Advanced Complexity

TD n°4

Aliaume Lopez

October 16, 2019

Exercise 1: Circuit value

We study the following variants of Circuit-Value, all the reductions are logspace in the following exercise.

- 1. Show that Horn Sat is AL-easy
 - INPUT : a set ϕ of Horn clauses
 - QUESTION : is ϕ satisfiable?
- 2. Show that Circuit Value is easier than Horn Sat
 - INPUT : a circuit C using $\lor, \land, \bar{\lor}, \bar{\land}$
 - QUESTION : does C evaluate to \top
- 3. Show that Monotone Circuit Value is AL-hard and easier than Circuit Value.
 - INPUT : a circuit C using \lor, \land
 - QUESTION : does C evaluate to \top
 - Hint : build the configuration graph of the MT...
- 4. Show that Horn Sat is P-complete. Deduce that AL = P. Hint : show that AL is stable under logspace reductions

Exercise 2: Language theory

Show that the following problems are PSPACE-complete :

- 1. NFA Universality :
 - INPUT : a non-deterministic automaton A over alphabet Σ

- QUESTION : $\mathcal{L}(A) = \Sigma^*$?

Bonus : what is the complexity of this problem for a DFA ?

2. NFA Equivalence

— INPUT : two non-deterministic automata A_1 and A_2 over the same alphabet Σ

- QUESTION : $L(A_1) = L(A_2)$

Bonus : what is the complexity of this problem for a DFA?

- 3. DFA Intersection Vacuity :
 - INPUT : deterministic automata A_1, \ldots, A_m for some m
 - QUESTION : $\bigcap_{i=1}^{m} L(A_i) = \emptyset$?

Exercise 3: Too fast!

Show that $\mathsf{ATIME}(\log n) \neq L$.

Exercise 4: Direct application

Show that $\mathsf{EXPSPACE} = \mathsf{AEXPTIME}$.

Hint: You may use that if f is space-constructible, then :

 $\mathsf{SPACE}(poly(f(n)) = \mathsf{ATIME}(poly(f(n)))$