Z-POLYREGULAR FUNCTIONS

DECIDING APERIODICITY OF (POLY-)REGULAR FUNCTIONS

Thomas Colcombet, Gaëtan Douéneau-Tabot, and Aliaume Lopez
7 December 2023
Post-doctoral student at the automata team of MIMUW, Warsaw, under the supervision of Mikołaj Bojańczyk.

AND SELF PROMOTION?

I am no expert on transducers!
My interests are in

- Finite Model Theory
(first order logic)

AND SELF PROMOTION?

I am no expert on transducers!

My interests are in

- Finite Model Theory
(first order logic)
- Well-quasi-orderings (combinatorics)

AND SELF PROMOTION?

I am no expert on transducers!

My interests are in

- Finite Model Theory
(first order logic)
- Well-quasi-orderings
(combinatorics)
- Noetherian spaces (topology)

APERIODICITY, STAR-FREE, AND

FIRST-ORDER LOGIC

EnTER A REGULAR LANGUAGE

Regularity and aperiodicity for Regular languages

Finite Automaton Finite Monoid MSO Sentence
Counter-free Automaton FO Sentence Regular

Languages

Star-Free Languages

Decidability of the membership problem follows from the effective equivalence with aperiodic monoids [Sch65].

Regularity and aperiodicity for Regular languages

Decidability of the membership problem follows from the effective equivalence with aperiodic monoids [Sch65].

APERIODICITY, STAR-FREE, AND

FIRST-ORDER LOGIC

WHAT ABOUT FUNCTIONS?

$$
L: \Sigma^{\star} \rightarrow \mathbb{B}
$$

$$
\begin{aligned}
& L: \Sigma^{\star} \rightarrow \mathbb{B} \\
& f: \Sigma^{\star} \rightarrow \Gamma^{\star}
\end{aligned}
$$

BRIEF OVERVIEW OF APERIODICITY FOR FUNCTIONS (OR RELATIONS)

$$
\begin{aligned}
& L: \Sigma^{\star} \rightarrow \mathbb{B} \\
& f: \Sigma^{\star} \rightarrow \Gamma^{\star}
\end{aligned}
$$

Computational Model	Decidable aperiodicity
$f \subseteq(\Sigma \times \Gamma)^{\star}$ is a regular language	$\checkmark[$ Sch65 $]$
f is sequential	\mathcal{J} Cho03]
f is rational	$\checkmark[$ FGL16 $]$
f is regular	$\approx[$ Boj14 $]$
f is polyregular	$?$

IN THIS TALK:
 POLYREGULAR FUNCTIONS

APERIODICITY, STAR-FREE, AND

First-ORDER LOGIC

SIMPLIFYING UNTIL IT TRIVIALISES

CAREFUL CHOICE OF OUTPUT

Arbitrary polyregular functions

$$
f: \Sigma^{\star} \rightarrow \Gamma^{\star}
$$

CAREFUL CHOICE OF OUTPUT

Arbitrary polyregular functions

$$
f: \Sigma^{\star} \rightarrow \Gamma^{\star}
$$

Unary output polyregular functions $\Gamma=\{1\}$

$$
f: \Sigma^{\star} \rightarrow\{1\}^{\star} \simeq(\mathbb{N},+)
$$

Also known as \mathbb{N}-polyregular functions.

CAREFUL CHOICE OF OUTPUT

Arbitrary polyregular functions

$$
f: \Sigma^{\star} \rightarrow \Gamma^{\star}
$$

Unary output polyregular functions $\Gamma=\{1\}$

$$
f: \Sigma^{\star} \rightarrow\{1\}^{\star} \simeq(\mathbb{N},+)
$$

Also known as \mathbb{N}-polyregular functions.
\mathbb{Z}-output polyregular functions

$$
f: \Sigma^{\star} \rightarrow\{+1,-1\}^{\star}
$$

Casted to $(\mathbb{Z},+)$ by post-composition with \sum.

SIMPLIFICATIONS

The many advantages of \mathbb{Z}-output

- Commutative ouptut! (no ordering needed)
- Invertible output! (bounded backtracking is possible)
- Simpler definitions! (to be seen)
- Reduces to counting (rational series)

SIMPLIFICATIONS

The many advantages of \mathbb{Z}-output

- Commutative ouptut! (no ordering needed)
- Invertible output! (bounded backtracking is possible)
- Simpler definitions! (to be seen)
- Reduces to counting (rational series)

Disatvantages

- The function $\sum:\{-1,+1\}^{\star} \rightarrow \mathbb{Z}$ is not regular.
- Non trivial compensations arise in the output.

Z-POLYREGULAR FUNCTIONS

From a database person's PERSPECTIVE

From languages to functions via free variables

Theorem (Languages and MSO [Büc60])

A language L is regular iff there exists a sentence $\varphi \in$ MSO such that $L=\mathbf{1}_{\varphi}$.

From languages to functions via free variables

Theorem (Languages and MSO [Büc60])

A language L is regular iff there exists a sentence $\varphi \in \mathrm{MSO}$ such that $L=\mathbf{1}_{\varphi}$.

What if φ was not a sentence?
Definition (Counting first order valuations)

$$
\#[\varphi(\vec{x})]: w \mapsto \#[\{\vec{a} \in w \mid w, \vec{a} \models \varphi(\vec{x})\}]
$$

From languages to functions via free variables

Theorem (Languages and MSO [Büc60])

A language L is regular iff there exists a sentence $\varphi \in \operatorname{MSO}$ such that $L=\mathbf{1}_{\varphi}$.

What if φ was not a sentence?
Definition (Counting first order valuations)

$$
\#[\varphi(\vec{x})]: w \mapsto \#[\{\vec{a} \in w \mid w, \vec{a} \models \varphi(\vec{x})\}]
$$

Remark

This is connected to "counting automata" [Sch62].

$$
\mathbb{Z} \mathrm{P}:=\operatorname{Lin}_{\mathbb{Z}}(\{\#[\varphi(\vec{x})] \mid \varphi(\vec{x}) \in \mathrm{MSO}\})
$$

$$
\begin{gathered}
\mathbb{Z P}:=\operatorname{Lin}_{\mathbb{Z}}(\{\#[\varphi(\vec{x})] \mid \varphi(\vec{x}) \in \mathrm{MSO}\}) \\
\mathbb{Z P}_{k}:=\operatorname{Lin}_{\mathbb{Z}}\left(\left\{\#\left[\varphi\left(x_{1}, \ldots, x_{k}\right)\right] \mid \varphi\left(x_{1}, \ldots, x_{k}\right) \in \mathrm{MSO}\right\}\right)
\end{gathered}
$$

Z-POLYREGULAR FUNCTIONS

Pop QuIzz

WHICH OF THESE FUNCTIONS ARE \mathbb{Z}-POLYREGULAR?

- $\mathbf{1}_{L}$ for some language L ?

WHICH OF THESE FUNCTIONS ARE \mathbb{Z}-POLYREGULAR?

- $\mathbf{1}_{L}$ for some language L ?
- $\mathbf{1}_{L}$ for some regular language L ?

WHICH OF THESE FUNCTIONS ARE \mathbb{Z}-POLYREGULAR?

- $\mathbf{1}_{L}$ for some language L ?
- $\mathbf{1}_{L}$ for some regular language L ?
- $w \mapsto|w|$

WHICH OF THESE FUNCTIONS ARE \mathbb{Z}-POLYREGULAR?

- $\mathbf{1}_{L}$ for some language L ?
- $\mathbf{1}_{L}$ for some regular language L ?
- $w \mapsto|w|$
- $w \mapsto|w|_{a} \times|w|_{b}-|w|_{c}^{2}$

WHICH OF THESE FUNCTIONS ARE \mathbb{Z}-POLYREGULAR?

- $\mathbf{1}_{L}$ for some language L ?
- $\mathbf{1}_{L}$ for some regular language L ?
- $w \mapsto|w|$
- $w \mapsto|w|_{a} \times|w|_{b}-|w|_{c}^{2}$
- $w \mapsto 2^{|w|}$

WHICH OF THESE FUNCTIONS ARE \mathbb{Z}-POLYREGULAR?

- $\mathbf{1}_{L}$ for some language L ?
- $\mathbf{1}_{L}$ for some regular language L ?
- $w \mapsto|w|$
- $w \mapsto|w|_{a} \times|w|_{b}-|w|_{c}^{2}$
- $w \mapsto 2^{|w|}$
- $w \mapsto(-1)^{|w|}$

WHICH OF THESE FUNCTIONS ARE \mathbb{Z}-POLYREGULAR?

- $\mathbf{1}_{L}$ for some language L ?
- 1_{L} for some regular language L ?
- $w \mapsto|w|$
- $w \mapsto|w|_{a} \times|w|_{b}-|w|_{c}^{2}$
- $w \mapsto 2^{|w|}$
- $w \mapsto(-1)^{|w|}$
- $w \mapsto(-1)^{|w|} \times|w|$

WHICH OF THESE FUNCTIONS ARE \mathbb{Z}-POLYREGULAR?

- $\mathbf{1}_{L}$ for some language L ?
- 1_{L} for some regular language L ?
- $w \mapsto|w|$
- $w \mapsto|w|_{a} \times|w|_{b}-|w|_{c}^{2}$
- $w \mapsto 2^{|w|}$
- $w \mapsto(-1)^{|w|}$
- $w \mapsto(-1)^{|w|} \times|w|$

ON THE LIMITS OF GROWTH

Functions $f \in \mathbb{Z} \mathrm{P}$ have polynomial growth rate
For all $f \in \mathbb{Z} \mathrm{P}_{k}$,

$$
|f(w)|=\mathcal{O}\left(|w|^{k}\right)
$$

A FREQUENTLY REDEFINED CONCEPT?

Name	Reference
Finite Counting Automata	$[$ Sch62]
Rational series of polynomial growth	$[B R 11]$
Rational series without kleene star	-
Weighted automata of polynomial ambiguity	[KR13; CDTL23]
Polyregular functions (post composed with $\left.\sum\right)$	$[B K L 19]$

Membership is decidable and conversions are effective between these classes [see, e.g. CDTL23].

APERIODICITY

Which is what we cared about?

Pop QuIzZ (AGAIN?!)

Which of the following functions should be aperiodic?

- 1_{L} for some regular language L ?

Pop Quizz (AGAIN?!)

Which of the following functions should be aperiodic?

- $\mathbf{1}_{L}$ for some regular language L ?
- 1_{L} for some star-free language L ?

Pop Quizz (AGAIN?!)

Which of the following functions should be aperiodic?

- $\mathbf{1}_{L}$ for some regular language L ?
- $\mathbf{1}_{L}$ for some star-free language L ?
- $w \mapsto|w|$

Pop QuIzz (AGAIN?!)

Which of the following functions should be aperiodic?

- 1_{L} for some regular language L ?
- 1_{L} for some star-free language L ?
- $w \mapsto|w|$
- $w \mapsto|w|_{a} \times|w|_{b}-|w|_{c}^{2}$

Pop QuIzZ (AGAIN?!)

Which of the following functions should be aperiodic?

- 1_{L} for some regular language L ?
- 1_{L} for some star-free language L ?
- $w \mapsto|w|$
- $w \mapsto|w|_{a} \times|w|_{b}-|w|_{c}^{2}$
- $w \mapsto(-1)^{|w|}$

Pop QuIzz (AGAIN?!)

Which of the following functions should be aperiodic?

- 1_{L} for some regular language L ?
- 1_{L} for some star-free language L ?
- $w \mapsto|w|$
- $w \mapsto|w|_{a} \times|w|_{b}-|w|_{c}^{2}$
- $w \mapsto(-1)^{|w|}$
- $w \mapsto(-1)^{|w|} \times|w|$

Pop Quizz (AGAIN?!)

Which of the following functions should be aperiodic?

- 1_{L} for some regular language L ?
- 1_{L} for some star-free language L ?
- $w \mapsto|w|$
- $w \mapsto|w|_{a} \times|w|_{b}-|w|_{c}^{2}$
- $w \mapsto(-1)^{|w|}$
- $w \mapsto(-1)^{|w|} \times|w|$
- $w \mapsto\left(|w|_{a}-|w|_{b}\right)^{2}$

Pop Quizz (AGAIN?!)

Which of the following functions should be aperiodic?

- 1_{L} for some regular language L ?
- 1_{L} for some star-free language L ?
- $w \mapsto|w|$
- $w \mapsto|w|_{a} \times|w|_{b}-|w|_{c}^{2}$
- $w \mapsto(-1)^{|w|}$
- $w \mapsto(-1)^{|w|} \times|w|$
- $w \mapsto\left(|w|_{a}-|w|_{b}\right)^{2}$

Pop QuIzZ (AGAIN?!)

Which of the following functions should be aperiodic?

- 1_{L} for some regular language L ?
- $\mathbf{1}_{L}$ for some star-free language L ?
- $w \mapsto|w|$
- $w \mapsto|w|_{a} \times|w|_{b}-|w|_{c}^{2}$
- $w \mapsto(-1)^{|w|}$
- $w \mapsto(-1)^{|w|} \times|w|$
- $w \mapsto\left(|w|_{a}-|w|_{b}\right)^{2}$

Please notice

For the last function, the pre-image of $\{0\}$ is not a regular language ...

Following the definition of Droste and Gastin [DG19]
The function $w \mapsto(-1)^{|w|}$ is aperiodic.

EXISTING NOTIONS OF APERIODICITY

Following the definition of Droste and Gastin [DG19]
The function $w \mapsto(-1)^{|w|}$ is aperiodic.
Following the definition of Reutenauer [Reu80]
The function $w \mapsto(-1)^{|w|}$ is aperiodic.

EXISTING NOTIONS OF APERIODICITY

Following the definition of Droste and Gastin [DG19]
The function $w \mapsto(-1)^{|w|}$ is aperiodic.
Following the definition of Reutenauer [Reu80]
The function $w \mapsto(-1)^{|w|}$ is aperiodic.
I tricked you to agree with me.

APERIODICITY

A REASONABLE NOTION OF APERIODICITY?

STAR-FREE \mathbb{Z}-POLYREGULAR FUNCTIONS

$$
\mathbb{Z} \mathrm{SF}:=\operatorname{Lin}_{\mathbb{Z}}(\{\#[\varphi(\vec{x})] \mid \varphi(\vec{x}) \in \mathrm{FO}\})
$$

STAR-FREE \mathbb{Z}-POLYREGULAR FUNCTIONS

$$
\begin{gathered}
\mathbb{Z S F}:=\operatorname{Lin}_{\mathbb{Z}}(\{\#[\varphi(\vec{x})] \mid \varphi(\vec{x}) \in \mathrm{FO}\}) \\
\mathbb{Z S F}_{k}:=\operatorname{Lin}_{\mathbb{Z}}\left(\left\{\#\left[\varphi\left(x_{1}, \ldots, x_{k}\right)\right] \mid \varphi\left(x_{1}, \ldots, x_{k}\right) \in \mathrm{FO}\right\}\right)
\end{gathered}
$$

OUR RESULTS: EFFECTIVE DECISION PROCEDURES.

\mathbb{Z}-rational

Z-polyregular

OUR RESULTS: EFFECTIVE DECISION PROCEDURES.

\mathbb{Z}-rational

Star-free $\mathbb{Z}_{-} \mathbb{Z}^{\text {-polyregular }}$
polyregular

OUR RESULTS: EFFECTIVE DECISION PROCEDURES.

\mathbb{Z}-rational

$$
w \mapsto(-2)^{|w|}
$$

Star-free $\mathbb{Z}^{-} \mathbb{Z}^{\text {-polyregular }}$ polyregular
$w \mapsto|w|_{a} \times|w|_{b}$
if $a, b \in A$ if $a, b \in A$
if L is star-free
$w \mapsto|w| \times(-1)^{|w|}$
$w \mapsto \mathbf{1}_{L}(w)$
if L is regular but not star-free

OUR RESULTS: EFFECTIVE DECISION PROCEDURES.

\mathbb{Z}-rational

$$
w \mapsto(-2)^{|w|}
$$

Polynomial growth
Star-free $\mathbb{Z}^{-} \mathbb{Z}^{\mathbb{Z}}$-polyregular polyregular
$\mathcal{O}\left(n^{2}\right)$ growth

```
\(w \mapsto|w|_{a} \times|w|_{b}\)
if \(a, b \in A\)
    \(\mathcal{O}(n)\) growth
    \(w \mapsto|w| \times(-1)^{|w|}\)
    \(\mathcal{O}(1)\) growth
\(w \mapsto \mathbf{1}_{L}(w)\)
if \(L\) is star-free
\(w \mapsto \mathbf{1}_{L}(w)\)
if \(L\) is regular but
not star-free
```


OUR RESULTS: EFFECTIVE DECISION PROCEDURES.

\mathbb{Z}-rational

$$
w \mapsto(-2)^{|w|}
$$

Polynomial growth
Star-free $\mathbb{Z}^{-} \mathbb{Z}^{\text {-polyregular }}$ polyregular
$\mathcal{O}\left(n^{2}\right)$ growth
$\mathbb{Z} \mathrm{P}_{2}$

$w \mapsto|w| \times(-1)^{|w|}$
$w \mapsto \mathbf{1}_{L}(w)$
if L is star-free
$\mathcal{O}(1)$ growth
$w \mapsto \mathbf{1}_{L}(w)$
if L is regular but not star-free

PROOFS?

DECIDING GROWTH RATE

IT IS NON TRIVIAL

$$
f(w):=\#[\operatorname{isOdd}(x)]-\#[\operatorname{isEven}(x)] \quad \in \mathbb{Z} \mathrm{P}_{1}
$$

IT IS NON TRIVIAL

$$
f(w):=\#[\operatorname{isOdd}(x)]-\#[\operatorname{isEven}(x)] \quad \in \mathbb{Z} \mathrm{P}_{1}
$$

Growth rate? Number of free variables? Equivalent function?

IT IS NON TRIVIAL

$$
f(w):=\#[\operatorname{isOdd}(x)]-\#[\operatorname{isEven}(x)] \quad \in \mathbb{Z} \mathrm{P}_{1}
$$

Growth rate? Number of free variables? Equivalent function?

$$
f(w)=\mathbf{1}_{\text {isOdd }} \quad \in \mathbb{Z} \mathrm{P}_{0}
$$

SEMANTIC CHARACTERISATION

Definition (Pumpable function)

A function $f: \Sigma^{\star} \rightarrow \mathbb{Z}$ is k-pumpable whenever there exists $\alpha_{0}, \ldots, \alpha_{k} \in \Sigma^{\star}$, $w_{1}, \ldots, w_{k} \in \Sigma^{\star}$, such that

$$
\left|f\left(\alpha_{0} \prod_{i=1}^{k} w_{i}^{x_{i}} \alpha_{i}\right)\right|=\Omega\left(\left|X_{1}+\cdots+X_{k}\right|^{k}\right)
$$

SEMANTIC CHARACTERISATION

Definition (Pumpable function)

A function $f: \Sigma^{\star} \rightarrow \mathbb{Z}$ is k-pumpable whenever there exists $\alpha_{0}, \ldots, \alpha_{k} \in \Sigma^{\star}$, $w_{1}, \ldots, w_{k} \in \Sigma^{\star}$, such that

$$
\left|f\left(\alpha_{0} \prod_{i=1}^{k} w_{i}^{X_{i}} \alpha_{i}\right)\right|=\Omega\left(\left|X_{1}+\cdots+X_{k}\right|^{k}\right)
$$

That is, one can observe a growth rate at least k by iterating patterns.

GENERAL PROOF, ON AN EXAMPLE

$$
f:=\#[\operatorname{isOdd}(x)]-\#[\operatorname{isEven}(x)] \quad \in \mathbb{Z} \mathrm{P}_{1}
$$

```
a
```


GENERAL PROOF, ON AN EXAMPLE

$$
f:=\#[\operatorname{isOdd}(x)]-\#[\operatorname{isEven}(x)] \quad \in \mathbb{Z} \mathrm{P}_{1}
$$

a									
Production	+1	-1	+1	-1	+1	-1	+1	-1	+1

GENERAL PROOF, ON AN EXAMPLE

$$
f:=\#[\operatorname{isOdd}(x)]-\#[\operatorname{isEven}(x)] \quad \in \mathbb{Z} \mathrm{P}_{1}
$$

$$
\begin{array}{rccccccccc}
M:=(\mathbb{Z} / 2 \mathbb{Z},+) & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
& a & a & a & a & a & a & a & a & a \\
& \text { Production } & +1 & -1 & +1 & -1 & +1 & -1 & +1 & -1 \\
& +1
\end{array}
$$

GENERAL PROOF, ON AN EXAMPLE

$$
f:=\#[\operatorname{isOdd}(x)]-\#[\operatorname{isEven}(x)] \quad \in \mathbb{Z} \mathbb{P}_{1}
$$

Factorisation [Sim90]

$$
M:=(\mathbb{Z} / 2 \mathbb{Z},+)
$$

$$
\begin{array}{lllllllll}
a & a & a & a & a & a & a & a & a
\end{array}
$$

Production

$$
\begin{array}{ccccccccc}
+1 & -1 & +1 & -1 & +1 & -1 & +1 & -1 & +1
\end{array}
$$

GENERAL PROOF, ON AN EXAMPLE

$$
f:=\#[\operatorname{isOdd}(x)]-\#[\operatorname{isEven}(x)] \quad \in \mathbb{Z} \mathrm{P}_{1}
$$

Factorisation [Sim90]

$$
M:=(\mathbb{Z} / 2 \mathbb{Z},+)
$$

Production

$$
\begin{array}{ccccccccc}
+1 & -1 & +1 & -1 & +1 & -1 & +1 & -1 & +1
\end{array}
$$

CHARACTERISATIONS

Theorem

The following are equivalent for functions $f: \Sigma^{\star} \rightarrow \mathbb{Z}$ and $k \in \mathbb{N}$:

1. $f \in \mathbb{Z} \mathbb{P}_{k}$.
2. f is the post-composition of a polyregular function of growth rate k with the \sum operator.
3. f is in the closure of regular languages under $\otimes,+$, and z_{i}. \square and f has growth rate k.
4. f is a rational series and f is not $k+1$ pumpable.
5. f is computed by a weighted automata of ambiguity $\mathcal{O}\left(|w|^{k}\right)$.

Every conversion is effective.

PROOFS?

DECIDING APERIODICITY

Residuals!

Definition (Residuals of a function f)

$$
\begin{gathered}
f(u-): w \mapsto f(u w) \\
\operatorname{Res}(f):=\left\{f(u-) \mid u \in \Sigma^{\star}\right\}
\end{gathered}
$$

RESIDUALS!

Definition (Residuals of a function f)

$$
\begin{gathered}
f(u-): w \mapsto f(u w) \\
\operatorname{Res}(f):=\left\{f(u-) \mid u \in \Sigma^{\star}\right\}
\end{gathered}
$$

Theorem

If $f \in \mathbb{Z} \mathrm{P}_{k}$, then $\operatorname{Res}(f) / \mathbb{Z} \mathrm{P}_{k-1}$ is finite!

RESIDUALS!

Definition (Residuals of a function f)

$$
\begin{gathered}
f(u-): w \mapsto f(u w) \\
\operatorname{Res}(f):=\left\{f(u-) \mid u \in \Sigma^{\star}\right\}
\end{gathered}
$$

Theorem
 If $f \in \mathbb{Z} \mathrm{P}_{k}$, then $\operatorname{Res}(f) / \mathbb{Z} \mathrm{P}_{k-1}$ is finite!

" f is a deterministic transducer up to lower degree errors"

Residual transducer on an example

$$
f(w):=(-1)^{|w|} \times|w| \quad \in \mathbb{Z} \mathrm{P}_{1}
$$

Residual transducer on an example

$$
f(w):=(-1)^{|w|} \times|w| \quad \in \mathbb{Z} \mathrm{P}_{1}
$$

Residuals up to constant growth

- f

Residual transducer on an example

$$
f(w):=(-1)^{|w|} \times|w| \quad \in \mathbb{Z} \mathrm{P}_{1}
$$

Residuals up to constant growth

- f
- $f(a-)$?

Residual transducer on an example

$$
f(w):=(-1)^{|w|} \times|w| \quad \in \mathbb{Z} \mathrm{P}_{1}
$$

Residuals up to constant growth

- f
- $f(a-)$? $f(a w)-f(w)=(-1)^{|w|+1} \times(1+2|w|)$

Residual transducer on an example

$$
f(w):=(-1)^{|w|} \times|w| \quad \in \mathbb{Z} \mathrm{P}_{1}
$$

Residuals up to constant growth

- f
- $f(a-) ? f(a w)-f(w)=(-1)^{|w|+1} \times(1+2|w|) x$
- f(aa-)?

RESIDUAL TRANSDUCER ON AN EXAMPLE

$$
f(w):=(-1)^{|w|} \times|w| \quad \in \mathbb{Z} \mathrm{P}_{1}
$$

Residuals up to constant growth

- f
- $f(a-) ? f(a w)-f(w)=(-1)^{|w|+1} \times(1+2|w|) x$
- $f(a a-) ? g:=f(a a w)-f(w)=2 \times(-1)^{|w|}$

RESIDUAL TRANSDUCER ON AN EXAMPLE

$$
f(w):=(-1)^{|w|} \times|w| \quad \in \mathbb{Z} \mathrm{P}_{1}
$$

Residuals up to constant growth

- f
- $f(a-) ? f(a w)-f(w)=(-1)^{|w|+1} \times(1+2|w|) x$
- $f(a a-) ? g:=f(a a w)-f(w)=2 \times(-1)^{|w|} \checkmark$
- And we have exhausted equivalence classes.

RESIDUAL TRANSDUCER ON AN EXAMPLE

$$
f(w):=(-1)^{|w|} \times|w| \quad \in \mathbb{Z} \mathrm{P}_{1}
$$

Residuals up to constant growth

- f
- $f(a-) ? f(a w)-f(w)=(-1)^{|w|+1} \times(1+2|w|) x$
- $f(a a-) ? g:=f(a a w)-f(w)=2 \times(-1)^{|w|} \checkmark$
- And we have exhausted equivalence classes.

Residual transducer on an example

$$
\begin{gathered}
f(w):=(-1)^{|w|} \times|w| \quad \in \mathbb{Z} \mathrm{P}_{1} \\
g(w):=f(\text { aaw })-f(w)=2 \times(-1)^{|w|} \in \mathbb{Z} \mathrm{P}_{0}
\end{gathered}
$$

RESIDUAL TRANSDUCER ON AN EXAMPLE

$$
\begin{aligned}
f(w):=(-1)^{|w|} \times|w| \quad \in \mathbb{Z} \mathrm{P}_{1} \\
g(w):=f(a a w)-f(w)=2 \times(-1)^{|w|} \in \mathbb{Z} \mathrm{P}_{0}
\end{aligned}
$$

SEMANTIC CHARACTERISATION

Definition (Ultimately polynomial function)

A function $f: \Sigma^{\star} \rightarrow \mathbb{Z}$ is ultimately N-polynomial whenever for all $k \in \mathbb{N}$, $\alpha_{0}, \ldots, \alpha_{k} \in \Sigma^{\star}, w_{1}, \ldots, w_{k} \in \Sigma^{\star}$, there exists $P \in \mathbb{Q}\left[X_{1}, \ldots, X_{k}\right]$ such that for large enough X_{1}, \ldots, X_{k},

$$
f\left(\alpha_{0} \prod_{i=1}^{k} w_{i}^{N X_{i}} \alpha_{i}\right)=P\left(X_{1}, \ldots, X_{k}\right)
$$

SEMANTIC CHARACTERISATION

Definition (Ultimately polynomial function)

A function $f: \Sigma^{\star} \rightarrow \mathbb{Z}$ is ultimately N-polynomial whenever for all $k \in \mathbb{N}$, $\alpha_{0}, \ldots, \alpha_{k} \in \Sigma^{\star}, w_{1}, \ldots, w_{k} \in \Sigma^{\star}$, there exists $P \in \mathbb{Q}\left[X_{1}, \ldots, X_{k}\right]$ such that for large enough X_{1}, \ldots, X_{k},

$$
f\left(\alpha_{0} \prod_{i=1}^{k} w_{i}^{N X_{i}} \alpha_{i}\right)=P\left(X_{1}, \ldots, X_{k}\right)
$$

All \mathbb{Z}-polyregular functions are ultimately N-polynomial.

SEmANTIC Characterisation

Definition (Ultimately polynomial function)

A function $f: \Sigma^{\star} \rightarrow \mathbb{Z}$ is ultimately N-polynomial whenever for all $k \in \mathbb{N}$, $\alpha_{0}, \ldots, \alpha_{k} \in \Sigma^{\star}, w_{1}, \ldots, w_{k} \in \Sigma^{\star}$, there exists $P \in \mathbb{Q}\left[X_{1}, \ldots, X_{k}\right]$ such that for large enough X_{1}, \ldots, X_{k},

$$
f\left(\alpha_{0} \prod_{i=1}^{k} w_{i}^{N X_{i}} \alpha_{i}\right)=P\left(X_{1}, \ldots, X_{k}\right)
$$

All \mathbb{Z}-polyregular functions are ultimately N-polynomial. Star free \mathbb{Z}-polyregular functions are ultimately 1-polynomial!

STAR-FREE ...GRAPHICALLY

$\mathbf{1}_{\text {isOdd }}\left(a^{X}\right)$	$\mathbf{1}_{\text {isOdd }}\left(a a^{X}\right)$
$\mathbf{1}_{\text {isOdd }}\left((a a)^{X}\right)$	$\mathbf{1}_{\text {isOdd }}\left(a(a a)^{X}\right)$

$1_{|w|_{a} \geq 3}$

CHARACTERISATIONS

Theorem

The following are equivalent for $a \mathbb{Z}$-rational series f

1. $f \in \mathbb{Z} S F$.
2. f is the post-composition of a star-free polyregular function with the \sum operator.
3. f is in the closure of star-free languages under $\otimes,+$, and $z_{i} \cdot \square$.
4. fis ultimately 1-polynomial (with $k=1$).
5. Minimal representations of f have eigenvalues in $\{0,1\}$.
6. The residual transducer of f is counter-free.

Every conversion is effective.

CHARACTERISATIONS

Theorem

The following are equivalent for $a \mathbb{Z}$-rational series f

1. $f \in \mathbb{Z} S F$.
2. fis the post-composition of a star-free polyregular function with the \sum operator.
3. f is in the closure of star-free languages under $\otimes,+$, and $z_{i} \cdot \square$.
4. fis ultimately 1-polynomial (with $k=1$).
5. Minimal representations of f have eigenvalues in $\{0,1\}$.
6. The residual transducer of f is counter-free.

Every conversion is effective.
Furthermore, $\mathbb{Z} \mathrm{SF}_{k}=\mathbb{Z} \mathrm{SF} \cap \mathbb{Z} \mathrm{P}_{k}$!

BEYOND \mathbb{Z} ?

OUTLOOK AND FUTURE WORK

OUTLOOK

Open questions

- Deciding aperiodicity for \mathbb{N}-polyregular functions? (based on ideas from [CGM22])
- Deciding \mathbb{N}-polyregular inside \mathbb{Z}-polyregular? (note that [Kar77] is not true)
- $\mathbb{N S F}=\mathbb{N} P \cap \mathbb{Z} S F$?
- Defining aperiodicity for \mathbb{Z}-rational series in general? (with eigenvalues)

OUTLOOK

Open questions

- Deciding aperiodicity for \mathbb{N}-polyregular functions? (based on ideas from [CGM22])
- Deciding \mathbb{N}-polyregular inside \mathbb{Z}-polyregular? (note that [Kar77] is not true)
- $\mathbb{N S F}=\mathbb{N} P \cap \mathbb{Z} \mathrm{SF}$?
- Defining aperiodicity for \mathbb{Z}-rational series in general? (with eigenvalues)

Slightly related question

Decide if a class of graphs with bounded linear clique-width is well-quasi-ordered?

BIBLIOGRAPHY I

[1] Jean Berstel and Christophe Reutenauer. Noncommutative rational series with applications. Vol. 137. Cambridge University Press, 2011 (cit. on p. 35).
[2] Mikołaj Bojańczyk. "Transducers with Origin Information". In: Automata, Languages, and Programming. Ed. by Javier Esparza, Pierre Fraigniaud, Thore Husfeldt, and Elias Koutsoupias. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp. 26-37 (cit. on pp. 9-11).
[3] Mikolaj Bojanczyk, Sandra Kiefer, and Nathan Lhote. "String-to-String Interpretations With Polynomial-Size Output". In: 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). 2019 (cit. on p. 35).
[4] J Richard Büchi. "Weak second-order arithmetic and finite automata". In: Mathematical Logic Quarterly 6.1-6 (1960) (cit. on pp. 20-22).

BIBLIOGRAPHY II

[5] Christian Choffrut. "Minimizing subsequential transducers: a survey". In: Theoretical Computer Science 292.1 (2003). Selected Papers in honor of Jean Berstel, pp. 131-143. DOI: https://doi.org/10.1016/S0304-3975(01)00219-5. URL:
https://www.sciencedirect.com/science/article/pii/S0304397501002195 (cit. on pp. 9-11).
 In: 2023 38th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). Los Alamitos, CA, USA: IEEE Computer Society, June 2023, pp. 1-13. DOI: 10.1109/LICS56636.2023.10175685. URL:
https://doi.ieeecomputersociety.org/10.1109/LICS56636.2023.10175685 (cit. on p. 35).

BIBLIOGRAPHY III

[7] Thomas Colcombet, Sam van Gool, and Rémi Morvan. "First-order separation over countable ordinals". en. In: Foundations of Software Science and Computation Structures. Ed. by Patricia Bouyer and Lutz Schröder. Lecture Notes in Computer Science. Cham: Springer International Publishing, 2022, pp. 264-284. DOI: 10.1007/978-3-030-99253-8_14 (cit. on pp. 99, 100).
[8] Manfred Droste and Paul Gastin. "Aperiodic Weighted Automata and Weighted First-Order Logic". In: 44th International Symposium on Mathematical Foundations of Computer Science, MFCS 2019. Vol. 138. 2019 (cit. on pp. 46-48).
[9] Emmanuel Filiot, Olivier Gauwin, and Nathan Lhote. "Aperiodicity of rational functions is PSPACE-complete". In: 36th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2016). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. 2016 (cit. on pp. 9-11).

BIBLIOGRAPHY IV

[10] Juhani Karhumäki. "Remarks on commutative n-rational series". In: Theoretical Computer Science 5.2 (1977), pp. 211-217. DOI:
https://doi.org/10.1016/0304-3975(77)90008-1. URL:
https://www.sciencedirect.com/science/article/pii/0304397577900081 (cit. on pp. 99, 100).
[11] Stephan Kreutzer and Cristian Riveros. "Quantitative Monadic Second-Order Logic". In: 2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science. 2013, pp. 113-122. DOI: 10.1109/LICS. 2013.16 (cit. on p. 35).
[12] Christophe Reutenauer. "Séries formelles et algèbres syntactiques". In: Journal of Algebra 66.2 (1980), pp. 448-483. DOI:
https://doi.org/10.1016/0021-8693(80)90097-6. URL:
https://www.sciencedirect.com/science/article/pii/0021869380900976 (cit. on pp. 46-48).

BIBLIOGRAPHY V

[13] Marcel Paul Schützenberger. "Finite Counting Automata". In: Information and control 5.2 (1962), pp. 91-107 (cit. on pp. 20-22, 35).
[14] M. P. Schützenberger. "On finite monoids having only trivial subgroups". en. In: Information and Control 8.2 (Apr. 1965), pp. 190-194. DOI: 10.1016/50019-9958(65)90108-7. (Visited on 01/10/2023) (cit. on pp. 6, 7, 9-11).
[15] Imre Simon. "Factorization Forests of Finite Height". In: Theor. Comput. Sci. 72.1 (1990), pp. 65-94. DOI: 10.1016/0304-3975(90)90047-L (cit. on pp. 63-67).

