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DISCLAIMER AND SELF PROMOTION?

I am no expert on transducers!
My interests are in
• Finite Model Theory (first order logic)

• Well-quasi-orderings (combinatorics)
• Noetherian spaces (topology)
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APERIODICITY, STAR-FREE, AND
FIRST-ORDER LOGIC
ENTER A REGULAR LANGUAGE



REGULARITY AND APERIODICITY FOR REGULAR LANGUAGES

Regular
Languages

Star-Free
Languages

Finite Automaton
Finite Monoid
MSO Sentence

Counter-free Automaton
Aperiodic Monoid

FO Sentence

1|w|a≥3

1isOdd

Decidability of the membership problem follows from the effective equivalence with
aperiodic monoids [Sch65].
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APERIODICITY, STAR-FREE, AND
FIRST-ORDER LOGIC
WHAT ABOUT FUNCTIONS?



BRIEF OVERVIEW OF APERIODICITY FOR FUNCTIONS (OR RELATIONS)

L : Σ⋆ → B

f : Σ⋆ → Γ⋆

Computational Model Decidable aperiodicity
f ⊆ (Σ× Γ)⋆ is a regular language 3[Sch65]
f is sequential 3[Cho03]
f is rational 3[FGL16]
f is regular ≈ [Boj14]
f is polyregular ?
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IN THIS TALK:
POLYREGULAR FUNCTIONS
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APERIODICITY, STAR-FREE, AND
FIRST-ORDER LOGIC
SIMPLIFYING UNTIL IT TRIVIALISES



CAREFUL CHOICE OF OUTPUT

Arbitrary polyregular functions
f : Σ⋆ → Γ⋆

Unary output polyregular functions Γ = {1}
f : Σ⋆ → {1}⋆ ' (N,+)

Also known as N-polyregular functions.

Z-output polyregular functions
f : Σ⋆ → {+1,−1}⋆

Casted to (Z,+) by post-composition with ∑.
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SIMPLIFICATIONS

The many advantages of Z-output
• Commutative ouptut! (no ordering needed)
• Invertible output! (bounded backtracking is possible)
• Simpler definitions! (to be seen)
• Reduces to counting (rational series)

Disatvantages
• The function ∑

: {−1,+1}⋆ → Z is not regular.
• Non trivial compensations arise in the output.
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Z-POLYREGULAR FUNCTIONS
FROM A DATABASE PERSON’S
PERSPECTIVE



FROM LANGUAGES TO FUNCTIONS VIA FREE VARIABLES

Theorem (Languages and MSO [Büc60])
A language L is regular iff there exists a sentence φ ∈ MSO such that L = 1φ.

What if φ was not a sentence?

Definition (Counting first order valuations)
#[φ(⃗x)] : w 7→ #[{a⃗ ∈ w | w, a⃗ |= φ(⃗x)}] .

Remark
This is connected to “counting automata” [Sch62].
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Z-POLYREGULAR FUNCTIONS …IT WAS ABOUT TIME!

ZP := LinZ ({#[φ(⃗x)] | φ(⃗x) ∈ MSO})

ZPk := LinZ ({#[φ(x1, . . . , xk)] | φ(x1, . . . , xk) ∈ MSO})
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Z-POLYREGULAR FUNCTIONS
POP QUIZZ



WHICH OF THESE FUNCTIONS ARE Z-POLYREGULAR?

• 1L for some language L?

7

• 1L for some regular language L? 3

• w 7→ |w| 3

• w 7→ |w|a × |w|b − |w|2c 3

• w 7→ 2|w| 7

• w 7→ (−1)|w| 3

• w 7→ (−1)|w| × |w| 3
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ON THE LIMITS OF GROWTH

Functions f ∈ ZP have polynomial growth rate
For all f ∈ ZPk,

|f(w)| = O(|w|k)
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A FREQUENTLY REDEFINED CONCEPT?

Name Reference
Finite Counting Automata [Sch62]
Rational series of polynomial growth [BR11]
Rational series without kleene star —
Weighted automata of polynomial ambiguity [KR13; CDTL23]
Polyregular functions (post composed with∑) [BKL19]

Membership is decidable and conversions are effective between these classes [see,
e.g. CDTL23].
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APERIODICITY
WHICH IS WHAT WE CARED ABOUT?



POP QUIZZ (AGAIN?!)

Which of the following functions should be aperiodic?
• 1L for some regular language L?

7

• 1L for some star-free language L? 3

• w 7→ |w| 3

• w 7→ |w|a × |w|b − |w|2c 3

• w 7→ (−1)|w| 7

• w 7→ (−1)|w| × |w| 7

• w 7→ (|w|a − |w|b)2 3

Please notice
For the last function, the pre-image of {0} is not a regular language …

11/30



POP QUIZZ (AGAIN?!)

Which of the following functions should be aperiodic?
• 1L for some regular language L? 7

• 1L for some star-free language L?

3

• w 7→ |w| 3

• w 7→ |w|a × |w|b − |w|2c 3

• w 7→ (−1)|w| 7

• w 7→ (−1)|w| × |w| 7

• w 7→ (|w|a − |w|b)2 3

Please notice
For the last function, the pre-image of {0} is not a regular language …

11/30



POP QUIZZ (AGAIN?!)

Which of the following functions should be aperiodic?
• 1L for some regular language L? 7

• 1L for some star-free language L? 3

• w 7→ |w|

3

• w 7→ |w|a × |w|b − |w|2c 3

• w 7→ (−1)|w| 7

• w 7→ (−1)|w| × |w| 7

• w 7→ (|w|a − |w|b)2 3

Please notice
For the last function, the pre-image of {0} is not a regular language …

11/30



POP QUIZZ (AGAIN?!)

Which of the following functions should be aperiodic?
• 1L for some regular language L? 7

• 1L for some star-free language L? 3

• w 7→ |w| 3

• w 7→ |w|a × |w|b − |w|2c

3

• w 7→ (−1)|w| 7

• w 7→ (−1)|w| × |w| 7

• w 7→ (|w|a − |w|b)2 3

Please notice
For the last function, the pre-image of {0} is not a regular language …

11/30



POP QUIZZ (AGAIN?!)

Which of the following functions should be aperiodic?
• 1L for some regular language L? 7

• 1L for some star-free language L? 3

• w 7→ |w| 3

• w 7→ |w|a × |w|b − |w|2c 3

• w 7→ (−1)|w|

7

• w 7→ (−1)|w| × |w| 7

• w 7→ (|w|a − |w|b)2 3

Please notice
For the last function, the pre-image of {0} is not a regular language …

11/30



POP QUIZZ (AGAIN?!)

Which of the following functions should be aperiodic?
• 1L for some regular language L? 7

• 1L for some star-free language L? 3

• w 7→ |w| 3

• w 7→ |w|a × |w|b − |w|2c 3

• w 7→ (−1)|w| 7

• w 7→ (−1)|w| × |w|

7

• w 7→ (|w|a − |w|b)2 3

Please notice
For the last function, the pre-image of {0} is not a regular language …

11/30



POP QUIZZ (AGAIN?!)

Which of the following functions should be aperiodic?
• 1L for some regular language L? 7

• 1L for some star-free language L? 3

• w 7→ |w| 3

• w 7→ |w|a × |w|b − |w|2c 3

• w 7→ (−1)|w| 7

• w 7→ (−1)|w| × |w| 7

• w 7→ (|w|a − |w|b)2

3

Please notice
For the last function, the pre-image of {0} is not a regular language …

11/30



POP QUIZZ (AGAIN?!)

Which of the following functions should be aperiodic?
• 1L for some regular language L? 7

• 1L for some star-free language L? 3

• w 7→ |w| 3

• w 7→ |w|a × |w|b − |w|2c 3

• w 7→ (−1)|w| 7

• w 7→ (−1)|w| × |w| 7

• w 7→ (|w|a − |w|b)2 3

Please notice
For the last function, the pre-image of {0} is not a regular language …

11/30



POP QUIZZ (AGAIN?!)

Which of the following functions should be aperiodic?
• 1L for some regular language L? 7

• 1L for some star-free language L? 3

• w 7→ |w| 3

• w 7→ |w|a × |w|b − |w|2c 3

• w 7→ (−1)|w| 7

• w 7→ (−1)|w| × |w| 7

• w 7→ (|w|a − |w|b)2 3

Please notice
For the last function, the pre-image of {0} is not a regular language …

11/30



EXISTING NOTIONS OF APERIODICITY

Following the definition of Droste and Gastin [DG19]
The function w 7→ (−1)|w| is aperiodic.

Following the definition of Reutenauer [Reu80]
The function w 7→ (−1)|w| is aperiodic.

I tricked you to agree with me.
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APERIODICITY
A REASONABLE NOTION OF
APERIODICITY?



STAR-FREE Z-POLYREGULAR FUNCTIONS

ZSF := LinZ ({#[φ(⃗x)] | φ(⃗x) ∈ FO})

ZSFk := LinZ ({#[φ(x1, . . . , xk)] | φ(x1, . . . , xk) ∈ FO})

13/30



STAR-FREE Z-POLYREGULAR FUNCTIONS

ZSF := LinZ ({#[φ(⃗x)] | φ(⃗x) ∈ FO})

ZSFk := LinZ ({#[φ(x1, . . . , xk)] | φ(x1, . . . , xk) ∈ FO})

13/30



OUR RESULTS: EFFECTIVE DECISION PROCEDURES.

Z-rational

Z-polyregularStar-free Z-
polyregular

ZSF0

ZSF1

ZSF2

ZP0

ZP1

ZP2

Polynomial growth

O(n2) growth

O(n) growth

O(1) growth
w 7→ 1L(w)

if L is regular but
not star-free

w 7→ |w|×(−1)|w|

w 7→ 1L(w)

if L is star-free

w 7→ |w|a × |w|b
if a,b ∈ A

w 7→ (−2)|w|
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PROOFS?
DECIDING GROWTH RATE



IT IS NON TRIVIAL

f(w) := # [isOdd(x)]−#[isEven(x)] ∈ ZP1

Growth rate? Number of free variables? Equivalent function?

f(w) = 1isOdd ∈ ZP0
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SEMANTIC CHARACTERISATION

Definition (Pumpable function)
A function f : Σ⋆ → Z is k-pumpable whenever there exists α0, . . . , αk ∈ Σ⋆,
w1, . . . ,wk ∈ Σ⋆, such that∣∣∣∣∣f(α0

k∏
i=1

wXi
i αi)

∣∣∣∣∣ = Ω(|X1 + · · ·+ Xk|k)

That is, one can observe a growth rate at least k by iterating patterns.
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GENERAL PROOF, ON AN EXAMPLE

f := # [isOdd(x)]−#[isEven(x)] ∈ ZP1

Skeletons

Factorisation [Sim90]

M := (Z/2Z,+)

Production

1

a

1

a

1

a

1

a

1

a

1

a

1

a

1

a

1

a

+1 +1 +1 +1 +1−1 −1 −1 −1

0 0 0 0

0

1
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CHARACTERISATIONS

Theorem
The following are equivalent for functions f : Σ⋆ → Z and k ∈ N:
1. f ∈ ZPk.
2. f is the post-composition of a polyregular function of growth rate k with the ∑

operator.
3. f is in the closure of regular languages under ⊗, +, and zi ·□ and f has growth

rate k.
4. f is a rational series and f is not k+ 1 pumpable.
5. f is computed by a weighted automata of ambiguity O(|w|k).
Every conversion is effective.

18/30



PROOFS?
DECIDING APERIODICITY



RESIDUALS!

Definition (Residuals of a function f)
f(u−) : w 7→ f(uw)

Res(f) := {f(u−) | u ∈ Σ⋆}

Theorem
If f ∈ ZPk, then Res(f)/ZPk−1 is finite!

“f is a deterministic transducer up to lower degree errors”
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RESIDUAL TRANSDUCER ON AN EXAMPLE

f(w) := (−1)|w| × |w| ∈ ZP1

Residuals up to constant growth
• f
• f(a−)? f(aw)− f(w) = (−1)|w|+1 × (1+ 2|w|) 7

• f(aa−)? g := f(aaw)− f(w) = 2× (−1)|w| 3

• And we have exhausted equivalence classes.
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RESIDUAL TRANSDUCER ON AN EXAMPLE

f(w) := (−1)|w| × |w| ∈ ZP1
g(w) := f(aaw)− f(w) = 2× (−1)|w| ∈ ZP0

f(−)

0

f(a−) −1

a | 0

a | w 7→ g(w)

f(aaaa) = 0+ f(a | aaa) = 0+ g(aa) + f(aa)
= 0+ g(aa) + 0+ f(a | a)
= 0+ g(aa) + 0+ g(ε) + f(ε)
= 0+ 2+ 0+ 2+ 0 = 4
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SEMANTIC CHARACTERISATION

Definition (Ultimately polynomial function)
A function f : Σ⋆ → Z is ultimately N-polynomial whenever for all k ∈ N,
α0, . . . , αk ∈ Σ⋆, w1, . . . ,wk ∈ Σ⋆, there exists P ∈ Q[X1, . . . ,Xk] such that for large
enough X1, . . . ,Xk,

f(α0
k∏

i=1
wNXi
i αi) = P(X1, . . . ,Xk)

All Z-polyregular functions are ultimately N-polynomial. Star free Z-polyregular
functions are ultimately 1-polynomial!
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STAR-FREE …GRAPHICALLY

0 8

1

1isOdd((aa)X) 1isOdd(a(aa)X)
1isOdd(aX) 1isOdd(aaX)

0 83

1

1isOdd((aa)X) 1isOdd(a(aa)X)
1isOdd(aX) 1isOdd(aaX)1|w|a≥3
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CHARACTERISATIONS

Theorem
The following are equivalent for a Z-rational series f
1. f ∈ ZSF.
2. f is the post-composition of a star-free polyregular function with the∑ operator.
3. f is in the closure of star-free languages under ⊗, +, and zi ·□.
4. f is ultimately 1-polynomial (with k = 1).
5. Minimal representations of f have eigenvalues in {0,1}.
6. The residual transducer of f is counter-free.
Every conversion is effective.

Furthermore, ZSFk = ZSF ∩ ZPk!
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BEYOND Z?
OUTLOOK AND FUTURE WORK



OUTLOOK

Open questions
• Deciding aperiodicity for N-polyregular functions? (based on ideas from
[CGM22])

• Deciding N-polyregular inside Z-polyregular? (note that [Kar77] is not true)
• NSF = NP ∩ ZSF?
• Defining aperiodicity for Z-rational series in general? (with eigenvalues)

Slightly related question
Decide if a class of graphs with bounded linear clique-width is well-quasi-ordered?
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