under disjoint unions, the following are equivalent:

- 1. The Łoś-Tarski Theorem relativises to *C*.
- 2. The Łoś-Tarski Theorem **locally** relativises to C, i.e., $\text{Loc}_k^r(C)$ for all $r, k \ge 0$.

Full characterisation!

Agrandir les flèches dire que les inclusions sont strictes

Agrandir les flèches dire que les inclusions sont strictes

Agrandir les flèches dire que les inclusions sont strictes

- 1. φ_0 + preserved under extensions $\rightsquigarrow \varphi_1$ existential-local
- 2. φ_1 existential-local + preserved under extensions $\rightsquigarrow \varphi_2$ existential

- 1. φ_0 + preserved under extensions $\rightsquigarrow \varphi_1$ existential-local
- 2. φ_1 existential-local + preserved under extensions $\rightsquigarrow \varphi_2$ existential

```
Existential local: \exists x_1, \ldots, x_k. \underbrace{\psi(\vec{x})}_{r \text{-local}}
```

- 1. φ_0 + preserved under extensions $\rightsquigarrow \varphi_1$ existential-local
- 2. φ_1 existential-local + preserved under extensions $\rightsquigarrow \varphi_2$ existential

Existential local: $\exists x_1, \ldots, x_k$. $\underbrace{\psi(\vec{x})}_{r\text{-local}}$

Existential, Existential Local, and Arbitrary Sentences

- existential local sentences with $r = 0 \rightsquigarrow$ existential sentences
- existential local sentences over $\mathcal{C} \iff$ sentences over $\operatorname{Loc}_k^r(\mathcal{C})$.

- 1. φ_0 + preserved under extensions $\rightsquigarrow \varphi_1$ existential-local
- 2. φ_1 existential-local + preserved under extensions $\rightsquigarrow \varphi_2$ existential

Existential local: $\exists x_1, \ldots, x_k$. $\underbrace{\psi(\vec{x})}_{r\text{-local}}$

Existential, Existential Local, and Arbitrary Sentences

- existential local sentences with $r = 0 \rightsquigarrow$ existential sentences
- existential local sentences over $\mathcal{C} \iff$ sentences over $\operatorname{Loc}_k^r(\mathcal{C})$.

Core Combinatorial Argument

preserved under extensions \rightsquigarrow minimal models are found in some $\text{Loc}_k^r(\mathcal{C})$.

The usual approach: use the Gaifman Locality Theorem.

Theorem ([Gai82])

Every first order sentence (FO) is equivalent to a Boolean combination of basic local sentences.

The usual approach: use the Gaifman Locality Theorem.

Theorem ([Gai82])

Every first order sentence (FO) is equivalent to a Boolean combination of basic local sentences.

Theorem ([Lop22, Theorem 1.1])

Let $\mathcal{C} \subseteq \text{Struct}(\sigma)$ be a class of structures, and $\varphi \in \text{FO}[\sigma]$. The following are equivalent

- 1. φ is equivalent to an existential-local sentence, and
- 2. φ is equivalent to a **positive** Boolean combination of basic local sentences.

Definability	External Approach	Тороlogy
Local To Global Łós-Tarski relativisation	Logically presented pre-spectral spaces	Topology Expanders for Noetherian spaces
Positive Gaifman Normal Form	Composition theorems for LPPS	Limit Constructions of Noetherian spaces

COMPOSITIONAL APPROACH

THE RIGHT ABSTRACTION

Wishful conjecture

Assume that the Łoś-Tarski relativises to C and C'. Does the Łoś-Tarski theorem relativise to $C \cup C'$?

Wishful conjecture

Assume that the Łoś-Tarski relativises to C and C'. Does the Łoś-Tarski theorem relativise to $C \cup C'$?

An external approach?

- · Łoś-Tarski relativises to Cycles,
- Łoś-Tarski relativises to Paths,
- · Łoś-Tarski does not relativise to Cycles \cup Paths.

Wishful conjecture

Assume that the Łoś-Tarski relativises to C and C'. Does the Łoś-Tarski theorem relativise to $C \cup C'$?

An external approach?

- · Łoś-Tarski relativises to Cycles,
- Łoś-Tarski relativises to Paths,
- · Łoś-Tarski does not relativise to Cycles \cup Paths.

Could we find a subset of preservation theorems that can be composed?

A REASONABLE ABSTRACTION: LPPS

$\langle\!\langle \mathcal{C},\tau,\mathcal{B}\rangle\!\rangle$

 $\ensuremath{\mathcal{C}}$ is a class of structures

 τ is a topology over ${\mathcal C}$

 ${\mathcal B}$ is a Boolean algebra over ${\mathcal C}$

A REASONABLE ABSTRACTION: LPPS

 $\langle\!\langle \mathcal{C},\tau,\mathcal{B}\rangle\!\rangle$

. . . .

 $\ensuremath{\mathcal{C}}$ is a class of structures

 τ is a topology over ${\mathcal C}$

 ${\mathcal B}$ is a Boolean algebra over ${\mathcal C}$

$$\langle \tau \cap \mathcal{B} \rangle_{topo} = \tau$$

 $\tau \cap \mathcal{B} = \mathcal{K}^{\circ}(\tau)$

[Lop21, Definition 3.2]: logically presented pre-spectral space.

Definition: $\mathcal{K}^{\circ}(\tau)$ = compact open subsets

Typical example of compact open subset: $\uparrow \{ \mathfrak{A}_1, \ldots, \mathfrak{A}_n \}$ (finite union of cones!)

Definition: $\mathcal{K}^{\circ}(\tau)$ = compact open subsets

Typical example of compact open subset: $\uparrow \{ \mathfrak{A}_1, \ldots, \mathfrak{A}_n \}$ (finite union of cones!)

Definition: $\mathcal{K}^{\circ}(\tau)$ = compact open subsets

Typical example of compact open subset: $\uparrow \{ \mathfrak{A}_1, \ldots, \mathfrak{A}_n \}$ (finite union of cones!)

Topological Property of Existential Sentences (in hereditary classes)

They have finitely many minimal models, hence define compact open subsets!

Equation 1: enough subsets are definable and open $\langle \tau \cap \mathcal{B} \rangle_{topo} = \tau$

(logically presented)

 \rightsquigarrow cones ($\uparrow \mathfrak{A}$) are first order definable!

Equation 1: enough subsets are definable and open $\langle \tau \cap \mathcal{B} \rangle_{\text{topo}} = \tau$

(logically presented)

 \rightsquigarrow cones ($\uparrow \mathfrak{A}$) are first order definable!

Equation 2: definable and open subsets are compact open (pre-spectral) $\tau \cap \mathcal{B} = \mathcal{K}^{\circ}(\tau)$

 \rightsquigarrow sentences preserved under extensions (in C) define compact open subsets.

Let $C \subseteq Fin(\sigma)$.

Let $C \subseteq Fin(\sigma)$. We consider \mathcal{B} to be the FO-definable subsets of C, and τ to be the collection of upwards closed subsets of C (for extensions).

Let $C \subseteq Fin(\sigma)$. We consider \mathcal{B} to be the FO-definable subsets of C, and τ to be the collection of upwards closed subsets of C (for extensions).

Theorem ([Lop21, Theorem 3.4], specialised to EFO and the finite setting)

- The Łoś-Tarski Theorem relativises to C, and existential sentences define compact open subsets.
- 2. The space $\langle\!\langle \mathcal{C},\tau,\mathcal{B}\rangle\!\rangle$ is an LPPS.
Let $C \subseteq Fin(\sigma)$. We consider \mathcal{B} to be the FO-definable subsets of C, and τ to be the collection of upwards closed subsets of C (for extensions).

Theorem ([Lop21, Theorem 3.4], specialised to EFO and the finite setting)

- The Łoś-Tarski Theorem relativises to C, and existential sentences define compact open subsets.
- 2. The space $\langle\!\langle \mathcal{C},\tau,\mathcal{B}\rangle\!\rangle$ is an LPPS.

Remarks

- LPPS captures a subset of preservation theorems.
- The two coincide on hereditary classes of finite structures.
- LPPS will be stable under composition (finite sums, finite products, etc.)

LPPS CAPTURES "REASONABLE" PRESERVATION THEOREMS.

Generalises Already Known Spaces

- $\langle\!\langle \mathcal{C}, \tau, \mathcal{P}(\mathcal{C}) \rangle\!\rangle$ is an LPPS $\iff (\mathcal{C}, \tau)$ is a Noetherian space
- $\cdot \ \langle\!\langle \mathcal{C}, \tau, \langle \mathcal{K}^{\circ}(\tau) \rangle_{\text{bool}} \rangle\!\rangle \text{ is an LPPS } \longleftrightarrow (\mathcal{C}, \tau) \text{ is a Spectral space}$

(see [Gou13]) (see [DST19])

Generalises Already Known Spaces

- $\langle\!\langle \mathcal{C}, \tau, \mathcal{P}(\mathcal{C}) \rangle\!\rangle$ is an LPPS $\iff (\mathcal{C}, \tau)$ is a Noetherian space
- $\cdot \ \langle\!\langle \mathcal{C}, \tau, \langle \mathcal{K}^{\circ}(\tau) \rangle_{\text{bool}} \rangle\!\rangle \text{ is an LPPS } \leadsto (\mathcal{C}, \tau) \text{ is a Spectral space}$

Compositional?

Both spectral and Noetherian spaces can be composed!

(see [Gou13]) (see [DST19])

LPPS are stable under the following operations

Operation	Symbol	Extra Hypothesis
sum	$\mathcal{C}+\mathcal{C}'$	-
product	$\mathcal{C} imes \mathcal{C}'$	-
inner product	$\mathcal{C}\otimes\mathcal{C}'$	-
finite words	\mathcal{C}^{\star}	-
wreath product	$\mathcal{C}\rtimes\mathcal{C}'$	${\mathcal C}$ is $\infty ext{-wqo}$

LPPS are stable under the following operations

Operation	Symbol	Extra Hypothesis
sum	$\mathcal{C}+\mathcal{C}'$	-
product	$\mathcal{C} imes \mathcal{C}'$	-
inner product	$\mathcal{C}\otimes\mathcal{C}'$	-
finite words	\mathcal{C}^{\star}	-
wreath product	$\mathcal{C}\rtimes\mathcal{C}'$	${\mathcal C}$ is $\infty ext{-wqo}$

Other stability results:

- Surjective continuous and definable maps $f: \mathcal{C} \twoheadrightarrow \mathcal{C}'$.
- Boolean combinations of compact open subsets.

COMPOSITIONAL APPROACH

A concrete example: The product

```
Let \langle\!\langle \mathcal{C}, \tau, \mathcal{B} \rangle\!\rangle and \langle\!\langle \mathcal{C}', \tau', \mathcal{B}' \rangle\!\rangle be LPPS.
```

The elements of $\mathcal{C}\times\mathcal{C}'$

Pairs $(\mathfrak{A}, \mathfrak{A}')$, with $\mathfrak{A} \in \mathcal{C}$ and $\mathfrak{A}' \in \mathcal{C}'$.

The elements of $\mathcal{C}\times\mathcal{C}'$

Pairs $(\mathfrak{A}, \mathfrak{A}')$, with $\mathfrak{A} \in \mathcal{C}$ and $\mathfrak{A}' \in \mathcal{C}'$.

The open subsets of $\mathcal{C}\times\mathcal{C}'$

Topology generated by subsets $U \times U'$ with $U \in \tau$ and $U' \in \tau'$.

The elements of $\mathcal{C} \times \mathcal{C}'$

Pairs $(\mathfrak{A}, \mathfrak{A}')$, with $\mathfrak{A} \in \mathcal{C}$ and $\mathfrak{A}' \in \mathcal{C}'$.

The open subsets of $\mathcal{C}\times\mathcal{C}'$

Topology generated by subsets $U \times U'$ with $U \in \tau$ and $U' \in \tau'$.

The definable subsets of $\mathcal{C}\times\mathcal{C}'$

(works for FO!)

Boolean subalgebra generated by subsets $D \times D'$ with $D \in \mathcal{B}$ and $D' \in \mathcal{B}'$.

The elements of $\mathcal{C} \times \mathcal{C}'$

Pairs $(\mathfrak{A}, \mathfrak{A}')$, with $\mathfrak{A} \in \mathcal{C}$ and $\mathfrak{A}' \in \mathcal{C}'$.

The open subsets of $\mathcal{C}\times\mathcal{C}'$

Topology generated by subsets $U \times U'$ with $U \in \tau$ and $U' \in \tau'$.

```
The definable subsets of \mathcal{C}\times\mathcal{C}'
```

(works for FO!)

Boolean subalgebra generated by subsets $D \times D'$ with $D \in \mathcal{B}$ and $D' \in \mathcal{B}'$.

Theorem ([Lop21, Proposition 5.8])

 $\langle\!\langle \mathcal{C}\times \mathcal{C}',\tau^{\times},\mathcal{B}^{\times}\rangle\!\rangle$ is an LPPS.

How DO THEY INTERACT?

Let us prove:

 $\tau^{\times} \cap \mathcal{B}^{\times} \subseteq \mathcal{K}^{\circ}(\tau^{\times})$.

Let $U \in \tau^{\times} \cap \mathcal{B}^{\times}$.

 $\tau^{\times} \cap \mathcal{B}^{\times} \subseteq \mathcal{K}^{\circ}(\tau^{\times})$.

 $\tau^{\times} \cap \mathcal{B}^{\times} \subseteq \mathcal{K}^{\circ}(\tau^{\times})$.

 $\tau^{\times} \cap \mathcal{B}^{\times} \subseteq \mathcal{K}^{\circ}(\tau^{\times})$.

 $\tau^{\times} \cap \mathcal{B}^{\times} \subseteq \mathcal{K}^{\circ}(\tau^{\times})$.

 $\tau^{\times} \cap \mathcal{B}^{\times} \subseteq \mathcal{K}^{\circ}(\tau^{\times})$.

 $\tau^{\times} \cap \mathcal{B}^{\times} \subseteq \mathcal{K}^{\circ}(\tau^{\times})$.

 $\tau^{\times} \cap \mathcal{B}^{\times} \subseteq \mathcal{K}^{\circ}(\tau^{\times})$.

 $\tau^{\times} \cap \mathcal{B}^{\times} \subseteq \mathcal{K}^{\circ}(\tau^{\times})$.

 $\tau^{\times} \cap \mathcal{B}^{\times} \subseteq \mathcal{K}^{\circ}(\tau^{\times})$.

 $\tau^{\times} \cap \mathcal{B}^{\times} \subseteq \mathcal{K}^{\circ}(\tau^{\times})$.

 $\tau^{\times} \cap \mathcal{B}^{\times} \subseteq \mathcal{K}^{\circ}(\tau^{\times})$.

 $\tau^{\times} \cap \mathcal{B}^{\times} \subseteq \mathcal{K}^{\circ}(\tau^{\times})$.

 $\tau^{\times} \cap \mathcal{B}^{\times} \subseteq \mathcal{K}^{\circ}(\tau^{\times})$.

 $\tau^{\times} \cap \mathcal{B}^{\times} \subseteq \mathcal{K}^{\circ}(\tau^{\times})$.

 $\tau^{\times} \cap \mathcal{B}^{\times} \subseteq \mathcal{K}^{\circ}(\tau^{\times})$.

 $\tau^{\times} \cap \mathcal{B}^{\times} \subseteq \mathcal{K}^{\circ}(\tau^{\times})$.

 $\tau^{\times} \cap \mathcal{B}^{\times} \subseteq \mathcal{K}^{\circ}(\tau^{\times})$.

 $\tau^{\times} \cap \mathcal{B}^{\times} \subseteq \mathcal{K}^{\circ}(\tau^{\times})$.

 $\tau^{\times} \cap \mathcal{B}^{\times} \subseteq \mathcal{K}^{\circ}(\tau^{\times})$.

 $\tau^{\times} \cap \mathcal{B}^{\times} \subseteq \mathcal{K}^{\circ}(\tau^{\times})$.

 $\tau^{\times} \cap \mathcal{B}^{\times} \subseteq \mathcal{K}^{\circ}(\tau^{\times})$.

 $\tau^{\times} \cap \mathcal{B}^{\times} \subseteq \mathcal{K}^{\circ}(\tau^{\times})$.

Let $U \in \tau^{\times} \cap \mathcal{B}^{\times}$. $U = \bigcup \bigcap \neg^{?} D_{i} \times D'_{i}$. (Use Tychonoff and Zorn)

LinOrd × Paths (for free!)

LinOrd × Paths (for free!)

LinOrd >> Paths (for free!)

CONCLUDING REMARKS

CONTRIBUTIONS AND OPEN QUESTIONS

Definability	External Approach	Тороlogy
Local To Global Łós-Tarski relativisation	Logically presented pre-spectral spaces	Topology Expanders for Noetherian spaces
Positive Gaifman Normal Form	Composition theorems for LPPS	Limit Constructions of Noetherian spaces

Definability [Lop22]

Local To Global Łós-Tarski relativisation

Positive Gaifman Normal Form

Twin-Width? [Bon+20]

External Approach [Lop21]

Logically presented pre-spectral spaces

Composition theorems for LPPS

Rossman's theorem?

Topology [Lop23]

Topology Expanders for Noetherian spaces

Limit Constructions of Noetherian spaces

Beyond Noetherian?

- [ADG08] Albert Atserias, Anuj Dawar, and Martin Grohe. "Preservation under extensions on well-behaved finite structures". In: SIAM J. Comput. 38.4 (2008), pp. 1364–1381. doi: 10.1137/060658709.
- [ADK06] Albert Atserias, Anuj Dawar, and Phokion G. Kolaitis. "On preservation under homomorphisms and unions of conjunctive queries". In: J. ACM 53.2 (2006), pp. 208–237. doi: 10.1145/1131342.1131344.
- [AG87a] Miklós Ajtai and Yuri Gurevich. "Monotone versus positive". In: *Journal of the ACM* 34 (1987), pp. 1004–1015. doi: **10.1145/31846.31852**.
- [AG87b] Miklós Ajtai and Yuri Gurevich. "Monotone versus positive". In: J. ACM 34.4 (1987), pp. 1004–1015. doi: 10.1145/31846.31852.
- [AG94a] Miklós Ajtai and Yuri Gurevich. "Datalog vs first-order logic". In: Journal of Computer and System Sciences 49 (1994), pp. 562–588. doi: 10.1016/S0022-0000(05)80071-6.

- [AG94b] Miklós Ajtai and Yuri Gurevich. "Datalog vs first-order logic". In: J. Comput. Syst. Sci. 49.3 (1994), pp. 562–588. doi: **10.1016/S0022-0000(05)80071-6**.
- [Bon+20] Édouard Bonnet et al. "Twin-width I: tractable FO model checking". In: 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS). IEEE, 2020, pp. 601–612.
- [Cap+20] Florent Capelli et al. A simple counter example of Lyndon's Theorem in the finite. 2020.
- [CF21] Yijia Chen and Jörg Flum. "Forbidden Induced Subgraphs and the Łoś-Tarski Theorem". In: Proc. LICS'21. 2021, pp. 1–13. doi: 10.1109/LICS52264.2021.9470742.
- [CK90] Chen Chung Chang and H. Jerome Keisler. *Model Theory*. Vol. 73. Studies in Logic and the Foundations of Mathematics. Elsevier, 1990.
- [Din92] Guoli Ding. "Subgraphs and well-quasi-ordering". In: J. Graph Theory 16 (1992), pp. 489–502. doi: 10.1002/jgt.3190160509.

[DNR08] Alin Deutsch, Alan Nash, and Jeffrey B. Remmel. "The chase revisited". In: Proceedings of PODS'08. 2008, pp. 149–158. doi: 10.1145/1376916.1376938.

- [DRT10] Jean Daligault, Michael Rao, and Stéphan Thomassé. "Well-Quasi-Order of Relabel Functions". In: Order 27.3 (2010), pp. 301–315. doi: 10.1007/s11083-010-9174-0.
- [DS21] Anuj Dawar and Abhisekh Sankaran. "Extension Preservation in the Finite and Prefix Classes of First Order Logic". In: 29th EACSL Annual Conference on Computer Science Logic (CSL 2021). Ed. by Christel Baier and Jean Goubault-Larrecq. Vol. 183. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2021, 18:1–18:13. doi: 10.4230/LIPIcs.CSL.2021.18. url: https://drops.dagstuhl.de/opus/volltexte/2021/13452.
- [DST19] Max Dickmann, Niels Schwartz, and Marcus Tressl. *Spectral Spaces*. Vol. 35. New Mathematical Monographs. Cambridge University Press, 2019.

- [Gai82] Haim Gaifman. "On local and non-local properties". In: Proc. Herbrand Symposium. Vol. 107. Studies in Logic and the Foundations of Mathematics. Elsevier, 1982, pp. 105–135. doi: 10.1016/S0049-237X(08)71879-2.
- [Gou13] Jean Goubault-Larrecq. *Non-Hausdorff Topology and Domain Theory*. Vol. 22. New Mathematical Monographs. Cambridge University Press, 2013.
- [Gur84] Yuri Gurevich. "Toward logic tailored for computational complexity". In: Computation and Proof Theory, Proceedings of LC'84. Vol. 1104. Springer, 1984, pp. 175–216. doi: **10.1007/BFb0099486**.
- [GW04] Martin Grohe and Stefan Wöhrle. "An existential locality theorem". In: Ann. Pure Appl. Logic 129.1–3 (2004), pp. 131–148. doi: 10.1016/j.apal.2004.01.005.

[Has02] Ryu Hasegawa. "Two applications of analytic functors". In: Theoretical Computer Science 272.1 (2002), pp. 113–175. issn: 0304-3975. doi: https://doi.org/10.1016/S0304-3975(00)00349-2. url: https://www.sciencedirect.com/science/article/pii/ S0304397500003492.

- [Kup21] Denis Kuperberg. "Positive First-order Logic on Words". In: *Proc. LICS*'21. IEEE, 2021, pp. 1–13. doi: **10.1109/LICS52264.2021.9470602**.
- [Lib11] Leonid Libkin. "Incomplete information and certain answers in general data models". In: Proceedings of PODS'11. 2011, pp. 59–70. doi: 10.1145/1989284.1989294.
- [Lop21] Aliaume Lopez. "Preservation Theorems Through the Lens of Topology". In: Proceedings of CSL'21. Vol. 183. LIPIcs. 2021, 32:1–32:17. doi: 10.4230/LIPIcs.CSL.2021.32.

- [Lop22] Aliaume Lopez. "When Locality Meets Preservation". In: Proceedings of the 37th Annual ACM/IEEE Symposium on Logic in Computer Science. LICS '22. New York, NY, USA: Association for Computing Machinery, Aug. 2022, pp. 1–14. isbn: 978-1-4503-9351-5. doi: 10.1145/3531130.3532498. url: https://doi.org/10.1145/3531130.3532498 (visited on 10/17/2022).
- [Lop23] Aliaume Lopez. "Fixed Points and Noetherian Topologies". In: Foundations of Software Science and Computation Structures - 26th International Conference, FoSSaCS 2023, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2023, Paris, France, April 22-27, 2023, Proceedings. Ed. by Orna Kupferman and Pawel Sobocinski. Vol. 13992. Lecture Notes in Computer Science. Springer, 2023, pp. 456–476. doi: 10.1007/978-3-031-30829-1_22. url: https://doi.org/10.1007/978-3-031-30829-1%5C_22.
- [Ros08] Benjamin Rossman. "Homomorphism preservation theorems". In: *Journal of the ACM* 55 (2008), 15:1–15:53. doi: **10.1145/1379759.1379763**.

- [SAC14] Abhisekh Sankaran, Bharat Adsul, and Supratik Chakraborty. "A generalization of the Łoś-Tarski preservation theorem over classes of finite structures". In: International Symposium on Mathematical Foundations of Computer Science. Springer. 2014, pp. 474–485.
- [San+12] Abhisekh Sankaran et al. "Preservation under substructures modulo bounded cores". In: International Workshop on Logic, Language, Information, and Computation. 2012, pp. 291–305. doi: 10.1007/978-3-642-32621-9_22.
- [Sto95] Alexei P. Stolboushkin. "Finitely monotone properties". In: (1995), pp. 324–330. doi: **10.1109/LICS.1995.523267**.
- [Tai59] William W. Tait. "A counterexample to a conjecture of Scott and Suppes". In: Journal of Symbolic Logic 24 (1959), pp. 15–16. doi: **10.2307/2964569**.

A SIMPLE FIXPOINT APPROACH

With *E* monotone and fixing Noetherian topologies.

Theorem ([Lop23, Theorem 3.21])

If E is monotone, fixes Noetherian topologies, and <u>respects subsets</u>, then the least fixed point of E is a Noetherian topology.

Remarks

- The extra condition is needed
- The proof uses a topological minimal bad sequence argument

Theorem ([Lop23, Theorem 5.13])

Given an inductively defined space X = F(X), one can derive a generic topology expander

Remarks

- Gives back the previous topologies for finite words and finite trees!
- Correctly generalizes with what is done in the realm of well-quasi-orders, e.g., by [Has02].

Parameters of a local sentence

$$\exists x_1, \ldots, x_n [Q_1 y_1, Q_2 y_2, \ldots, Q_q y_q, \theta(\vec{x}, \vec{y})]_{r}^{\vec{x}}$$

Fixing all parameters...

A sentence φ preserved under ((a, a)-local elementary embeddings is equivalent to an existential local sentence.

$$\rightarrow (x,y) \stackrel{\text{def}}{=} \bigvee_{(R,n)\in\sigma} \exists z_1,\ldots,z_n, R(z_1,\ldots,z_n) \land \bigvee_{1\leq i,j\leq n}^n x = z_i \land y = z_j$$

$$\rightarrow (x, y) \stackrel{def}{=} \bigvee_{(R,n)\in\sigma} \exists z_1, \ldots, z_n, R(z_1, \ldots, z_n) \land \bigvee_{1 \leq i,j \leq n}^n x = z_i \land y = z_j$$

Figure 1: From a table to a graph.

$$\rightarrow (x,y) \stackrel{def}{=} \bigvee_{(R,n)\in\sigma} \exists z_1,\ldots,z_n, R(z_1,\ldots,z_n) \land \bigvee_{1\leq i,j\leq n}^n x = z_i \land y = z_j$$

Figure 1: From a table to a graph.

$$\rightarrow (x,y) \stackrel{def}{=} \bigvee_{(R,n)\in\sigma} \exists z_1,\ldots,z_n, R(z_1,\ldots,z_n) \land \bigvee_{1\leq i,j\leq n}^n x = z_i \land y = z_j$$

Figure 1: From a table to a graph.

$$\rightarrow (x,y) \stackrel{def}{=} \bigvee_{(R,n)\in\sigma} \exists z_1,\ldots,z_n, R(z_1,\ldots,z_n) \land \bigvee_{1\leq i,j\leq n}^n x = z_i \land y = z_j$$

Figure 1: From a table to a graph.