Compositional Techniques for Preservation Theorems over Classes of Finite Structures

Leveraging Tools from Topology and Finite Model Theory

Aliaume LOPEZ November 6th 2023 BOREAL Seminar, LIRMM, Montpellier, France

INTRODUCTION

SHORT BIO

Where do I come from

- 1. High school in Montpellier.
- 2. Masters at the MPRI in Paris.
- 3. Ph.D in Finite Model Theory and Topology.
- 4. With the hope that it could be applied to databases.
- 5. Currently in Warsaw to study MSO transductions.

Model Theory and Databases (see Codd [Cod70])

Databases	Model Theory
Infinite database	(Relational) structure
Database	Finite structure
Query	First order sentence

Simplifications: no functional symbols, queries without constants.

X

Topological spaces

A set X together with a collection $\mathcal{O}(X)$ of "open" subsets, closed under finite intersections and arbitrary unions.

Examples:

• Metric spaces (X, d)

open ball topology Alexandroff topology

- Ordered spaces (X, \leq)
- **Warning:** not all spaces are metric, not all spaces are separable, not all compact subsets are closed, etc...

Topological spaces

A set X together with a collection $\mathcal{O}(X)$ of "open" subsets, closed under finite intersections and arbitrary unions.

Examples:

Metric spaces (X, d)
Ordered spaces (X, <)

- open ball topology Alexandroff topology
- **Warning:** not all spaces are metric, not all spaces are separable, not all compact subsets are closed, etc...

Topological spaces

A set X together with a collection $\mathcal{O}(X)$ of "open" subsets, closed under finite intersections and arbitrary unions.

Examples:

Metric spaces (X, d)
Ordered spaces (X, ≤)

open ball topology Alexandroff topology

Warning: not all spaces are metric, not all spaces are separable, not all compact subsets are closed, etc...

Topological spaces

A set X together with a collection $\mathcal{O}(X)$ of "open" subsets, closed under finite intersections and arbitrary unions.

Examples:

• Metric spaces (X, d)

open ball topology

• Ordered spaces (X, \leq) \rightarrow this talk!

Alexandroff topology

Warning: not all spaces are metric, not all spaces are separable, not all compact subsets are closed, etc...

INTRODUCTION

QUERY ANSWERING ON CLASSES OF DATABASES

Representation of undirected graphs

- V is the domain
- E is a (symmetric) table with two columns

Representation of undirected graphs

- V is the domain
- E is a (symmetric) table with two columns

Completions of a database

- 1. Adding new elements
- 2. (and) Adding new rows
- 3. (and) Merging elements

extensions (⊆_i) substructures (⊆) homomorphic images (≺_h)

Representation of undirected graphs

- V is the domain
- E is a (symmetric) table with two columns

Completions of a database

- 1. Adding new elements
- 2. (and) Adding new rows
- 3. (and) Merging elements

extensions (⊆_i) substructures (⊆) homomorphic images (≺_h)

extensions (\subset_i)

substructures (\subset)

homomorphic images (\preceq_h)

Representation of undirected graphs

- V is the domain
- E is a (symmetric) table with two columns

Completions of a database

- 1. Adding new elements
- 2. (and) Adding new rows
- 3. (and) Merging elements

Alternative definition

Morphisms that preserve conjunctive queries (resp. with \neq , resp. with \neg)...

In general $F \subseteq F0$ leads to a class \rightarrow_F of morphisms

$$\begin{split} & \mathsf{Cert}_{\mathbb{Q}}^{\to_{\mathbb{F}}}(\mathsf{A}) \\ & := \\ & \bigcap_{h: A \to_{\mathbb{F}} \mathsf{B}} \{ \vec{a} \in \mathsf{A} \mid \mathsf{h}(\vec{a}) \in \mathbb{Q}(\mathsf{B}) \} \end{split}$$

Answers, using data available in the database, that must appear, regardless of the completion.

$$\begin{split} & \mathsf{Cert}_{\mathbb{Q}}^{\to_{\mathbb{F}}}(\mathsf{A}) \\ & := \\ & \bigcap_{h \colon \mathsf{A} \to_{\mathbb{F}} \mathsf{B}} \{ \vec{a} \in \mathsf{A} \mid h(\vec{a}) \in \mathbb{Q}(\mathsf{B}) \} \end{split}$$

Answers, using data available in the database, that must appear, regardless of the completion.

How hard is computing certain answers?

In general: undecidable (reduces to finite validity) **We need to:** compute a greatest lower bound in the ordering \rightarrow_F (Libkin [Lib11]).

Candidate: naïvely evaluate the query on the incomplete database and "hope for the best".

Theorem (Gheerbrant, Libkin, and Sirangelo [GLS14, Corollary 4.14])

- under OWA, naïve evaluation works for Q iff Q is preserved under homomorphisms;
- under CWA, naïve evaluation works for Q iff Q is preserved under strong onto homomorphisms;
- under WCWA, naïve evaluation works for Q iff Q is preserved under onto homomorphisms.

Theorem (Gheerbrant, Libkin, and Sirangelo [GLS14, Corollary 4.14])

- under OWA, naïve evaluation works for Q iff Q is preserved under homomorphisms;
- under CWA, naïve evaluation works for Q iff Q is preserved under strong onto homomorphisms;
- under WCWA, naïve evaluation works for Q iff Q is preserved under onto homomorphisms.

Preservation theorems are close!

Let Q be a Boolean query.

 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

Let Q be a Boolean query.

 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

Let Q be a Boolean query.

PRESERVATION THEOREMS

WHAT DO WE KNOW ABOUT THESE COMPLETIONS?

Let $Q \in FO$, the following are equivalent:

- 1. Q is equivalent to a union of conjunctive queries,
- 2. Q is preserved under homomorphisms.

Let $Q \in FO$, the following are equivalent:

- 1. Q is equivalent to a union of conjunctive queries,
- 2. Q is preserved under homomorphisms.

Lemma (Libkin [Lib11, Proposition 1])

Let $Q \in FO$, the following are equivalent

- 1. the naïve evaluation works for all databases,
- 2. Q is equivalent to a union of conjunctive queries.

Let $Q \in FO$, the following are equivalent:

- 1. Q is equivalent to a union of conjunctive queries,
- 2. Q is preserved under homomorphisms.

Lemma (Libkin [Lib11, Proposition 1])

Let $Q \in FO$, the following are equivalent

- 1. the naïve evaluation works for all databases,
- 2. Q is equivalent to a union of conjunctive queries.

Recall that

Homomorphisms \simeq morphisms preserving CQs

Let $Q \in FO$, the following are equivalent:

- 1. Q is equivalent to a union of conjunctive queries,
- 2. Q is preserved under homomorphisms.

Lemma (Libkin [Lib11, Proposition 1])

Let $Q \in FO$, the following are equivalent

- 1. the naïve evaluation works for all databases,
- 2. Q is equivalent to a union of conjunctive queries.

Recall that

$$\label{eq:composition} \begin{split} \text{Homomorphisms} \simeq \text{morphisms} \\ \text{preserving CQs} \end{split}$$

Easy remark

CQs are preserved under homomorphisms (always).

PRESERVATION THEOREMS: THE CLASSICAL RESULTS

Preservation Under

homomorphisms

injective homomorphisms (Tarski-Lyndon) strong injective homomorphisms (Łoś-Tarski) surjective homomorphisms (Lyndon) strong surjective homomorphism ∀FO-embeddings (dual Chang-Łoś-Suszko)

These are Model Theory theorems... (using compactness of first order logic)

Work with infinite structures, and not databases!

PRESERVATION THEOREMS: THE CLASSICAL RESULTS

Preservation Under	Relativises to Fin
homomorphisms	⊤ [Ros08]
injective homomorphisms (Tarski-Lyndon)	⊥ [AG94, Theorem 10.2]
strong injective homomorphisms (Łoś-Tarski)	⊥ [Tai59; Gur84; DS21]
surjective homomorphisms (Lyndon)	⊥ [AG87; Sto95]
strong surjective homomorphism	⊥[Cap+20]
√F0-embeddings (dual Chang-Łoś-Suszko)	⊥ [San+12]

These are Model Theory theorems... (using compactness of first order logic)

Work with infinite structures, and not databases!

Warning

Preservation theorems can relativise to smaller classes of finite structures! (ex: \emptyset).

For the rest of the talk

we restrict our attention to classes of finite structures and to boolean queries / first order sentences

PRESERVATION THEOREMS

THREE SPECIFIC EXAMPLES AMONG CLASSES OF FINITE UNDIRECTED GRAPHS

Lemma (folklore)

For every $\varphi \in F0$, there exists N₀, such that for all n, m \geq N₀, C_m $\in \llbracket \varphi \rrbracket \iff C_n \in \llbracket \varphi \rrbracket$.

Lemma (folklore)

For every $\varphi \in F0$, there exists N₀, such that for all n, m \geq N₀, C_m $\in [\![\varphi]\!] \iff C_n \in [\![\varphi]\!]$. $[\![\varphi]\!] \cap Cycles = [\![\exists^{=4}x.\top \lor \exists^{\geq 6}x.\top]\!] \cap Cycles$

- 1. There exists a bound d on the maximal degree in the structures
- 2. The class is hereditary (neither Paths, nor Cycles)
- 3. The class is closed under disjoint unions (neither Paths, nor Cycles)

- 1. There exists a bound d on the maximal degree in the structures
- 2. The class is hereditary (neither Paths, nor Cycles)
- 3. The class is closed under disjoint unions (neither Paths, nor Cycles)

- 1. There exists a bound d on the maximal degree in the structures
- 2. The class is hereditary (neither Paths, nor Cycles)
- 3. The class is closed under disjoint unions (neither Paths, nor Cycles)

- 1. There exists a bound d on the maximal degree in the structures
- 2. The class is hereditary (neither Paths, nor Cycles)
- 3. The class is closed under disjoint unions (neither Paths, nor Cycles)

- 1. There exists a bound d on the maximal degree in the structures
- 2. The class is hereditary (neither Paths, nor Cycles)
- 3. The class is closed under disjoint unions (neither Paths, nor Cycles)

- 1. There exists a bound d on the maximal degree in the structures
- 2. The class is hereditary (neither Paths, nor Cycles)
- 3. The class is closed under disjoint unions (neither Paths, nor Cycles)

- 1. There exists a bound d on the maximal degree in the structures
- 2. The class is hereditary (neither Paths, nor Cycles)
- 3. The class is closed under disjoint unions (neither Paths, nor Cycles)

- 1. There exists a bound d on the maximal degree in the structures
- 2. The class is hereditary (neither Paths, nor Cycles)
- 3. The class is closed under disjoint unions (neither Paths, nor Cycles)

- 1. There exists a bound d on the maximal degree in the structures
- 2. The class is hereditary (neither Paths, nor Cycles)
- 3. The class is closed under disjoint unions (neither Paths, nor Cycles)

Three Non Overlapping Internal Approaches

- 1. Upwards closed subsets are "simple" (Paths)
- 2. Definable subsets are "simple" (Cycles)
- 3. The two interact "nicely" ([ADG08])

– ↑ E where E is finite
 – (complements of) finite subsets

Three Non Overlapping Internal Approaches

- 1. Upwards closed subsets are "simple" (Paths)
- 2. Definable subsets are "simple" (Cycles)
- 3. The two interact "nicely" ([ADG08])

An external approach?

Is it possible to avoid starting from scratch every time?

• Cycles \cup Paths? None of the above apply!

– ↑ E where E is finite
 – (complements of) finite subsets

For every finite structure \mathfrak{A} of size n, there exists a query $Q_{\mathfrak{A}}$ with n free variables, such that forall \mathfrak{B} and $h \colon \mathfrak{A} \to \mathfrak{B}$, the following are equivalent

- 1. h is a homomorphism
- 2. B, h(\mathfrak{A}) $\models Q_{\mathfrak{A}}$.

For every finite structure \mathfrak{A} of size n, there exists a query $Q_{\mathfrak{A}}$ with n free variables, such that forall \mathfrak{B} and $h \colon \mathfrak{A} \to \mathfrak{B}$, the following are equivalent

- 1. h is a homomorphism
- 2. B, h(\mathfrak{A}) $\models Q_{\mathfrak{A}}$.

 $E(x_1,x_4)$

For every finite structure \mathfrak{A} of size n, there exists a query $Q_{\mathfrak{A}}$ with n free variables, such that forall \mathfrak{B} and $h \colon \mathfrak{A} \to \mathfrak{B}$, the following are equivalent

- 1. h is a homomorphism
- 2. B, h(\mathfrak{A}) $\models Q_{\mathfrak{A}}$.

 $\mathsf{E}(x_1,x_4)$

 $\mathsf{E}(\mathsf{x}_2,\mathsf{x}_7)$

For every finite structure \mathfrak{A} of size n, there exists a query $Q_{\mathfrak{A}}$ with n free variables, such that forall \mathfrak{B} and $h \colon \mathfrak{A} \to \mathfrak{B}$, the following are equivalent

- 1. h is a homomorphism
- 2. B, h(\mathfrak{A}) $\models Q_{\mathfrak{A}}$.

E(x₁, x₄) E(x₂, x₇) E(x₆, x₇)

For every finite structure \mathfrak{A} of size n, there exists a query $Q_{\mathfrak{A}}$ with n free variables, such that forall \mathfrak{B} and $h \colon \mathfrak{A} \to \mathfrak{B}$, the following are equivalent

- 1. h is a homomorphism
- 2. $B, h(\mathfrak{A}) \models Q_{\mathfrak{A}}$.

Almost a preservation theorem

If we could enumerate finitely many models...

For every finite structure \mathfrak{A} of size n, there exists a query $Q_{\mathfrak{A}}$ with n free variables, such that forall \mathfrak{B} and $h: \mathfrak{A} \to \mathfrak{B}$, the following are equivalent

- 1. h is a homomorphism
- 2. $B, h(\mathfrak{A}) \models Q_{\mathfrak{A}}$.

Almost a preservation theorem

If we could enumerate finitely many models...

```
Can be generalised to "diagram queries"
```


 $\mathsf{E}(\mathsf{x}_2,\mathsf{x}_7)$

- $\mathsf{E}(\mathsf{x}_6,\mathsf{x}_7)$
- $\mathsf{E}(x_1,x_4)$
- $E(x_5,x_2)\\$

For every finite structure \mathfrak{A} of size n, there exists a query $Q_{\mathfrak{A}}$ with n free variables, such that forall \mathfrak{B} and $h: \mathfrak{A} \to \mathfrak{B}$, the following are equivalent

- 1. h is a homomorphism
- 2. B, h(\mathfrak{A}) $\models Q_{\mathfrak{A}}$.

Almost a preservation theorem

If we could enumerate finitely many models...

Can be generalised to "diagram queries"

For usual fragments

Sentences have finitely many minimal models!

For every finite structure \mathfrak{A} of size n, there exists a query $Q_{\mathfrak{A}}$ with n free variables, such that forall \mathfrak{B} and $h: \mathfrak{A} \to \mathfrak{B}$, the following are equivalent

- 1. h is a homomorphism
- 2. B, h(\mathfrak{A}) $\models Q_{\mathfrak{A}}$.

Almost a preservation theorem

If we could enumerate finitely many models...

Can be generalised to "diagram queries"

For usual fragments

Sentences have finitely many minimal models!

For every finite structure \mathfrak{A} of size n, there exists a query $Q_{\mathfrak{A}}$ with n free variables, such that forall \mathfrak{B} and $h: \mathfrak{A} \to \mathfrak{B}$, the following are equivalent

- 1. h is a homomorphism
- 2. B, h(\mathfrak{A}) $\models Q_{\mathfrak{A}}$.

Almost a preservation theorem

If we could enumerate finitely many models...

Can be generalised to "diagram queries"

For usual fragments

Sentences have finitely many minimal models!

- $E(x_2, x_7)$ $E(x_3, x_4)$
- $\mathsf{E}(\mathsf{x}_6,\mathsf{x}_7) \qquad \mathsf{E}(\mathsf{x}_4,\mathsf{x}_6)$
- $E(x_1,x_4)\\$

 $E(x_5,x_2)\\$

For every finite structure \mathfrak{A} of size n, there exists a query $Q_{\mathfrak{A}}$ with n free variables, such that forall \mathfrak{B} and $h: \mathfrak{A} \to \mathfrak{B}$, the following are equivalent

- 1. h is a homomorphism
- 2. B, h(\mathfrak{A}) $\models Q_{\mathfrak{A}}$.

Almost a preservation theorem

If we could enumerate finitely many models...

Can be generalised to "diagram queries"

For usual fragments

Sentences have finitely many minimal models!

- $\mathsf{E}(\mathsf{x}_6,\mathsf{x}_7) \qquad \mathsf{E}(\mathsf{x}_4,\mathsf{x}_6)$
- $E(x_1,x_4) \qquad E(x_1,x_6)$

 $E(x_5,x_2)$

We work over $C = Paths \cup Cycles$, ordered by \subseteq_i , and search for a query φ preserved under extensions but not equivalent to an existential sentence.

We work over $C = Paths \cup Cycles$, ordered by \subseteq_i , and search for a query φ preserved under extensions but not equivalent to an existential sentence.

We work over $C = Paths \cup Cycles$, ordered by \subseteq_i , and search for a query φ preserved under extensions but not equivalent to an existential sentence.

16/38

We work over $C = Paths \cup Cycles$, ordered by \subseteq_i , and search for a query φ preserved under extensions but not equivalent to an existential sentence.

We work over $C = Paths \cup Cycles$, ordered by \subseteq_i , and search for a query φ preserved under extensions but not equivalent to an existential sentence.

We work over $C = Paths \cup Cycles$, ordered by \subseteq_i , and search for a query φ preserved under extensions but not equivalent to an existential sentence.

16/38

We work over $C = Paths \cup Cycles$, ordered by \subseteq_i , and search for a query φ preserved under extensions but not equivalent to an existential sentence.

16/38

We work over $C = Paths \cup Cycles$, ordered by \subseteq_i , and search for a query φ preserved under extensions but not equivalent to an existential sentence.

POSITIVE AND NEGATIVE RESULTS ... A NON EXHAUSTIVE TIMELINE

BUT DO THEY COMPOSE?

WHAT DO YOU THINK?

We are working with the Łoś-Tarski Theorem for simplicity. That is, ordering structures with \subseteq_i and using the fragment $\exists FO.$

Class	Relativisation ?
Paths	Т
Cycles	Т
$Deg^{\leq 2}$, $ theta$, \downarrow	Т
Labelled(Paths, L)	\perp
$Labelled(Deg^{\leq 2},L)$, \uplus , \downarrow	Т
Cliques	Т
$Paths \cup Cycles$	\perp
$Paths \times Cycles$	Т
Fin	\perp
Struct	Т

Multiple sources

- Datasets come from different sources, with different assumptions on their completeness.
- Queries operating on incomplete databases can be seen as operating on classes of databases.

BUT DO THEY COMPOSE?

LOGICALLY PRESENTED PRE-SPECTRAL SPACES (IT IS TOO LATE TO CHANGE THE NAME NOW)

Definition (Compact subset)

 $U \in \mathcal{O}(X)$ is compact if for every sequence $(U_i)_{i \in I}$,

$$U \subseteq \bigcup_{i \in I} U_i \implies \exists n \in \mathbb{N}, U \subseteq U_{i_1} \cup \dots \cup U_{i_n}$$

Space	Subset	Compact?
\mathbb{R}	{1}	Т
\mathbb{R}	[0,1]	Т
\mathbb{R}]0,1]	\perp
\mathbb{R}	\mathbb{R}	\perp
(Paths, ⊆ _i)	$\uparrow P_3$	Т
$(Cycles,\subseteq_i)$	Cycles	T

Definition (Compact subset)

 $U\in \mathcal{O}(X)$ is compact if for every sequence $(U_i)_{i\in I},$

$$U \subseteq \bigcup_{i \in I} U_i \implies \exists n \in \mathbb{N}, U \subseteq U_{i_1} \cup \dots \cup U_{i_n}$$

Ideal for preservation theorems

Let φ be preserved under \rightarrow_{F} . We enumerate models $\mathfrak{A} \models \varphi$, and consider $\psi_{\mathfrak{A}}$ that defines $\uparrow \mathfrak{A}$.

$$\varphi \equiv \bigvee_{\mathfrak{A}\models\varphi} \psi_{\mathfrak{A}}$$

Space	Subset	Compact?
\mathbb{R}	{1}	Т
\mathbb{R}	[0,1]	Т
\mathbb{R}]0,1]	\perp
\mathbb{R}	\mathbb{R}	\perp
(Paths, ⊆ _i)	$\uparrow P_3$	Т
$(Cycles,\subseteq_i)$	Cycles	1

Definition ([Lop21, Definition 3.2])

A logically presented pre-spectral space is a triple $\langle\!\langle X, \tau, \mathcal{B} \rangle\!\rangle$ such that

- 1. (X, τ) is a topological space
- 2. (X, \mathcal{B}) is a boolean subalgebra of $\mathcal{P}(X)$
- 3. $\langle \tau \cap \mathcal{B}
 angle_{top} = \tau$
- 4. $\tau \cap \mathcal{B} = \mathcal{K}^{\circ}(\tau)$

notion of queries, enough queries exist (think Chandra and Merlin), definable and open subsets of X are compact open.

notion of completions

Definition ([Lop21, Definition 3.2])

A logically presented pre-spectral space is a triple $\langle\!\langle X, \tau, \mathcal{B} \rangle\!\rangle$ such that

- 1. (X, τ) is a topological space
- 2. (X, \mathcal{B}) is a boolean subalgebra of $\mathcal{P}(X)$
- 3. $\langle \tau \cap \mathcal{B} \rangle_{\mathrm{top}} = \tau$
- 4. $\tau \cap \mathcal{B} = \mathcal{K}^{\circ}(\tau)$

notion of queries, enough queries exist (think Chandra and Merlin), definable and open subsets of X are compact open.

notion of completions

Compact open in the ordered case

compact open subsets are the upwards closed subsets that have finitely many minimal elements.

Let $\mathcal{C} \subseteq$ Fin.

Let $C \subseteq$ Fin. We consider B to be the FO-definable subsets of C, and τ to be the collection of upwards closed subsets of C (for extensions).

Let $C \subseteq$ Fin. We consider B to be the FO-definable subsets of C, and τ to be the collection of upwards closed subsets of C (for extensions).

Theorem ([Lop21, Theorem 3.4], specialised to the Łoś-Tarski Theorem and the finite setting)

- The Łoś-Tarski Theorem relativises to C, and existential sentences define compact open subsets.
- 2. The space $\langle\!\langle \mathcal{C}, \tau, \mathcal{B} \rangle\!\rangle$ is an LPPS.

Let $C \subseteq$ Fin. We consider B to be the FO-definable subsets of C, and τ to be the collection of upwards closed subsets of C (for extensions).

Theorem ([Lop21, Theorem 3.4], specialised to the Łoś-Tarski Theorem and the finite setting)

- The Łoś-Tarski Theorem relativises to C, and existential sentences define compact open subsets.
- 2. The space $\langle\!\langle \mathcal{C}, \tau, \mathcal{B} \rangle\!\rangle$ is an LPPS.

Remarks

- LPPS captures a subset of preservation theorems.
- The two coincide on hereditary classes of finite structures.
- LPPS will be stable under composition (finite sums, finite products, etc.)

We are working with the Łoś-Tarski Theorem for simplicity. That is, ordering structures with \subseteq_i and using the fragment \exists FO.

Class	Relativisation ?	LPPS?
Paths	Т	Т
Cycles	Т	\perp
$Deg^{\leq 2}$, $$, \biguplus , \downarrow	Т	Т
Labelled(Paths, L)	\perp	\perp
$Labelled(Deg^{\leq 2},L), \uplus, \downarrow$	Т	Т
Cliques	Т	Т
$Paths \cup Cycles$	\perp	\perp
$Paths \times Cycles$	Т	\perp
Fin	\perp	\perp
Struct	Т	-

LPPS captures "reasonable" preservation theorems.

Generalises Already Known Spaces

- $\langle\!\langle \mathcal{C}, \tau, \mathcal{P}(\mathcal{C}) \rangle\!\rangle$ is an LPPS $\iff (\mathcal{C}, \tau)$ is a Noetherian space
- $\langle\!\langle \mathcal{C}, \tau, \langle \mathcal{K}^{\circ}(\tau) \rangle_{\text{bool}} \rangle\!\rangle$ is an LPPS $\iff (\mathcal{C}, \tau)$ is a Spectral space

(see [GL13]) (see [DST19])

Generalises Already Known Spaces

- $\langle\!\langle \mathcal{C}, \tau, \mathcal{P}(\mathcal{C}) \rangle\!\rangle$ is an LPPS $\iff (\mathcal{C}, \tau)$ is a Noetherian space
- $\langle\!\langle \mathcal{C}, \tau, \langle \mathcal{K}^{\circ}(\tau) \rangle_{\text{bool}} \rangle\!\rangle$ is an LPPS $\iff (\mathcal{C}, \tau)$ is a Spectral space

Compositional?

Both spectral and Noetherian spaces can be composed!

(see [GL13]) (see [DST19])

Theorem (LPPS stabilty)

Operation	Symbol	Extra Hypothesis
sum	$\mathcal{C}+\mathcal{C}'$	-
product	$\mathcal{C} imes \mathcal{C}'$	-
inner product	$\mathcal{C}\otimes\mathcal{C}'$	-
finite words	\mathcal{C}^{\star}	-
wreath product	$\mathcal{C}\rtimes\mathcal{C}'$	${\mathcal C}$ is $\infty ext{-wqo}$

Theorem (LPPS stabilty)

Operation	Symbol	Extra Hypothesis
sum	$\mathcal{C}+\mathcal{C}'$	-
product	$\mathcal{C} imes \mathcal{C}'$	-
inner product	$\mathcal{C}\otimes\mathcal{C}'$	-
finite words	\mathcal{C}^{\star}	-
wreath product	$\mathcal{C}\rtimes\mathcal{C}'$	${\mathcal C}$ is $\infty ext{-wqo}$

Lemma (Other stability results)

- Surjective continuous and definable maps f: $\mathcal{C} \twoheadrightarrow \mathcal{C}'$.
- Boolean combinations of compact open subsets.

COMPOSING LPPS

SUBSETS AND MAPS

 $f\colon (X,\tau,\mathcal{B}) \to (X_2,\tau_2,\mathcal{B}_2)$

1.
$$f^{-1}: \tau_2 \to \tau$$
 (continuous), and
2. $f^{-1}: \mathcal{B}_2 \to \mathcal{B}$ (definable).

Lemma

If f is surjective and $\langle\!\langle X, \tau, \mathcal{B} \rangle\!\rangle$ is an lpps, then $\langle\!\langle X_2, \tau_2, \mathcal{B}_2 \rangle\!\rangle$ is also an lpps.

 $f\colon (X,\tau,\mathcal{B}) \to (X_2,\tau_2,\mathcal{B}_2)$

1. $f^{-1}: \tau_2 \to \tau$ (continuous), and 2. $f^{-1}: \mathcal{B}_2 \to \mathcal{B}$ (definable).

Lemma

If f is surjective and $\langle\!\langle X, \tau, \mathcal{B} \rangle\!\rangle$ is an lpps, then $\langle\!\langle X_2, \tau_2, \mathcal{B}_2 \rangle\!\rangle$ is also an lpps.

Ex: Continuous first order interpretations

- Selecting subsets
- Defining new relations using CQs

COMPOSING LPPS

THE EXAMPLE OF A PRODUCT

WHAT IS THE PRODUCT OF TWO SPACES?

Let $\langle\!\langle \mathcal{C}, \tau, \mathcal{B} \rangle\!\rangle$ and $\langle\!\langle \mathcal{C}', \tau', \mathcal{B}' \rangle\!\rangle$ be LPPS.

The elements of $\mathcal{C}\times\mathcal{C}'$

Pairs $(\mathfrak{A}, \mathfrak{A}')$, with $\mathfrak{A} \in \mathcal{C}$ and $\mathfrak{A}' \in \mathcal{C}'$.

The elements of $\mathcal{C}\times\mathcal{C}'$

Pairs $(\mathfrak{A}, \mathfrak{A}')$, with $\mathfrak{A} \in \mathcal{C}$ and $\mathfrak{A}' \in \mathcal{C}'$.

The open subsets of $\mathcal{C}\times\mathcal{C}'$

Topology generated by subsets $U \times U'$ with $U \in \tau$ and $U' \in \tau'$.

The elements of $\mathcal{C}\times\mathcal{C}'$

Pairs $(\mathfrak{A}, \mathfrak{A}')$, with $\mathfrak{A} \in \mathcal{C}$ and $\mathfrak{A}' \in \mathcal{C}'$.

The open subsets of $\mathcal{C}\times\mathcal{C}'$

Topology generated by subsets $U \times U'$ with $U \in \tau$ and $U' \in \tau'$.

The definable subsets of $\mathcal{C}\times\mathcal{C}'$

(works for FO!)

Boolean subalgebra generated by subsets $D \times D'$ with $D \in \mathcal{B}$ and $D' \in \mathcal{B}'$.

The elements of $\mathcal{C}\times\mathcal{C}'$

Pairs $(\mathfrak{A}, \mathfrak{A}')$, with $\mathfrak{A} \in \mathcal{C}$ and $\mathfrak{A}' \in \mathcal{C}'$.

The open subsets of $\mathcal{C}\times\mathcal{C}'$

Topology generated by subsets $U \times U'$ with $U \in \tau$ and $U' \in \tau'$.

The definable subsets of $\mathcal{C}\times\mathcal{C}'$

(works for FO!)

Boolean subalgebra generated by subsets $D \times D'$ with $D \in \mathcal{B}$ and $D' \in \mathcal{B}'$.

Theorem ([Lop21, Proposition 5.8])

 $\langle\!\langle \mathcal{C}\times \mathcal{C}',\tau^{\times},\mathcal{B}^{\times}\rangle\!\rangle$ is an LPPS.

Let us prove:

 $\tau^{\times} \cap \mathcal{B}^{\times} \subseteq \mathcal{K}^{\circ}(\tau^{\times})$.

Let $U \in \tau^{\times} \cap \mathcal{B}^{\times}$.

Let us prove:

 $\tau^{\times} \cap \mathcal{B}^{\times} \subseteq \mathcal{K}^{\circ}(\tau^{\times})$.

Let us prove:

 $\tau^{\times} \cap \mathcal{B}^{\times} \subseteq \mathcal{K}^{\circ}(\tau^{\times})$.

Let us prove:

 $\tau^{\times} \cap \mathcal{B}^{\times} \subseteq \mathcal{K}^{\circ}(\tau^{\times})$.

Let us prove:

 $\tau^{\times} \cap \mathcal{B}^{\times} \subseteq \mathcal{K}^{\circ}(\tau^{\times})$.

Let us prove:

 $\tau^{\times} \cap \mathcal{B}^{\times} \subseteq \mathcal{K}^{\circ}(\tau^{\times})$.

Let us prove:

 $\tau^{\times} \cap \mathcal{B}^{\times} \subseteq \mathcal{K}^{\circ}(\tau^{\times})$.

Let us prove:

 $au^{\times} \cap \mathcal{B}^{\times} \subseteq \mathcal{K}^{\circ}(\tau^{\times})$.

Let us prove:

 $\tau^{\times} \cap \mathcal{B}^{\times} \subseteq \mathcal{K}^{\circ}(\tau^{\times})$.

Let us prove:

 $\tau^{\times} \cap \mathcal{B}^{\times} \subseteq \mathcal{K}^{\circ}(\tau^{\times})$.

Let us prove:

 $au^{\times} \cap \mathcal{B}^{\times} \subseteq \mathcal{K}^{\circ}(\tau^{\times})$.

Let us prove:

 $au^{\times} \cap \mathcal{B}^{\times} \subseteq \mathcal{K}^{\circ}(\tau^{\times})$.

Let us prove:

 $au^{\times} \cap \mathcal{B}^{\times} \subseteq \mathcal{K}^{\circ}(\tau^{\times})$.

Let us prove:

 $au^{\times} \cap \mathcal{B}^{\times} \subseteq \mathcal{K}^{\circ}(\tau^{\times})$.

Let us prove:

 $au^{\times} \cap \mathcal{B}^{\times} \subseteq \mathcal{K}^{\circ}(\tau^{\times})$.

Let us prove:

 $au^{\times} \cap \mathcal{B}^{\times} \subseteq \mathcal{K}^{\circ}(\tau^{\times})$.

Let us prove:

 $au^{\times} \cap \mathcal{B}^{\times} \subseteq \mathcal{K}^{\circ}(\tau^{\times})$.

Let us prove:

 $au^{\times} \cap \mathcal{B}^{\times} \subseteq \mathcal{K}^{\circ}(\tau^{\times})$.

Let us prove:

 $au^{\times} \cap \mathcal{B}^{\times} \subseteq \mathcal{K}^{\circ}(\tau^{\times})$.

Let us prove:

 $au^{\times} \cap \mathcal{B}^{\times} \subseteq \mathcal{K}^{\circ}(\tau^{\times})$.

Let us prove:

 $au^{\times} \cap \mathcal{B}^{\times} \subseteq \mathcal{K}^{\circ}(\tau^{\times})$.

HOW DO THEY INTERACT?

Let us prove:

$$au^{ imes} \cap \mathcal{B}^{ imes} \subseteq \mathcal{K}^{\circ}(au^{ imes})$$

Let us prove:

$$au^{ imes} \cap \mathcal{B}^{ imes} \subseteq \mathcal{K}^{\circ}(au^{ imes})$$

Let $U \in \tau^{\times} \cap \mathcal{B}^{\times}$. $U = \bigcup \bigcap \neg^{?} D_{i} \times D'_{j}$. (Use Tychonoff and Zorn)

We composed two preservation theorems without knowing how they were obtained!

The gap

$$\begin{split} & \langle\!\langle \mathsf{Paths} \times \mathsf{Cliques}, \subseteq_i, \langle \mathsf{F0}[\mathsf{E}] \times \mathsf{F0}[\mathsf{E}'] \rangle_{\mathsf{bool}} \rangle\!\rangle \text{ is an LPPS.} \\ & \langle \mathsf{F0}[\mathsf{A}] \times \mathsf{F0}[\mathsf{B}] \rangle_{\mathsf{bool}} \stackrel{?}{=} \mathsf{F0}[\mathsf{A} \uplus \mathsf{B}] \end{split}$$

The gap

$$\begin{split} & \langle\!\langle \mathsf{Paths}\times\mathsf{Cliques},\subseteq_i,\langle\mathsf{F0}[\mathsf{E}]\times\mathsf{F0}[\mathsf{E}']\rangle_{\mathsf{bool}}\rangle\!\rangle \text{ is an LPPS.} \\ & \langle\mathsf{F0}[\mathsf{A}]\times\mathsf{F0}[\mathsf{B}]\rangle_{\mathsf{bool}} \stackrel{?}{=}\mathsf{F0}[\mathsf{A}\uplus\mathsf{B}] \end{split}$$

Theorem

Yes, using compositional techniques à la Feferman and Vaught [FV59].

The gap

$$\begin{split} & \langle\!\langle \mathsf{Paths} \times \mathsf{Cliques}, \subseteq_i, \langle \mathsf{FO}[\mathsf{E}] \times \mathsf{FO}[\mathsf{E}'] \rangle_{\mathsf{bool}} \rangle\!\rangle \text{ is an LPPS.} \\ & \langle \mathsf{FO}[\mathsf{A}] \times \mathsf{FO}[\mathsf{B}] \rangle_{\mathsf{bool}} \stackrel{?}{=} \mathsf{FO}[\mathsf{A} \uplus \mathsf{B}] \end{split}$$

Theorem

Yes, using compositional techniques à la Feferman and Vaught [FV59].

Lemma

$$\begin{split} f\colon \langle\!\langle \mathsf{Paths}\times\mathsf{Cliques},\subseteq_i,\mathsf{F0}[E\uplus E']\rangle\!\rangle &\to \langle\!\langle\mathsf{Paths}\times\mathsf{Cliques},\subseteq_i,\mathsf{F0}[E]\rangle\!\rangle \\ (\mathsf{P}_n,\mathsf{K}_m) &\mapsto \mathsf{P}_n \uplus \mathsf{K}_m[E'\mapsto E] \end{split}$$

is a surjective continuous and definable map.

COMPOSING LPPS

COMPLICATED EXAMPLES

 $((Paths \times Deg^{\leq 2}) + Cliques)^* \times Paths$

EXAMPLE USING THE WREATH PRODUCT

LinOrd × Paths (for free!)

EXAMPLE USING THE WREATH PRODUCT

LinOrd × Paths (for free!)

EXAMPLE USING THE WREATH PRODUCT

LinOrd × Paths (for free!)

CONCLUDING REMARKS

OUTLOOK

Origin Story

- Completion of databases
- Completeness of syntactic fragments
- Preservation theorems in classes of finite structures

Contribution

- A topological framework capturing preservation theorems
- For which compositionality is ensured
- With a nice theory behind it

BIBLIOGRAPHY I

- [1] Miklós Ajtai and Yuri Gurevich. "Monotone versus positive". In: Journal of the ACM 34 (1987), pp. 1004–1015. doi: 10.1145/31846.31852 (cit. on pp. 30, 31, 71).
- [2] Miklós Ajtai and Yuri Gurevich. "Datalog vs first-order logic". In: Journal of Computer and System Sciences 49 (1994), pp. 562–588. doi: 10.1016/S0022-0000(05)80071-6 (cit. on pp. 30, 31, 71).
- [3] Albert Atserias, Anuj Dawar, and Martin Grohe. "Preservation under extensions on well-behaved finite structures". In: SIAM Journal on Computing 38 (2008), pp. 1364–1381. doi: 10.1137/060658709 (cit. on pp. 42–52, 71).
- [4] Albert Atserias, Anuj Dawar, and Phokion G. Kolaitis. "On preservation under homomorphisms and unions of conjunctive queries". In: Journal of the ACM 53 (2006), pp. 208–237. doi: 10.1145/1131342.1131344 (cit. on p. 71).
- [5] Florent Capelli, Arnaud Durand, Amélie Gheerbrant, and Cristina Sirangelo. A simple counter example of Lyndon's Theorem in the finite. 2020 (cit. on pp. 30, 31).

- [6] Ashok K. Chandra and Philip M. Merlin. "Optimal implementation of conjunctive queries in relational data bases". In: Proc. STOC'77. 1977, pp. 77–90. doi: 10.1145/800105.803397 (cit. on pp. 53–62, 78, 79).
- Yijia Chen and Jörg Flum. "Forbidden Induced Subgraphs and the Łoś-Tarski Theorem". In: 2021
 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). 2021, pp. 1–13. doi:
 10.1109/LICS52264.2021.9470742 (cit. on p. 71).
- [8] E. F. Codd. "A Relational Model of Data for Large Shared Data Banks". In: Commun. ACM 13.6 (1970), pp. 377–387. doi: 10.1145/362384.362685. url: https://doi.org/10.1145/362384.362685 (cit. on p. 4).
- [9] Jean Daligault, Michael Rao, and Stéphan Thomassé. "Well-Quasi-Order of Relabel Functions". In: Order 27 (2010), pp. 301–315. doi: 10.1007/s11083-010-9174-0. url: https://doi.org/10.1007/s11083-010-9174-0 (cit. on p. 71).

BIBLIOGRAPHY III

- [10] Anuj Dawar and Abhisekh Sankaran. "Extension Preservation in the Finite and Prefix Classes of First Order Logic". In: 29th EACSL Annual Conference on Computer Science Logic (CSL 2021).
 Ed. by Christel Baier and Jean Goubault-Larrecq. Vol. 183. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2021, 18:1–18:13. doi: 10.4230/LIPIcs.CSL.2021.18. url: https://drops.dagstuhl.de/opus/volltexte/2021/13452 (cit. on pp. 30, 31, 71).
- [11] Alin Deutsch, Alan Nash, and Jeffrey B. Remmel. "The chase revisited". In: Proceedings of PODS'08. 2008, pp. 149–158. doi: 10.1145/1376916.1376938 (cit. on p. 141).
- [12] Max Dickmann, Niels Schwartz, and Marcus Tressl. Spectral Spaces. Vol. 35. Cambridge University Press, 2019. doi: 10.1017/9781316543870.003 (cit. on pp. 86, 87).
- [13] Guoli Ding. "Subgraphs and well-quasi-ordering". In: Journal of Graph Theory 16 (1992), pp. 489–502. doi: 10.1002/jgt.3190160509 (cit. on p. 71).

- [14] Solomon Feferman and Robert Vaught. "The first order properties of products of algebraic systems". In: Fundamenta Mathematicae 47 (1959), pp. 57–103. doi: 10.4064/fm-47-1-57-103 (cit. on pp. 123–125).
- [15] Amélie Gheerbrant, Leonid Libkin, and Cristina Sirangelo. "Naïve evaluation of queries over incomplete databases". In: ACM Transactions on Database Systems 39 (2014), pp. 1–42. doi: 10.1145/2691190.2691194 (cit. on pp. 17, 18).
- [16] Jean Goubault-Larrecq. Non-Hausdorff Topology and Domain Theory. Vol. 22. Cambridge University Press, 2013. doi: 10.1017/cbo9781139524438 (cit. on pp. 86, 87).
- [17] Yuri Gurevich. "Toward logic tailored for computational complexity". In: Computation and Proof Theory, Proceedings of LC'84. Vol. 1104. Springer, 1984, pp. 175–216. doi: 10.1007/BFb0099486 (cit. on pp. 30, 31).

- [18] Denis Kuperberg. "Positive First-order Logic on Words". In: 36th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2021, Rome, Italy, June 29 – July 2, 2021. IEEE, 2021, pp. 1–13. doi: 10.1109/LICS52264.2021.9470602 (cit. on p. 71).
- [19] Leonid Libkin. "Incomplete information and certain answers in general data models". In: Proceedings of PODS'11. 2011, pp. 59–70. doi: 10.1145/1989284.1989294 (cit. on pp. 15, 16, 26–29).
- [20] Aliaume Lopez. "Preservation Theorems Through the Lens of Topology". In: Proceedings of CSL'21. Vol. 183. 2021, 32:1–32:17. doi: 10.4230/LIPIcs.CSL.2021.32 (cit. on pp. 78–83, 94–98).
- [21] Benjamin Rossman. "Homomorphism preservation theorems". In: Journal of the ACM 55 (2008), 15:1–15:53. doi: 10.1145/1379759.1379763 (cit. on pp. 30, 31, 71).

BIBLIOGRAPHY VI

- [22] Abhisekh Sankaran, Bharat Adsul, and Supratik Chakraborty. "A generalization of the Łoś-Tarski preservation theorem over classes of finite structures". In: International Symposium on Mathematical Foundations of Computer Science. 2014, pp. 474–485. doi: 10.1007/978-3-662-44522-8_40 (cit. on p. 71).
- [23] Abhisekh Sankaran, Bharat Adsul, Vivek Madan, Pritish Kamath, and Supratik Chakraborty.
 "Preservation under substructures modulo bounded cores". In: International Workshop on Logic, Language, Information, and Computation. 2012, pp. 291–305. doi: 10.1007/978-3-642-32621-9_22 (cit. on pp. 30, 31).
- [24] Alexei P. Stolboushkin. "Finitely monotone properties". In: (1995), pp. 324–330. doi: 10.1109/LICS.1995.523267 (cit. on pp. 30, 31).
- [25] William W. Tait. "A counterexample to a conjecture of Scott and Suppes". In: Journal of Symbolic Logic 24 (1959), pp. 15–16. doi: 10.2307/2964569 (cit. on pp. 30, 31, 71).

Associates to a collection of completions to a point

 $D \mapsto \{D_2 \mid D_2 \text{ completes } D\}$

- Closed World Assumption: nulls are mapped to constants
- Open World Assumption: nulls are mapped to constants, and the database can be extended
- Weak Closed World Assumption: null are mapped to constants, the database can be extended, as long as its active domain does not change.

For our world assumptions

$$\rho \colon \mathsf{X} \mapsto \bigcup_{\mathsf{D} \in \mathsf{X}} \{\mathsf{D}_2 \mid \mathsf{D}_2 \text{ completes }\mathsf{D}\}$$

- · Closed subsets are upwards closed for a suitable family of homomorphisms.
- Open subsets are their complements.
- In this particular case, the collection of upwards closed susbets also forms a topology.

Alexandroff topologies

- 1. Are topologies where arbitrary unions of closed subsets are closed
- 2. Are uniquely determined by an ordering $D_1 \leq D_2$ if and only if $D_1 \in \rho(\{D_2\})$.

Certain answers over the completion

- Consider databases $h: D \rightarrow_F D_2$
- But restrict our attention to databases D_2 such that $\mathsf{D}_2 \models \Sigma.$

The core chase algorithm

- Can be defined when $\boldsymbol{\Sigma}$ has a certain shape
- May not terminate on some instances

Theorem (Deutsch, Nash, and Remmel [DNR08])

The core chase terminates for Q, Σ, D if and only if $\uparrow (Q \cap \Sigma)$ is first order definable (in all structures).

Setting

- A set Σ of constraints
- An incomplete database D
- A notion of completion \rightarrow_{F}

Models	Theories
$Model\mathfrak{A}$	Complete Theory $T_\mathfrak{A}$
$\mathfrak{A}\models\varphi$	$\varphi\inT_{\mathfrak{A}}$

Remark: spectral spaces

Note that the original introduction of Stone defined what is now called Priestley spaces, which are more general. It was forgotten because the spaces were "non-standard" (understand, non hausdorff).