\mathbb{Z} -POLYREGULAR FUNCTIONS

DECIDING APERIODICITY OF (POLY-)REGULAR FUNCTIONS

Thomas Colcombet, Gaëtan Douéneau-Tabot, and **Aliaume Lopez** 7 December 2023

Post-doctoral student at the automata team of MIMUW, Warsaw, under the supervision of Mikołaj Bojańczyk.

I am no expert on transducers!

My interests are in

• Finite Model Theory

(first order logic)

I am no expert on transducers!

My interests are in

- Finite Model Theory
- Well-quasi-orderings

(first order logic) (combinatorics)

I am no expert on transducers!

My interests are in

- Finite Model Theory
- Well-quasi-orderings
- Noetherian spaces

(first order logic) (combinatorics) (topology)

APERIODICITY, STAR-FREE, AND FIRST-ORDER LOGIC

ENTER A REGULAR LANGUAGE

REGULARITY AND APERIODICITY FOR REGULAR LANGUAGES

Finite Automaton Finite Monoid MSO Sentence

Counter-free Automaton Aperiodic Monoid FO Sentence Regular Languages

Star-Free Languages

Decidability of the membership problem follows from the effective equivalence with aperiodic monoids [Sch65].

REGULARITY AND APERIODICITY FOR REGULAR LANGUAGES

Finite Automaton Finite Monoid MSO Sentence

Counter-free Automaton Aperiodic Monoid FO Sentence

Decidability of the membership problem follows from the effective equivalence with aperiodic monoids [Sch65].

APERIODICITY, STAR-FREE, AND FIRST-ORDER LOGIC

WHAT ABOUT FUNCTIONS?

BRIEF OVERVIEW OF APERIODICITY FOR FUNCTIONS (OR RELATIONS)

$$L\colon \Sigma^{\star} \to \mathbb{B}$$

BRIEF OVERVIEW OF APERIODICITY FOR FUNCTIONS (OR RELATIONS)

$$L\colon \Sigma^{\star} \to \mathbb{B}$$

$$f: \Sigma^{\star} \to \Gamma^{\star}$$

 $L\colon \Sigma^\star \to \mathbb{B}$

$$f: \Sigma^{\star} \to \Gamma^{\star}$$

Computational Model	Decidable aperiodicity
$f \subseteq (\Sigma imes \Gamma)^{\star}$ is a regular language	✓[Sch65]
<i>f</i> is sequential	√[Cho03]
f is rational	√[FGL16]
f is regular	pprox [Boj14]
<i>f</i> is polyregular	?

IN THIS TALK:

POLYREGULAR FUNCTIONS

APERIODICITY, STAR-FREE, AND FIRST-ORDER LOGIC

SIMPLIFYING UNTIL IT TRIVIALISES

Arbitrary polyregular functions

 $f \colon \Sigma^{\star} \to \Gamma^{\star}$

Arbitrary polyregular functions

$$f \colon \Sigma^{\star} \to \Gamma^{\star}$$

Unary output polyregular functions $\Gamma = \{1\}$

$$f\colon \Sigma^{\star} \to \{1\}^{\star} \simeq (\mathbb{N},+)$$

Also known as $\mathbb N\text{-}\mathsf{polyregular}$ functions.

Arbitrary polyregular functions

$$f \colon \Sigma^{\star} \to \Gamma^{\star}$$

Unary output polyregular functions $\Gamma = \{1\}$

$$f: \Sigma^{\star} \to \{\mathbf{1}\}^{\star} \simeq (\mathbb{N}, +)$$

Also known as \mathbb{N} -polyregular functions.

 \mathbb{Z} -output polyregular functions

$$f \colon \Sigma^{\star} \to \{+1, -1\}^{\star}$$

Casted to $(\mathbb{Z}, +)$ by post-composition with \sum .

The many advantages of \mathbb{Z} -output

- Commutative ouptut! (no ordering needed)
- Invertible output! (bounded backtracking is possible)
- Simpler definitions! (to be seen)
- Reduces to *counting* (rational series)

The many advantages of \mathbb{Z} -output

- Commutative ouptut! (no ordering needed)
- Invertible output! (bounded backtracking is possible)
- Simpler definitions! (to be seen)
- Reduces to *counting* (rational series)

Disatvantages

- The function $\sum : \{-1, +1\}^* \to \mathbb{Z}$ is *not* regular.
- Non trivial compensations arise in the output.

$\mathbb{Z}\text{-}\mathsf{POLYREGULAR}$ functions

FROM A DATABASE PERSON'S PERSPECTIVE

Theorem (Languages and MSO [Büc60])

A language L is regular iff there exists a **sentence** $\varphi \in MSO$ such that $L = \mathbf{1}_{\varphi}$.

Theorem (Languages and MSO [Büc60])

A language L is regular iff there exists a **sentence** $\varphi \in MSO$ such that $L = \mathbf{1}_{\varphi}$.

What if φ was not a sentence?

Definition (Counting first order valuations)

 $\# \left[\varphi(\vec{x}) \right] \colon \mathbf{w} \mapsto \# \left[\{ \vec{a} \in \mathbf{w} \mid \mathbf{w}, \vec{a} \models \varphi(\vec{x}) \} \right] \quad .$

Theorem (Languages and MSO [Büc60])

A language L is regular iff there exists a **sentence** $\varphi \in MSO$ such that $L = \mathbf{1}_{\varphi}$.

What if φ was not a sentence?

Definition (Counting first order valuations)

$$\# \left[\varphi(\vec{x}) \right] \colon \textit{w} \mapsto \# \left[\{ \vec{a} \in \textit{w} \mid \textit{w}, \vec{a} \models \varphi(\vec{x}) \} \right]$$

Remark

This is connected to "counting automata" [Sch62].

$\mathbb{Z}\mathsf{P} := \mathsf{Lin}_{\mathbb{Z}}\left(\{\#\left[\varphi(\vec{x})\right] \mid \varphi(\vec{x}) \in \mathsf{MSO}\}\right)$

$\mathbb{Z}\mathsf{P} := \mathsf{Lin}_{\mathbb{Z}}\left(\{\#\left[arphi(ec{x}) ight] \mid arphi(ec{x}) \in \mathsf{MSO}\} ight)$

$$\mathbb{Z}\mathsf{P}_k := \mathsf{Lin}_{\mathbb{Z}}\left(\{\#\left[\varphi(x_1,\ldots,x_k)\right] \mid \varphi(x_1,\ldots,x_k) \in \mathsf{MSO}\}\right)\right)$$

$\mathbb{Z}\text{-}\mathsf{POLYREGULAR}$ functions

POP QUIZZ

• $\mathbf{1}_L$ for some language *L*?

- $\mathbf{1}_L$ for some language *L*?
- **1**_L for some **regular** language L?

- $\mathbf{1}_L$ for some language *L*?
- **1**_L for some **regular** language L?
- $w \mapsto |w|$

- $\mathbf{1}_L$ for some language *L*?
- **1**_L for some **regular** language L?
- $w \mapsto |w|$
- $w \mapsto |w|_a \times |w|_b |w|_c^2$

- $\mathbf{1}_L$ for some language *L*?
- **1**_L for some **regular** language L?
- $w \mapsto |w|$
- $w \mapsto |w|_a \times |w|_b |w|_c^2$
- $w \mapsto 2^{|w|}$

X

8/30

- $\mathbf{1}_L$ for some language *L*?
- 1_L for some **regular** language L?
- $w \mapsto |w|$
- $w \mapsto |w|_a \times |w|_b |w|_c^2$
- $w \mapsto 2^{|w|}$
- $w \mapsto (-1)^{|w|}$

- $\mathbf{1}_L$ for some language *L*?
- 1_L for some **regular** language L?
- $w \mapsto |w|$
- $w \mapsto |w|_a \times |w|_b |w|_c^2$
- $w \mapsto 2^{|w|}$
- $w \mapsto (-1)^{|w|}$
- $w \mapsto (-1)^{|w|} \times |w|$

- $\mathbf{1}_L$ for some language *L*?
- 1_L for some **regular** language L?
- $w \mapsto |w|$
- $w \mapsto |w|_a \times |w|_b |w|_c^2$
- $w \mapsto 2^{|w|}$
- $w \mapsto (-1)^{|w|}$
- $w \mapsto (-1)^{|w|} \times |w|$

Functions $f \in \mathbb{Z}P$ have polynomial growth rate For all $f \in \mathbb{Z}P_k$, $|f(w)| = \mathcal{O}(|w|^k)$

Name	Reference
Finite Counting Automata	[Sch62]
Rational series of polynomial growth	[BR11]
Rational series without kleene star	_
Weighted automata of polynomial ambiguity	[KR13; CDTL23]
Polyregular functions (post composed with \sum)	[BKL19]

Membership is decidable and conversions are effective between these classes [see, e.g. CDTL23].

APERIODICITY

WHICH IS WHAT WE CARED ABOUT?
• **1**_L for some **regular** language L?

- **1**_L for some **regular** language L?
- **1**_L for some **star-free** language L?

- **1**_L for some **regular** language L?
- **1**_L for some **star-free** language L?
- $w \mapsto |w|$

- **1**_L for some **regular** language L?
- **1**_L for some **star-free** language L?
- $w \mapsto |w|$
- $w \mapsto |w|_a \times |w|_b |w|_c^2$

- **1**_L for some **regular** language L?
- **1**_L for some **star-free** language L?
- $w \mapsto |w|$
- $w \mapsto |w|_a \times |w|_b |w|_c^2$
- $w\mapsto (-1)^{|w|}$

- **1**_L for some **regular** language L?
- **1**_L for some **star-free** language L?
- $w \mapsto |w|$
- $w \mapsto |w|_a \times |w|_b |w|_c^2$
- $w\mapsto (-1)^{|w|}$
- $w \mapsto (-1)^{|w|} \times |w|$

- **1**_L for some **regular** language L?
- **1**_L for some **star-free** language L?
- $w \mapsto |w|$
- $w \mapsto |w|_a \times |w|_b |w|_c^2$
- $w\mapsto (-1)^{|w|}$
- $w \mapsto (-1)^{|w|} \times |w|$
- $w \mapsto (|w|_a |w|_b)^2$

- **1**_L for some **regular** language L?
- **1**_L for some **star-free** language L?
- $w \mapsto |w|$
- $w \mapsto |w|_a \times |w|_b |w|_c^2$
- $w\mapsto (-1)^{|w|}$
- $w \mapsto (-1)^{|w|} \times |w|$
- $w \mapsto (|w|_a |w|_b)^2$

- **1**_L for some **regular** language L?
- **1**_L for some **star-free** language L?
- $w \mapsto |w|$
- $w \mapsto |w|_a \times |w|_b |w|_c^2$
- $w\mapsto (-1)^{|w|}$
- $w \mapsto (-1)^{|w|} \times |w|$
- $w \mapsto (|w|_a |w|_b)^2$

Please notice

For the last function, the pre-image of $\{0\}$ is not a regular language ...

X

X

Х

Following the definition of Droste and Gastin [DG19]

The function $w \mapsto (-1)^{|w|}$ is aperiodic.

Following the definition of Droste and Gastin [DG19]

The function $w \mapsto (-1)^{|w|}$ is aperiodic.

Following the definition of Reutenauer [Reu80]

The function $w \mapsto (-1)^{|w|}$ is aperiodic.

Following the definition of Droste and Gastin [DG19]

The function $w \mapsto (-1)^{|w|}$ is aperiodic.

Following the definition of Reutenauer [Reu80]

The function $w \mapsto (-1)^{|w|}$ is aperiodic.

I tricked you to agree with me.

APERIODICITY

A REASONABLE NOTION OF APERIODICITY?

$\mathbb{Z}\mathsf{SF} := \mathsf{Lin}_{\mathbb{Z}}\left(\{\#\left[\varphi(\vec{x})\right] \mid \varphi(\vec{x}) \in \mathsf{FO}\}\right)$

$\mathbb{Z}\mathsf{SF} := \mathsf{Lin}_{\mathbb{Z}}\left(\{\#\left[\varphi(\vec{x})\right] \mid \varphi(\vec{x}) \in \mathsf{FO}\}\right)$

$$\mathbb{Z}\mathsf{SF}_k := \mathsf{Lin}_{\mathbb{Z}}\left(\{\#\left[\varphi(x_1, \dots, x_k)\right] \mid \varphi(x_1, \dots, x_k) \in \mathsf{FO}\}\right)$$

PROOFS?

DECIDING GROWTH RATE

$$f(w) := # [isOdd(x)] - # [isEven(x)] \in \mathbb{Z}P_1$$

$$f(w) := \# [isOdd(x)] - \# [isEven(x)] \in \mathbb{Z}P_1$$

Growth rate? Number of free variables? Equivalent function?

$$f(w) := \# [isOdd(x)] - \# [isEven(x)] \in \mathbb{Z}P_1$$

Growth rate? Number of free variables? Equivalent function?

$$f(w) = \mathbf{1}_{isOdd} \in \mathbb{Z}P_0$$

Definition (Pumpable function)

A function $f: \Sigma^* \to \mathbb{Z}$ is *k*-pumpable whenever there exists $\alpha_0, \ldots, \alpha_k \in \Sigma^*$, $w_1, \ldots, w_k \in \Sigma^*$, such that

$$\left|f(\alpha_0\prod_{i=1}^k w_i^{X_i}\alpha_i)\right| = \Omega(|X_1+\cdots+X_k|^k)$$

Definition (Pumpable function)

A function $f: \Sigma^* \to \mathbb{Z}$ is *k*-pumpable whenever there exists $\alpha_0, \ldots, \alpha_k \in \Sigma^*$, $w_1, \ldots, w_k \in \Sigma^*$, such that

$$\left|f(\alpha_0\prod_{i=1}^k w_i^{X_i}\alpha_i)\right| = \Omega(|X_1 + \cdots + X_k|^k)$$

That is, one can observe a growth rate at least *k* by iterating patterns.

$$f := \# [\mathsf{isOdd}(x)] - \# [\mathsf{isEven}(x)] \in \mathbb{Z}\mathsf{P}_1$$

a a a a a a a a

$$f := \# [isOdd(x)] - \# [isEven(x)] \in \mathbb{Z}P_1$$

 $f := \# [isOdd(x)] - \# [isEven(x)] \in \mathbb{Z}P_1$

 $f := \# [isOdd(x)] - \# [isEven(x)] \in \mathbb{Z}P_1$

$$f := \# [isOdd(x)] - \# [isEven(x)] \in \mathbb{Z}P_1$$

Theorem

The following are equivalent for functions $f: \Sigma^{\star} \to \mathbb{Z}$ and $k \in \mathbb{N}$:

- 1. $f \in \mathbb{Z}P_k$.
- 2. f is the post-composition of a polyregular function of growth rate k with the \sum operator.
- 3. f is in the closure of regular languages under \otimes , +, and $z_i \cdot \Box$ and f has growth rate k.
- 4. *f* is a rational series and *f* is **not** k + 1 pumpable.
- 5. *f* is computed by a weighted automata of ambiguity $O(|w|^k)$.

Every conversion is effective.

PROOFS?

DECIDING APERIODICITY

Definition (Residuals of a function f)

 $f(u-) \colon w \mapsto f(uw)$ $\mathsf{Res}(f) := \{f(u-) \mid u \in \Sigma^{\star}\}$

Definition (Residuals of a function f)

 $f(u-): w \mapsto f(uw)$ $\operatorname{Res}(f) := \{f(u-) \mid u \in \Sigma^{\star}\}$

Theorem

If $f \in \mathbb{Z}P_k$, then $\operatorname{Res}(f)/\mathbb{Z}P_{k-1}$ is finite!

Definition (Residuals of a function f)

 $f(u-): w \mapsto f(uw)$ $\operatorname{Res}(f) := \{f(u-) \mid u \in \Sigma^{\star}\}$

Theorem

If $f \in \mathbb{Z}P_k$, then $\operatorname{Res}(f)/\mathbb{Z}P_{k-1}$ is finite!

"f is a deterministic transducer up to lower degree errors"
$f(w) := (-1)^{|w|} \times |w| \quad \in \mathbb{Z}\mathsf{P}_1$

$$f(w) := (-1)^{|w|} \times |w| \quad \in \mathbb{Z}\mathsf{P}_1$$

$$f(w) := (-1)^{|w|} \times |w| \quad \in \mathbb{Z}\mathsf{P}_1$$

- f
- f(a-)?

$$f(w) := (-1)^{|w|} \times |w| \quad \in \mathbb{Z}\mathsf{P}_1$$

•
$$f(a-)$$
? $f(aw) - f(w) = (-1)^{|w|+1} \times (1+2|w|)$

$$f(w) := (-1)^{|w|} \times |w| \quad \in \mathbb{Z}\mathsf{P}_1$$

•
$$f(a-)$$
? $f(aw) - f(w) = (-1)^{|w|+1} \times (1+2|w|) X$

$$f(w) := (-1)^{|w|} \times |w| \quad \in \mathbb{Z}\mathsf{P}_1$$

•
$$f(a-)$$
? $f(aw) - f(w) = (-1)^{|w|+1} \times (1+2|w|) X$

•
$$f(aa-)$$
? $g := f(aaw) - f(w) = 2 \times (-1)^{|w|}$

$$f(w) := (-1)^{|w|} \times |w| \quad \in \mathbb{Z}\mathsf{P}_1$$

- f(a-)? $f(aw) f(w) = (-1)^{|w|+1} \times (1+2|w|) X$
- $f(aa-)? g := f(aaw) f(w) = 2 \times (-1)^{|w|} \checkmark$
- And we have exhausted equivalence classes.

$$f(w) := (-1)^{|w|} \times |w| \quad \in \mathbb{Z}\mathsf{P}_1$$

- f(a-)? $f(aw) f(w) = (-1)^{|w|+1} \times (1+2|w|) X$
- $f(aa-)? g := f(aaw) f(w) = 2 \times (-1)^{|w|} \checkmark$
- And we have exhausted equivalence classes.

RESIDUAL TRANSDUCER ON AN EXAMPLE

$$f(w) := (-1)^{|w|} \times |w| \in \mathbb{Z}P_1$$

$$g(w) := f(aaw) - f(w) = 2 \times (-1)^{|w|} \in \mathbb{Z}P_0$$

$$\uparrow a \mid 0$$

$$\downarrow f(-) \qquad f(a-) \rightarrow -1$$

 $a \mid w \mapsto g(w)$

RESIDUAL TRANSDUCER ON AN EXAMPLE

$$\begin{split} f(w) &:= (-1)^{|w|} \times |w| \quad \in \mathbb{Z}\mathsf{P}_1\\ g(w) &:= f(aaw) - f(w) = 2 \times (-1)^{|w|} \in \mathbb{Z}\mathsf{P}_0 \end{split}$$

$$f(aaaa) = 0 + f(a \mid aaa) = 0 + g(aa) + f(aa)$$

= 0 + g(aa) + 0 + f(a \mid a)
= 0 + g(aa) + 0 + g(\varepsilon) + f(\varepsilon)
= 0 + 2 + 0 + 2 + 0 = 4

Definition (Ultimately polynomial function)

A function $f: \Sigma^* \to \mathbb{Z}$ is ultimately *N*-polynomial whenever for all $k \in \mathbb{N}$, $\alpha_0, \ldots, \alpha_k \in \Sigma^*$, $w_1, \ldots, w_k \in \Sigma^*$, there exists $P \in \mathbb{Q}[X_1, \ldots, X_k]$ such that for large enough X_1, \ldots, X_k ,

$$f(\alpha_0\prod_{i=1}^k w_i^{NX_i}\alpha_i) = P(X_1,\ldots,X_k)$$

Definition (Ultimately polynomial function)

A function $f: \Sigma^* \to \mathbb{Z}$ is ultimately *N*-polynomial whenever for all $k \in \mathbb{N}$, $\alpha_0, \ldots, \alpha_k \in \Sigma^*, w_1, \ldots, w_k \in \Sigma^*$, there exists $P \in \mathbb{Q}[X_1, \ldots, X_k]$ such that for large enough X_1, \ldots, X_k ,

$$f(\alpha_0\prod_{i=1}^{k} w_i^{NX_i}\alpha_i) = P(X_1,\ldots,X_k)$$

All \mathbb{Z} -polyregular functions are ultimately *N*-polynomial.

Definition (Ultimately polynomial function)

A function $f: \Sigma^* \to \mathbb{Z}$ is ultimately *N*-polynomial whenever for all $k \in \mathbb{N}$, $\alpha_0, \ldots, \alpha_k \in \Sigma^*, w_1, \ldots, w_k \in \Sigma^*$, there exists $P \in \mathbb{Q}[X_1, \ldots, X_k]$ such that for large enough X_1, \ldots, X_k ,

$$f(\alpha_0\prod_{i=1}^{\kappa}w_i^{NX_i}\alpha_i)=P(X_1,\ldots,X_k)$$

All \mathbb{Z} -polyregular functions are ultimately *N*-polynomial. Star free \mathbb{Z} -polyregular functions are ultimately 1-polynomial!

Theorem

The following are equivalent for a $\mathbb Z\text{-}rational$ series f

- 1. $f \in \mathbb{Z}SF$.
- 2. f is the post-composition of a star-free polyregular function with the \sum operator.
- 3. f is in the closure of star-free languages under \otimes , +, and $z_i \cdot \Box$.
- 4. *f* is ultimately 1-polynomial (with k = 1).
- 5. Minimal representations of f have eigenvalues in $\{0, 1\}$.
- 6. The residual transducer of f is counter-free.

Every conversion is effective.

Theorem

The following are equivalent for a $\mathbb Z\text{-}rational$ series f

- 1. $f \in \mathbb{Z}SF$.
- 2. f is the post-composition of a star-free polyregular function with the \sum operator.
- 3. f is in the closure of star-free languages under \otimes , +, and $z_i \cdot \Box$.
- 4. *f* is ultimately 1-polynomial (with k = 1).
- 5. Minimal representations of f have eigenvalues in $\{0, 1\}$.
- 6. The residual transducer of f is counter-free.

Every conversion is effective.

Furthermore, $\mathbb{Z}SF_k = \mathbb{Z}SF \cap \mathbb{Z}P_k!$

BEYOND \mathbb{Z} ?

OUTLOOK AND FUTURE WORK

Open questions

- Deciding aperiodicity for $\mathbb N$ -polyregular functions? (based on ideas from [CGM22])
- Deciding \mathbb{N} -polyregular inside \mathbb{Z} -polyregular? (note that [Kar77] is not true)
- $\mathbb{N}SF = \mathbb{N}P \cap \mathbb{Z}SF$?
- Defining aperiodicity for \mathbb{Z} -rational series in general? (with eigenvalues)

Open questions

- Deciding aperiodicity for \mathbb{N} -polyregular functions? (based on ideas from [CGM22])
- Deciding \mathbb{N} -polyregular inside \mathbb{Z} -polyregular? (note that [Kar77] is not true)
- $\mathbb{N}SF = \mathbb{N}P \cap \mathbb{Z}SF$?
- Defining aperiodicity for \mathbb{Z} -rational series in general? (with eigenvalues)

Slightly related question

Decide if a class of graphs with bounded linear clique-width is well-quasi-ordered?

BIBLIOGRAPHY I

- [1] Jean Berstel and Christophe Reutenauer. *Noncommutative rational series with applications*. Vol. 137. Cambridge University Press, 2011 (cit. on p. 35).
- [2] Mikołaj Bojańczyk. "Transducers with Origin Information". In: Automata, Languages, and Programming. Ed. by Javier Esparza, Pierre Fraigniaud, Thore Husfeldt, and Elias Koutsoupias. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp. 26–37 (cit. on pp. 9–11).
- [3] Mikolaj Bojanczyk, Sandra Kiefer, and Nathan Lhote. "String-to-String Interpretations With Polynomial-Size Output". In: 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). 2019 (cit. on p. 35).
- [4] J Richard Büchi. "Weak second-order arithmetic and finite automata". In: Mathematical Logic Quarterly 6.1-6 (1960) (cit. on pp. 20–22).

BIBLIOGRAPHY II

- [5] Christian Choffrut. "Minimizing subsequential transducers: a survey". In: Theoretical Computer Science 292.1 (2003). Selected Papers in honor of Jean Berstel, pp. 131–143. DOI: https://doi.org/10.1016/S0304-3975(01)00219-5. URL: https://www.sciencedirect.com/science/article/pii/S0304397501002195 (cit. on pp. 9–11).
- [6] T. Colcombet, G. Doueneau-Tabot, and A. Lopez. "Z-polyregular functions". In: 2023 38th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). Los Alamitos, CA, USA: IEEE Computer Society, June 2023, pp. 1–13. DOI: 10.1109/LICS56636.2023.10175685. URL: https://doi.ieeecomputersociety.org/10.1109/LICS56636.2023.10175685 (cit. on p. 35).

27/30

BIBLIOGRAPHY III

- [7] Thomas Colcombet, Sam van Gool, and Rémi Morvan. "First-order separation over countable ordinals". en. In: *Foundations of Software Science and Computation Structures*. Ed. by Patricia Bouyer and Lutz Schröder. Lecture Notes in Computer Science. Cham: Springer International Publishing, 2022, pp. 264–284. DOI: 10.1007/978-3-030-99253-8_14 (cit. on pp. 99, 100).
- [8] Manfred Droste and Paul Gastin. "Aperiodic Weighted Automata and Weighted First-Order Logic". In: 44th International Symposium on Mathematical Foundations of Computer Science, MFCS 2019. Vol. 138. 2019 (cit. on pp. 46–48).
- [9] Emmanuel Filiot, Olivier Gauwin, and Nathan Lhote. "Aperiodicity of rational functions is PSPACE-complete". In: 36th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2016). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. 2016 (cit. on pp. 9–11).

BIBLIOGRAPHY IV

- [10] Juhani Karhumäki. "Remarks on commutative n-rational series". In: Theoretical Computer Science 5.2 (1977), pp. 211–217. DOI: https://doi.org/10.1016/0304-3975(77)90008-1. URL: https://www.sciencedirect.com/science/article/pii/0304397577900081 (cit. on pp. 99, 100).
- [11] Stephan Kreutzer and Cristian Riveros. "Quantitative Monadic Second-Order Logic". In: 2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science. 2013, pp. 113–122. DOI: 10.1109/LICS.2013.16 (cit. on p. 35).
- [12] Christophe Reutenauer. "Séries formelles et algèbres syntactiques". In: Journal of Algebra 66.2 (1980), pp. 448–483. DOI: https://doi.org/10.1016/0021-8693(80)90097-6. URL: https://www.sciencedirect.com/science/article/pii/0021869380900976 (cit. on pp. 46–48).

- [13] Marcel Paul Schützenberger. "Finite Counting Automata". In: Information and control 5.2 (1962), pp. 91–107 (cit. on pp. 20–22, 35).
- [14] M. P. Schützenberger. "On finite monoids having only trivial subgroups".
 en. In: *Information and Control* 8.2 (Apr. 1965), pp. 190–194. DOI:
 10.1016/S0019-9958(65)90108-7. (Visited on 01/10/2023) (cit. on pp. 6, 7, 9–11).
- [15] Imre Simon. "Factorization Forests of Finite Height". In: Theor. Comput. Sci. 72.1 (1990), pp. 65–94. DOI: 10.1016/0304-3975(90)90047-L (cit. on pp. 63–67).