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1 Mealy Machines
Exercise 1 (True or False?). For each of the following functions, decide whether they can be realized by a Mealy Machine.
In positive cases, provide the Mealy Machine, in negative cases, provide a proof that it cannot be realized.

□ The function lowercase : Σ∗ → Σ∗, whereΣ is the latin alphabet, that maps a wordw to its lowercase variant.
For instance, lowercase(aAbcDA) = aabcda.

□ The function expandtabs : Σ∗ → Σ∗ that works on the alphabet Σ of ASCII characters, and replaces the tab
codepoint \t by four spaces codepoints.

□ The functionw 7→ c|w|a .

□ The function sort : Σ∗ → Σ∗ that sorts its input, whereΣ is a finite alphabet equipped with a total ordering≤.

□ The function∆: Σ∗ → Σ∗ that maps u to uu.

□ The function swap : Σ∗ → Σ∗ that maps au to ua and ε to ε.

□ The function swap2 : Σ
∗ → Σ∗ that maps ua to au and ε to ε.

What are the extensions of Mealy Machines for which the above functions are computable? Among the above func-
tions, which ones are continuous for the regular topology?

Exercise 2 (Arithmetic Circuits). The goal of this exercise is to prove that operations on binary numbers are possible.
To that end we have to provide an encoding of tuples numbers, which we do as follows: a tuple (n1, . . . , nk) ∈ Nk is
represented on the alphabet {0, 1}k by writing the numbers in binary, and padding them with zeros so that the length
matches. There are four variants of this encoding, obtained by deciding whether to pad on the left or the right, and
whether to write numbers with the most significant bit on the left or the right.

1. For each of the four possible encodings, decide whether the map (+): N2 → N can be represented using a
Mealy Machine.

2. For each of the four possible encodings, decide whether the map (/3) : N → N can be represented using a
Mealy Machine.

3. Write a Mealy Machine that computes (n, 4n) in binary.
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4. Deduce a Mealy Machine that computes 5n in binary by using the wreath product construction and the construc-
tion of the addition.

Exercise 3 (Bonus: Presburger Arithmetic). Prove that Presburger Arithmetic is decidable.
▷ Hint 1
▷ Hint 2

Exercise 4 (Flip Flop Machines). Prove that every flip-flop machine can be obtained by composing binary flip-flop
machines. What is the number of intermediate machines that are needed?

▷ Hint 3
▷ Hint 4
▷ Hint 5

Exercise 5 (Regularity of Mealy Machines). The goal of this exercise is to understand the relationship between Mealy
Machines and regular languages. Let f : Σ∗ → Γ∗ be a function computed by a Mealy Machine.

1. Prove that the image ofΣ∗ through f is a regular language.

2. Prove that the pre-image of Γ∗ through f is a regular language.

3. LetL be a regular language, prove that f (L) and f−1 (L) are regular languages, i.e., that f is open and contin-
uous for the regular topology.

4. Is every open and continuous map computable by a Mealy Machine?

5. A function f : Σ∗ → Γ∗ is Lipschitz for the prefix distance. What is the value of the Lipschitz constant?

6. Thegraphof a functionf : X → Y is the subsetgraph(f) ⊆ X×Y definedby{(x, y) ∈ X × Y | f(x) = y}.
Can you provide a necessary and sufficient condition on the graph of f for it to be representable using a Mealy
Machine?

Exercise6 (Decidability Properties ofMealyMachines). In this exercise, the goal is to understandwhat is decidable about
Mealy Machines. For each of the following questions, prove (or disprove) that it is decidable, and in case of decidability,
provide a precise complexity class.

1. Can we decide if two Mealy Machines compute the same function?

2. Can we decide if a Mealy Machine is surjective?

3. Can we decide if f(w) v g(w) for allw ∈ Σ∗?

4. Can we decide if a Mealy Machine is injective?

5. Can we decide if there existsw ∈ Σ∗ such that f(w) = g(w)?

6. Can we decide if a Turing machine computes a function that can be computed by a Mealy Machine?

▷ Hint 6

Exercise 7 (Variations onMealy Machines). Describe the relationship between the expressiveness of the following vari-
ations of Mealy Machines:

1. Mealy Machines

2. Mealy Machines with lookaheads.

3. Sequential functions.
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4. Mealy Machines with lookaheads with an ambiguous transition relation, but such that every run produces the
same output.

5. Mealy Machines with lookaheads with an ambiguous transition relation, where the semantic is undefined if there
are multiple runs producing different outputs.

6. Mealy Machines with transitions labelled by regular expressions.

Exercise 8 (Efficient String Matching). The goal of this homework is to study the problem of string matching. That is,
given a patternm ∈ Σ∗ and a text t ∈ Σ∗, one wants to produce a textm(t) ∈ (Σ ] Σ̄)∗ where occurrences ofm
are overlined. To avoid ambiguity, we will overline non-overlapping occurrences of the pattern, starting from the left of
the text t.

1. Is the function that underlines the starts of the matches computable by a Mealy Machine? By a sequential func-
tion? By a Mealy Machine with lookaheads?

2. Same question with underlining the ends of the matches.

3. Same question for the functionm.

4. Conclude by providing an efficient algorithm to perform string matching. What is the (time/space) complexity in
|m|? What is the (time/space) complexity in |t|?

2 Homework
Exercise 9 (Continuous Functions). Prove that there exists uncountably many continuous functions fromΣ∗ to Γ∗ for
the regular topology. It is true for continuous and prefix preserving functions?

▷ Hint 7
▷ Hint 8
▷ Solution 1 (Complete Solution)

Exercise 10 (Stability properties of Sequential Functions). We say that a function preserves prefixes if for all u, v ∈ Σ∗,
u vprefix v implies f(u) vprefix f(v). Prove that the following propositions are equivalent for a function f : Σ∗ → Γ∗:

1. f is sequential.

2. f is continuous for the regular topology, Lipschitz for the prefix distance, and preserves prefixes.

2.0.1 Solution of the easy implication

Let f be a sequential function, computed by a sequential transducer T = (QT , δT , q
T
0 , λT ). Our first objective is

to prove that f is continuous. To that end, let L be a regular language recognized by a finite monoidM , a morphism
µ : Γ∗ →M , and an accepting part P ⊆M . We want to prove that f−1 (L) is a regular language.

To that end, let us define N = (QT → QT ) × (QT → M), with the multiplication (δ, λ) · (δ′, λ′) :=
(δ ◦ δ′, q 7→ λ(q) · λ′(q))). This is a finite monoid, where the pair (id, const1) is the identity element. Let us
define φ(a) := (δT (a, ·), λT (a, ·)) for all a ∈ Σ. It defines a morphism from Σ∗ to N . Now, let us consider
S := {(δ, λ) ∈ N | λ(δ(q0)) ∈ P}. It is an easy check that φ−1(S) = f−1 (L), which proves that the latter is
a regular language.

Let usnowprove thatf is Lipschitz for theprefixdistance. Let us considerK := max {|λT (a, q)| | a ∈ Σ, q ∈ QT }.
It is an easy check that f is Lipschitz with constantK .

Finally, let us prove that f preserves prefixes. Let u, v ∈ Σ∗ be such that u vprefix v. Because (QT , q
T
0 , δT ) is a

deterministic automaton, f(v) = f(u) · λT (δ(qT0 , u), u−1v).

2.0.2 Solution of the hard implication
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3 Cheat Sheet

3.1 Machines
Definition 1 (Mealy Machine). LetΣ and Γ be two alphabets. A Mealy MachineM is a tuple (q0, Q, δ, λ) such that

1. Q is a finite set of states.

2. q0 ∈ Q is the initial state.

3. δ : Q× Σ → Q is a transition function.

4. λ : Q× Σ → Γ is an output function.

The semantics of a Mealy Machine is given by the following inductive equations:

M(w) := M(q0, w) M(q, ε) := ε M(q, au) := λ(q, a) · M(δ(q, a), u)

Definition 2 (Flip-Flop Machine). A flip-flop machine is a Mealy Machine such that for all letters a ∈ Σ, either δ(·, a)
is the identity function, or it is a constant function. It is a binary flip-flop machine whenQ = {0, 1}.

Definition 3 (Mealy Machine With Lookahead). LetΣ and Γ be two alphabets. A Mealy Machine with LookaheadM is
a tuple (q0, Q, δ, λ) such that

1. Q is a finite set of states.

2. q0 ∈ Q is the initial state.

3. δ ⊆ Q× Σ×Q is a transition relation.

4. λ : Q× Σ×Q→ Γ is an output function.

In addition to this syntactic definition, we furthermore assume that for eachw ∈ Σ∗, there exists at most one path
in the automaton (q0, Q, δ) starting from q0 and readingw.

The semantics of the Mealy Machine is given by considering potential runs of the machine. Because of the absence
of ambiguity, it defines a partial mapM : Σ∗ ⇀ Γ∗.

Definition 4 (Sequential Functions). LetΣ and Γ be two alphabets. A sequential transducerA is a tuple (q0, Q, δ, λ)
such that

1. Q is a finite set of states.

2. q0 ∈ Q is the initial state.

3. δ : Q× Σ⇀ Q is a partial transition function.

4. λ : Q× Σ → Γ∗ is an output function.

The semantics is defined as for Mealy Machines.
Warning: this is sometimes called pure sequential functions.
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3.2 Maths
Definition 5 (Presburger Arithmetic). Formulas of the Presburger Arithmetic are built from the following grammar:

φ := > | ⊥ | φ ∧ φ | φ ∨ φ | ¬φ | ∃x.φ | x = y + z

Given a valuation ν : x⃗→ N, we define the semantics of φ inductively as follows:

ν |= > ⇐⇒ true
ν |= ⊥ ⇐⇒ false

ν |= φ ∧ ψ ⇐⇒ ν |= φ and ν |= ψ
ν |= φ ∨ ψ ⇐⇒ ν |= φ or ν |= ψ
ν |= ¬φ ⇐⇒ not (ν |= φ)

ν |= ∃x.φ ⇐⇒ there exists n ∈ N s.t. ν[x 7→ n] |= φ
ν |= x = y + z ⇐⇒ ν(x) = ν(y) + ν(z)

Definition 6 (Topology and Continuous functions). LetX be a set. A topology overX is a subset τ of P(X) closed
under finite intersections and arbitrary unions. In a topological space (X, τ), the subsets in τ are called open subsets,
and their complement are called closed subsets.

A function f : (X, τ) → (Y, θ) is continuous whenever for all open subset U ∈ θ, its pre-image f−1 (U) is an
open subset of τ . Equivalently, it is continuous if the pre-image of closed subsets are closed subsets.

Definition 7 (Lipschitz functions). A function f : (X, dX) → (Y, dY ) is Lipschitz if there exists a constantK ≥ 0
such that for all x1, x2 ∈ X2, dY (f(x1), f(x2)) ≤ KdX(x1, x2).

Definition 8 (Prefix Distance). LetΣ∗ be a finite alphabet. The prefix distance between two words u, v is |u| + |v| −
2 |w| wherew is the longest common prefix of u and v.

Definition 9 (Regular Topology). LetΣ be a finite alphabet. We equipΣ∗ with a metric distance as follows: to a pair of
words u,w, we associate theminimal size s(u,w) of a deterministic automaton that separates u fromw. The distance
between two words u and w, is defined as d(u,w) := 2−s(u,w). The regular topology is the topology defined by this
metric onΣ∗.

Equivalently, the regular topology is the coarsest topology containing the regular languages as closed subsets.
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A Hints
Hint 1 (Exercise 3 Encoding of numbers and formulas). Encode a formula φ(x⃗) as a regular language of NX , where
numbers are encoded in binary with the most significant bit is on the left, and the padding is on the right.

Hint 2 (Exercise 3 Presburger Operators). Start by proving that each of these operations are computed by Mealy Ma-
chines.

1. The equality operator (=): N3 → {0, 1}.

2. The addition operator (+): N2 → N.

3. The existential quantifier (∃x) : Nxy⃗ → Ny⃗ .

Hint 3 (Exercise 4 Encode states). Given a state q ∈ Q, compute using a binary flip-flop machine the sequence of
approximated states {q,¬q}.

Hint 4 (Exercise 4 For the upper bound). Use a binary encoding to obtain a logarithmic number of intermediate ma-
chines.

Hint 5 (Exercise 4 For the lower bound). What can you say about a machine that shifts its input by one position?

Hint 6 (Exercise 6 Deciding Injectivity). Consider the set {(u, v) ∈ Σ∗ × Σ∗ | f(u) = f(v)}, and show that it is a
regular language.

Hint 7 (Exercise 9 The alphabet does not matter). Consider the set of all functions fromN toN.

Hint 8 (Exercise 9 Sufficient conditions for continuity). Show that the following conditions are sufficient for a function
f : N → N to be continuous:

1. ∀n ∈ N, f(n) is a factorial,

2. lim infn→∞ f(n) = ∞.
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B Solutions
Solution 1 (Solution to Exercise 9). Wewill follow the hints given, namely that the alphabet does notmatter and that it is
quite easy to be continuous. Indeed, consider f : N → N such that f(n) is a factorial number, and lim infn→∞ f(n) =
∞. Let L ∈ {1}∗ ' N be a regular language, i.e., a language recognized by some finite monoidM , with a morphism
µ : N →M and an accepting part P ⊆M . Our goal is to prove that f−1 (L) is a regular language too.

Let n ∈ N such that f(n) ∈ L, by definition it means that µ(f(n)) ∈ P ⊆ M . Recall that for all n ∈ N, there
existsm ∈ N such that f(n) = m!, i.e., f(n) = 1m!, as a consequence, µ(f(n)) = µ(1)m!.

By standard results on finite monoids, there exists an idempotent e inM such that for allm ≥ |M |, µ(1)m! = e.
Let us sketch the proof for completeness purposes. This is obtained by remarking that the semigroup generated by
µ(1) is finite, hence contains an idempotent e, obtained for some power µ(1)k with k ≤ |M |. Unicity is obtained by
noticing that if e1 = µ(1)k1 and e2 = µ(1)k2 , then e1 = ek2

1 = µ(1)k1×k2 = ek1
2 = e2.

Now, using the fact that lim infn→∞ f(n) = ∞, there exists n0 ∈ N such that for all n ≥ n0, f(n) ≥
|M |!. As a consequence, for all n ≥ n0, µ(f(n)) = e. If e ∈ P , this proves that f−1 (L) = {n | n ≥ n0} ∪
{n < n0 | f(n) ∈ L}, the latter is a regular language as the union of two regular languages. Otherwise, e 6∈ P , and
we conclude that f−1 (L) = {n < n0 | f(n) ∈ L}, which is also a regular language.

To conclude, let us remark that there are uncountably many functions satisfying the above conditions. This can
be proven by considering the following injection ofNN (which is well known to be uncountable) into such functions as
follows: to a sequence (pn)n∈N of numbers, one can associate the function f : n 7→ (

∑n
i=0 pi)!.

Remark that in the above injection, all functions are prefix preserving, hence the answer to the second question is
also positive. This has to be compared with the Theorem charaterizing sequential functions.
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