
Complexité Avancée: TD1
Esquisse de correction

Aliaume Lopez

25/09/2019

Exercise 1 : Sorting in logspace

INPUT : less than n numbers that are between 0 and m, separated by •
OUTPUT : the same amount of numbers that are sorted, separated by •
A proposition of algorithm (at home, try to improve it).

L <- list of numbers (input tape)
max = NONE # the maximal number written in the output tape
min = NONE # the minimal number in { x in L / x > max }
num = NONE # number of times «min» appears in L
len = 0 # number of output that have been written
while len < |L| do

min = findMinimum # searches through L to find the minimum
num = countMinimum # searches through L to count
for i = 0 to num do

write min
write ·
len += 1

done
max = min

done

Exercise 2 : Space constructible functions and log2(n) issue
The objective was to prove the following inclusion :

NSPACE(f(n)) ⊆ DTIME(2O(f(n)) + O(n)) (1)

We first build a naïve proof, and then find the hypotheses that are needed.
Let M be a Turing machine computing using space f(n) without output tape (remember
that it is a decision problem). However in the definition of SPACE(f(n)), there is an input
tape that is read-only.

Beware the input tape

For L (logspace) it is necessary to consider an input tape... Can you see why ?

Therefore, a reachable configuration of the machine M on input x has size bounded by,

|CM (x)| ≤ |Q| × |x| × f(|x|)× |ΣM |f(n) , SM (x) (2)

Where Q is the states of M , x is the input and, ΣM is the alphabet of M .

1

L3 ENS Paris-Saclay Programmation 1

The key ingredient

Now, to detect if M accepts x, we proceed in two steps

1. Compute all the confiurations of size bounded by SM (x)

2. Use a graph reachability algorithm to see if there is an accepting configuration
that is reachable from the initial configuration.

However, it is crucial to see that there are things that are not well defined in the previous
statement.

— How do you take a transition from the Turing machine M in the graph ?

— The graph of possible configurations of M is possibly infinite, but you only consider
configurations of a bounded size. How do you compute the size SM (x) ? (hint : the
function f must be space-constructible).

By answering the two preceding items, you should be able to describe a machine M ′ that
accepts the same language as M but runs in time bounded by 2O(f(n)) + O(n).

Why would you assume that f ≥ log n

If f ≥ log n then M ′ is actually running in time 2O(f(n)).

Exercise 3 : Restrictions of the definition of SPACE(f(n))
As always in this kind of situation, the solution is using a timeout or spaceout.

1. When you have a machine that runs in space f(n) but may not halt, you can detect an
infinite run because the number of configurations is finite. As in the previous exercise
you can see that this number can be bounded by SM (x)

SM (x) , |Q| × |x| × f(|x|)× |ΣM |f(n) (3)

Therefore it suffices to have a counter C written in binary to stop the execution when
C is too big.

2. When you have a machine that runs in space f(n) if it accepts, and with no constraint
otherwise. To prevent from cycling, the previous trick will still work. However, we also
need a counter to constraint the space usage, also known as spaceout.

Why would you assume that f ≥ log n ... part two

Check that otherwise the space of your newly defined Turing machine will not be
O(f(n)) ...

Why you do need two counters for the second question

Check that using the counter C to bound the time of the computation will result in
possibly reaching configurations of size 2f(n)

2

