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DISCLAIMER AND SELF PROMOTION?

I am no expert on transducers!
My interests are in

* Finite Model Theory (first order logic)

1/30



DISCLAIMER AND SELF PROMOTION?

I am no expert on transducers!
My interests are in

* Finite Model Theory (first order logic)

+ Well-quasi-orderings (combinatorics)

1/30



DISCLAIMER AND SELF PROMOTION?

I am no expert on transducers!
My interests are in

* Finite Model Theory (first order logic)
+ Well-quasi-orderings (combinatorics)
* Noetherian spaces (topology)
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APERIODICITY, STAR-FREE, AND
FIRST-ORDER LOGIC

ENTER A REGULAR LANGUAGE



REGULARITY AND APERIODICITY FOR REGULAR LANGUAGES

Finite Automaton Regular

Finite Monoid Languages
MSO Sentence

Counter-free Automaton Star-Free
Aperiodic Monoid Languages
FO Sentence

Decidability of the membership problem follows from the effective equivalence with
aperiodic monoids [Sch65].
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APERIODICITY, STAR-FREE, AND
FIRST-ORDER LOGIC

WHAT ABOUT FUNCTIONS?



BRIEF OVERVIEW OF APERIODICITY FOR FUNCTIONS (OR RELATIONS)

L: ¥ > B
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BRIEF OVERVIEW OF APERIODICITY FOR FUNCTIONS (OR RELATIONS)

L:Y*—>B

-3 —r*
Computational Model Decidable aperiodicity
fC (X xN*is a regular language v [Sch65]
fis sequential v[Cho03]
fis rational v [FGL16]
fis regular ~ [Boj14]
fis polyregular ?
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IN THIS TALK:

POLYREGULAR FUNCTIONS




APERIODICITY, STAR-FREE, AND
FIRST-ORDER LOGIC

SIMPLIFYING UNTIL IT TRIVIALISES



CAREFUL CHOICE OF OUTPUT

Arbitrary polyregular functions

f X T
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CAREFUL CHOICE OF OUTPUT

Arbitrary polyregular functions
f.x* 1"
Unary output polyregular functions ' = {1}
fr 2 — {1} ~ (N, +)

Also known as N-polyregular functions.
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CAREFUL CHOICE OF OUTPUT

Arbitrary polyregular functions
f. 2" =T~
Unary output polyregular functions ' = {1}
fr 2 — {1} ~ (N, +)
Also known as N-polyregular functions.
Z-output polyregular functions
2 — {+1,-1}"

Casted to (Z, +) by post-composition with >_.
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SIMPLIFICATIONS

Commutative ouptut! (no ordering needed)
Invertible output! (bounded backtracking is possible)
Simpler definitions! (to be seen)

Reduces to counting (rational series)
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SIMPLIFICATIONS

Commutative ouptut! (no ordering needed)
Invertible output! (bounded backtracking is possible)
Simpler definitions! (to be seen)

Reduces to counting (rational series)

The function Y_: {—1,+1}* — Z is not regular.

Non trivial compensations arise in the output.
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Z~-POLYREGULAR FUNCTIONS

FROM A DATABASE PERSON’S
PERSPECTIVE



FROM LANGUAGES TO FUNCTIONS VIA FREE VARIABLES

Theorem (Languages and MSO [Biic60])
A language L is regular iff there exists a sentence p € MSO such that L = 1,,.
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FROM LANGUAGES TO FUNCTIONS VIA FREE VARIABLES

Theorem (Languages and MSO [Biic60])
A language L is regular iff there exists a sentence p € MSO such that L = 1,,.

What if © was not a sentence?
Definition (Counting first order valuations)
#lpX)]: we #[{dew|w dl=p(X)}]

Remark

This is connected to “counting automata” [Sch62].
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Z~-POLYREGULAR FUNCTIONS ..IT WAS ABOUT TIME!

ZP := Ling ({# [¢(¥)] | ¢(X) € MSO})
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Z~-POLYREGULAR FUNCTIONS ..IT WAS ABOUT TIME!

ZP = Ling ({# [p(X)] | #(X) € MSO})

Zpk = LinZ ({# [(p(Xl, . 7Xk)] ’ (p(Xl, C 7Xk) S MSO})
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Z~-POLYREGULAR FUNCTIONS

Pop Quizz



WHICH OF THESE FUNCTIONS ARE Z-POLYREGULAR?

+ 1, for some language L?
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WHICH OF THESE FUNCTIONS ARE Z-POLYREGULAR?

+ 1, for some language L? X
+ 1, for some regular language L? v
* Wi W v
W Wl x Wl — [Wig v
« w2 X
c wes (-1)" 7

v

s wis (1) x |w]
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ON THE LIMITS OF GROWTH

Functions f € ZP have polynomial growth rate

For all f e ZPy,
fw)| = O(Iw]¥)
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A FREQUENTLY REDEFINED CONCEPT?

Name Reference
Finite Counting Automata [Sch62]
Rational series of polynomial growth [BR11]

Rational series without kleene star —
Weighted automata of polynomial ambiguity [KR13; CDTL23]
Polyregular functions (post composed with }") [BKL19]

Membership is decidable and conversions are effective between these classes [see,
e.g. CDTL23].
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APERIODICITY

WHICH IS WHAT WE CARED ABOUT?



PopP QuUIzz (AGAIN?!)

Which of the following functions should be aperiodic?

+ 1, for some regular language L?
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PopP QuUIzz (AGAIN?!)

Which of the following functions should be aperiodic?
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PopP QuUIzz (AGAIN?!)

Which of the following functions should be aperiodic?

+ 1, for some regular language L?

+ 1, for some star-free language L?
C W W

W Wl x Wl — (Wi

c wi (1)

s we (=D x |w|

N %X X NN N X%

s we (Wl — W)

Please notice
For the last function, the pre-image of {0} is not a regular language ...
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EXISTING NOTIONS OF APERIODICITY

Following the definition of Droste and Gastin [DG19]

The function w — (—1)"! is aperiodic.
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EXISTING NOTIONS OF APERIODICITY

Following the definition of Droste and Gastin [DG19]

The function w — (—1)"! is aperiodic.

Following the definition of Reutenauer [Reu80]

The function w — (—1)*l is aperiodic.

I tricked you to agree with me.
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APERIODICITY

A REASONABLE NOTION OF
APERIODICITY?



STAR-FREE Z-POLYREGULAR FUNCTIONS

ZSF = Linz ({# [¢(X)] | #(X) € FO})
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STAR-FREE Z-POLYREGULAR FUNCTIONS

ZSF = Linz ({# [¢(X)] | #(X) € FO})

ZSFk = Ling ({# [gO(Xl, .. 7Xk)] ‘ (p(Xl, 000 7Xk) € FO})
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OUR RESULTS: EFFECTIVE DECISION PROCEDURES.

Z-rational

Z-polyregular
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Z-rational
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OUR RESULTS: EFFECTIVE DECISION PROCEDURES.

Z-rational
@ corerreeeeenneneees W — (72)‘W‘
Polynomial growth
Star-free Z- Z-polyregular
polyregular O(r2) growth
ZP
7SF, 2
W= [Wlg X Wy . O(n) growth
ifabeA ﬁ 7P,
ASFl @ oo Wi \W\X(fl)‘w‘
O(1) growth
7SF w1, (w)
w—1lw » . o ZPo O if L is regular but
if Lis star-free not star-free
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PROOFS?

DECIDING GROWTH RATE



IT IS NON TRIVIAL

f(w) := #[isOdd(x)] — # [isEven(x)] € ZP;
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IT IS NON TRIVIAL

f(w) := #[isOdd(x)] — # [isEven(x)] € ZP;

Growth rate? Number of free variables? Equivalent function?

flw) = Lisodd € ZPo
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SEMANTIC CHARACTERISATION

Definition (Pumpable function)

A function f: ¥* — Z is k-pumpable whenever there exists aq, ..., q) € *,
Wy, ..., W, € L*, such that
k
|f(ao [T wied| = Q(Xe + -+ Xil¥)
i=1
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SEMANTIC CHARACTERISATION

Definition (Pumpable function)

A function f: ¥* — Z is k-pumpable whenever there exists aq, ..., q) € *,
Wy, ..., W, € L*, such that
k
|f(ao [T wied| = Q(Xe + -+ Xil¥)
i=1

That is, one can observe a growth rate at least k by iterating patterns.
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GENERAL PROOF, ON AN EXAMPLE

f:= #[isOdd(x)] — #[isEven(x)] € ZP;
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GENERAL PROOF, ON AN EXAMPLE

f:= #[isOdd(x)] — #[isEven(x)] € ZP;
Factorisation [Sim90] 0
M= (Z/2Z,+) 11
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GENERAL PROOF, ON AN EXAMPLE

f:= #[isOdd(x)] — # [isEven(x)] € ZP;

Skeletons / 0 \

Factorisation [Sim90] 0

M = (Z)2Z,+) 1 1

Production +1 -1 +1 -1 +1 -1 +1 -1 +1
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CHARACTERISATIONS

Theorem
The following are equivalent for functions f: ¥* — Z and k € N:
1. fe ZPy.

2. fis the post-composition of a polyregular function of growth rate k with the >
operator.

3. fisin the closure of regular languages under ®, +, and z; - O and f has growth
rate k.

4. fis a rational series and f is not k + 1 pumpable.

5. fis computed by a weighted automata of ambiguity O(|w|¥).

Every conversion is effective.
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PROOFS?

DECIDING APERIODICITY



RESIDUALS!

Definition (Residuals of a function f)
flu=): w— fluw)
Res(f) := {flu—) |ue X*}
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RESIDUALS!

Definition (Residuals of a function f)
flu=): w— fluw)
Res(f) := {flu—) |ue X*}

Theorem
If f € ZPy, then Res(f)/ZPy_4 is finite!

“fis a deterministic transducer up to lower degree errors”
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RESIDUAL TRANSDUCER ON AN EXAMPLE

fiw) = ()" x |w| ezP,
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RESIDUAL TRANSDUCER ON AN EXAMPLE

fiw) .= ()" x |w| ezP,
g(w) == flaaw) — flw) = 2 x (=1)™ e ZP,

0
alo

(O fre)-s

alwe g(w)
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RESIDUAL TRANSDUCER ON AN EXAMPLE

fiw) .= ()" x |w| ezP,
g(w) == flaaw) — flw) = 2 x (=1)™ e ZP,

0
alo

(O fre)-s

alwe g(w)

flaaaa) = 0 + f(a | aaa) = 0 + g(aa) + f(aa)
=0+ g(aa)+ 0+ f(a| a)
=0+ g(aa) + 0 + g(e) + f(e)
=0+2+0+2+0=4
21/30




SEMANTIC CHARACTERISATION

Definition (Ultimately polynomial function)

A function f: ¥* — Z is ultimately N-polynomial whenever for all k € N,

Qag, ..., € XX, wy, ..., W, € L, there exists P € Q[Xq,. .., X] such that for large
enough X, ..., Xy,

k
flao [ [ w/Xau) = P(Xa,. .. X)
=1
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SEMANTIC CHARACTERISATION

Definition (Ultimately polynomial function)

A function f: ¥* — Z is ultimately N-polynomial whenever for all k € N,

Qag, ..., € XX, wy, ..., W, € L, there exists P € Q[Xq,. .., X] such that for large
enough X, ..., Xy,

k
flao [ [ w/Xau) = P(Xa,. .. X)
=1

All Z-polyregular functions are ultimately N-polynomial. Star free Z-polyregular
functions are ultimately 1-polynomial!

22/30
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STAR-FREE ...GRAPHICALLY
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STAR-FREE ...GRAPHICALLY

1 Lisodd(a*) | Lisodd(aa®)

: ) Lisodd((aa)) | Lisodd(a(aa)*)
1 / / Liw,>3

s ‘ ‘ 3 | | | | 8
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CHARACTERISATIONS

Theorem
The following are equivalent for a Z-rational series f

fe ZSF.

f is the post-composition of a star-free polyregular function with the " operator.
f is in the closure of star-free languages under ®, +, and z; - C.

f is ultimately 1-polynomial (with k = 1).

Minimal representations of f have eigenvalues in {0,1}.

ol g el e

The residual transducer of f is counter-free.

Every conversion is effective.
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CHARACTERISATIONS

Theorem
The following are equivalent for a Z-rational series f

fe ZSF.

f is the post-composition of a star-free polyregular function with the " operator.
f is in the closure of star-free languages under ®, +, and z; - C.

f is ultimately 1-polynomial (with k = 1).

Minimal representations of f have eigenvalues in {0,1}.

ol g el e

The residual transducer of f is counter-free.

Every conversion is effective.

Furthermore, ZSF, = ZSF N ZP,!

24/30



BEYOND 7.7

OUTLOOK AND FUTURE WORK



OUTLOOK

Open questions

+ Deciding aperiodicity for N-polyregular functions? (based on ideas from
[CGM22])

+ Deciding N-polyregular inside Z-polyregular? (note that [Kar77] is not true)
« NSF = NP N ZSF?

+ Defining aperiodicity for Z-rational series in general? (with eigenvalues)
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OUTLOOK

Open questions

+ Deciding aperiodicity for N-polyregular functions? (based on ideas from
[CGM22])

+ Deciding N-polyregular inside Z-polyregular? (note that [Kar77] is not true)
« NSF = NP N ZSF?

+ Defining aperiodicity for Z-rational series in general? (with eigenvalues)

Slightly related question
Decide if a class of graphs with bounded linear clique-width is well-quasi-ordered?
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