Exercise 1: Graph representation and why it does not matter

Let \(\Sigma = \{0, 1, \ldots, \bullet\} \), \(n \in \mathbb{N} \) and \(V = [0, n - 1] \). We consider the following two representations of a directed graph \(G = (V, E) \) by a word in \(\Sigma^* \):

— By its adjacency matrix: \(m_{0,0} \bullet 0 \bullet \cdots \bullet m_{0,n-1} \bullet m_{n-1,0} \cdots m_{n-1,n-1} \), where for all \(i, j \in [0, n - 1] \), \(m_{i,j} \) is equal to \(1 \) if \((i,j) \in E \), 0 otherwise.
— By its adjacency list: \(k_0^0 \bullet \cdots \bullet k_0^{m_0} \bullet \cdots \bullet k_{m_1}^0 \cdots ^{m_1} \cdots \bullet k_{m_{n-1}}^0 \cdots ^{m_{n-1}} \), where for all \(i \), \([k_i^0, \ldots, k_i^{m_i}]\) is the list of neighbors of vertex \(i \), written in binary, in increasing order.

1. Describe a logarithmic space bounded deterministic Turing machine which takes as input the graph \(G \), represented by adjacency lists, and returns the adjacency matrix representation of \(G \).

2. Conversely, describe a logarithmic space bounded deterministic Turing machine taking as input a graph \(G \), represented by its adjacency matrix, and computing the adjacency list representation of \(G \).

Therefore, the complexity of the problem \textsc{Reach} seen in class does not depend on the representation of the graph.

Exercise 2: Inclusions of complexity classes

Definition 1. A function \(f : \mathbb{N} \rightarrow \mathbb{N} \) is said to be space-constructible if \(\forall n \in \mathbb{N} \), \(f(n) > \log(n) \) and there exists a deterministic Turing machine that computes \(f(|x|) \) in \(O(f(|x|)) \) space given \(x \) as input.

Show that for a space-constructible function,

\[
\text{NSPACE}(f(n)) \subseteq \text{DTIME}(2^{O(f(n))} + O(n))
\]

Exercise 3: Restrictions in the definition of \textsc{Space}(f(n)), and why they do not matter

In the course, we restricted our attention to Turing machines that always halt, and whose computations are space-bounded on every input. In particular, remember that \textsc{Space}(f(n)) is defined as the class of languages \(L \) for which there exists some deterministic Turing machine \(M \) that always halts (i.e. on every input), whose computations are \(f(n) \) space-bounded (on every input), such that \(M \) decides \(L \).

Now, consider the following two classes of languages:

— \textsc{Space}'(f(n)) is the class of languages \(L \) such that there exists a deterministic Turing machine \(M \) running in space bounded by \(f(n) \), such that \(M \) accepts \(x \) iff \(x \in L \). Note that if \(x \notin L \), \(M \) may not terminate.

— \textsc{Space}''(f(n)) is the class of languages \(L \) such that there exists a deterministic Turing machine \(M \) such that \(M \) accepts \(x \) using space bounded by \(f(n) \) iff \(x \in L \) (\(M \) may use more space and not even halt when \(x \notin L \)).

1. Show that for a space-constructible function \(f = \Omega(\log n) \), \textsc{Space}'(f(n)) = \textsc{Space}(f(n))

2. Show that for a space-constructible function \(f = \Omega(\log n) \), \textsc{Space}''(f(n)) = \textsc{Space}(f(n))
Exercise 4: Dyck’s language

Let A be the language of balanced parentheses – that is the language generated by the grammar $S \rightarrow (S)|SS|\epsilon$. Show that $A \in L$.

What about the language B of balanced parentheses of two types? That is the language generated by the grammar $S \rightarrow (S)||S||SS|\epsilon$.