
Compositional Techniques for Preservation Theorems over Classes of
Finite Structures

Leveraging Tools from Topology and Finite Model Theory

Aliaume LOPEZ

November 6th 2023
BOREAL Seminar, LIRMM, Montpellier, France

1/38



INTRODUCTION

SHORT BIO



WHAT IS THE POINT OF VIEW TAKEN IN THIS TALK?

Where do I come from

1. High school in Montpellier.

2. Masters at the MPRI in Paris.

3. Ph.D in Finite Model Theory and Topology.

4. With the hope that it could be applied to databases.

5. Currently in Warsaw to study MSO transductions.
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TOPOLOGY? FINITE MODEL THEORY?

Model Theory and Databases (see Codd [Cod70])

Databases Model Theory

Infinite database (Relational) structure
Database Finite structure

Query First order sentence

Simplifications: no functional symbols, queries without constants.
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TOPOLOGY? FINITE MODEL THEORY?

B(x, r)

x r

Topological spaces

A set X together with a collectionO(X) of “open” subsets,
closed under finite intersections and arbitrary unions.

Examples:

• Metric spaces (X, d) open ball topology

• Ordered spaces (X,≤) Alexandroff topology

→ this talk!

Warning: not all spaces are metric, not all spaces are
separable, not all compact subsets are closed, etc...
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INTRODUCTION

QUERY ANSWERING ON CLASSES OF DATABASES



DATABASE COMPLETIONS: EXAMPLE OVER FINITE GRAPHS

Representation of undirected graphs

• V is the domain

• E is a (symmetric) table with two columns

Completions of a database

1. Adding new elements extensions (⊆i)

2. (and) Adding new rows substructures (⊆)

3. (and) Merging elements homomorphic images (�h)

Alternative definition

Morphisms that preserve conjunctive queries (resp. with 6=,
resp. with ¬)...
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In general

F ⊆ FO leads to a class→F of morphisms
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CERTAIN ANSWERS (IN GENERAL)

Cert→F
Q (A)

:= ∩
h : A→FB

{⃗a ∈ A | h(⃗a) ∈ Q(B)}

Answers, using data available in the
database, that must appear, regardless
of the completion.

How hard is computing certain answers?

In general: undecidable (reduces to finite validity)

We need to: compute a greatest lower bound in the
ordering→F (Libkin [Lib11]).

Candidate: naïvely evaluate the query on the incomplete
database and “hope for the best”.
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WHAT DOES IT HAVE TO DO WITH PRESERVATION THEOREMS?

Theorem (Gheerbrant, Libkin, and Sirangelo [GLS14, Corollary 4.14])

• under OWA, naïve evaluation works for Q iff Q is preserved under homomorphisms;

• under CWA, naïve evaluation works for Q iff Q is preserved under strong onto homomorphisms;

• under WCWA, naïve evaluation works for Q iff Q is preserved under onto homomorphisms.

Preservation theorems are close!
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UPWARDS CLOSURES, MODEL COMPLETIONS, CLASSES OF MODELS

Let Q be a Boolean query.
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PRESERVATION THEOREMS

WHAT DO WE KNOW ABOUT THESE
COMPLETIONS?



PRESERVATION THEOREMS: COMPLETENESS!

Theorem (Homomorphism Preservation Theorem)

Let Q ∈ FO, the following are equivalent:

1. Q is equivalent to a union of conjunctive queries,

2. Q is preserved under homomorphisms.

Lemma (Libkin [Lib11, Proposition 1])

Let Q ∈ FO, the following are equivalent

1. the naïve evaluation works for all databases,

2. Q is equivalent to a union of conjunctive queries.

Recall that

Homomorphisms'morphisms
preserving CQs

Easy remark

CQs are preserved under
homomorphisms (always).
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PRESERVATION THEOREMS: THE CLASSICAL RESULTS

Preservation Under

Relativises to Fin

homomorphisms

> [Ros08]

injective homomorphisms (Tarski-Lyndon)

⊥ [AG94, Theorem 10.2]

strong injective homomorphisms (Łoś-Tarski)

⊥ [Tai59; Gur84; DS21]

surjective homomorphisms (Lyndon)

⊥ [AG87; Sto95]

strong surjective homomorphism

⊥ [Cap+20]

∀FO-embeddings (dual Chang-Łoś-Suszko)

⊥ [San+12]

These are Model Theory theorems... (using compactness of first order logic)

Work with infinite structures, and not databases!

Warning

Preservation theorems can relativise to smaller classes of finite structures! (ex: ∅).
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For the rest of the talk

• we restrict our attention to classes of finite structures

• and to boolean queries / first order sentences
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PRESERVATION THEOREMS

THREE SPECIFIC EXAMPLES AMONG CLASSES
OF FINITE UNDIRECTED GRAPHS



FINITE PATHS (FOLKLORE) ORDERING!

Universe: Undirected Graphs

Query: JφK
Order: extensions

Restriction: Finite Paths (Paths)

The Łoś-Tarski Theorem relativises
to Paths!

P1

P2

P3

P4

P5

...> ...

>>

>

>

J∃≥3x.>K ∩ Paths = JφK ∩ Paths
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FINITE CYCLES (FOLKLORE) LOGIC!

Universe: Undirected Graphs Query: JφK
Order: extensions Restriction: Finite Cycles (Cycles)

C3 C4 C5 C6 C7Lemma!

⊥ > ⊥ > > >

· · ·

Lemma (folklore)

For every φ ∈ FO, there exists N0, such that for all n,m ≥ N0, Cm ∈ JφK ⇐⇒ Cn ∈ JφK.
JφK ∩ Cycles = J∃=4x.> ∨ ∃≥6x.>K ∩ Cycles
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BOUNDED DEGREE STRUCTURES BOTH!

Theorem ([ADG08, Theorem 4.3])

The Łoś-Tarski Theorem relativises to every class C of finite structures such that:

1. There exists a bound d on the maximal degree in the structures

2. The class is hereditary (neither Paths, nor Cycles)

3. The class is closed under disjoint unions (neither Paths, nor Cycles)
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WRAPPING UP

Three Non Overlapping Internal Approaches

1. Upwards closed subsets are “simple” (Paths) – ↑ E where E is finite

2. Definable subsets are “simple” (Cycles) – (complements of) finite subsets

3. The two interact “nicely” ([ADG08])

An external approach?

Is it possible to avoid starting from scratch every time?

• Cycles ∪ Paths? None of the above apply!
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DIAGRAM QUERIES AND MINIMAL MODELS

Lemma (Chandra and Merlin [CM77])

For every finite structureA of size n, there exists a query QA

with n free variables, such that forallB and h : A → B, the
following are equivalent

1. h is a homomorphism

2. B, h(A) |= QA.

Almost a preservation theorem

If we could enumerate finitely many models...

Can be generalised to “diagram queries”

For usual fragments

Sentences have finitely many minimal models!

x1

x2

x3x4

x5

x6

x7

E(x1, x4)

E(x2, x7)

E(x6, x7)

E(x1, x4)

E(x5, x2)

E(x3, x5)

E(x3, x4)

E(x4, x6)

E(x1, x6)
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PRESERVATION THEOREMS: THE FINITE FAILURES

We work over C = Paths ∪ Cycles, ordered by⊆i, and search for a query φ preserved under extensions
but not equivalent to an existential sentence.

φ := ∀x. deg(x) = 2

· · · · · ·

...

...

...

P1

P2

P6

P7

P9

C3C4C8
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POSITIVE AND NEGATIVE RESULTS ... A NON EXHAUSTIVE TIMELINE

1959

1969

1979

1989

1999

2009

2019

Tait

Ajtai and Gurevich

Ajtai and Gurevich

Dawar and Sankaran

Kuperberg

Chen and Flum

Ding

Atserias, Dawar, and Kolaitis

Atserias, Dawar, and Grohe

Rossman

Daligault, Rao, and Thomassé

Sankaran, Adsul, and Chakraborty

17/38



BUT DO THEY COMPOSE?

WHAT DO YOU THINK?



SUMMARY OF PREVIOUSLY ENCOUNTERED CLASSES... AND SOME NEW ONES

We are working with the Łoś-Tarski Theorem for simplicity.
That is, ordering structures with⊆i and using the fragment ∃FO.

Class Relativisation?

Paths >
Cycles >
Deg≤2, ], ↓ >
Labelled(Paths, L) ⊥
Labelled(Deg≤2, L), ], ↓ >
Cliques >
Paths ∪ Cycles ⊥
Paths × Cycles >
Fin ⊥
Struct >

18/38



WHY DO WE WANT TO COMPOSE?

Multiple sources

• Datasets come from different sources, with different assumptions on their completeness.

• Queries operating on incomplete databases can be seen as operating on classes of databases.

19/38



BUT DO THEY COMPOSE?

LOGICALLY PRESENTED PRE-SPECTRAL SPACES
(IT IS TOO LATE TO CHANGE THE NAME NOW)



COMPACT OPENS IN TOPOLOGICAL SPACES

Definition (Compact subset)

U ∈ O(X) is compact if for every sequence (Ui)i∈I,

U ⊆
∪
i∈I

Ui =⇒ ∃n ∈ N,U ⊆ Ui1 ∪ · · · ∪ Uin

Ideal for preservation theorems

Letφ be preserved under→F. We enumerate modelsA |= φ,
and consider ψA that defines ↑A.

φ ≡
∨
A|=φ

ψA

Space Subset Compact?

R {1} >
R [0, 1] >
R ]0, 1] ⊥
R R ⊥

(Paths,⊆i) ↑ P3 >
(Cycles,⊆i) Cycles ⊥
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ABSTRACT TOPOLOGICAL SPACE

Definition ([Lop21, Definition 3.2])

A logically presented pre-spectral space is a triple 〈〈X, τ ,B〉〉 such that

1. (X, τ) is a topological space notion of completions

2. (X,B) is a boolean subalgebra ofP(X) notion of queries,

3. 〈τ ∩ B〉top = τ enough queries exist (think Chandra and Merlin),

4. τ ∩ B = K◦(τ) definable and open subsets of X are compact open.

Compact open in the ordered case

compact open subsets are the upwards closed subsets that have finitely many minimal elements.
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A COMPLETENESS RESULT (SPECIALISED TO ŁOŚ-TARSKI)

Let C ⊆ Fin.

We consider B to be the FO-definable subsets of C , and τ to be the collection of upwards
closed subsets of C (for extensions).

Theorem ([Lop21, Theorem 3.4], specialised to the Łoś-Tarski Theorem and the finite setting)

1. The Łoś-Tarski Theorem relativises to C ,
and existential sentences define compact open subsets.

2. The space 〈〈C, τ ,B〉〉 is an LPPS.

Remarks

• LPPS captures a subset of preservation theorems.

• The two coincide on hereditary classes of finite structures.

• LPPS will be stable under composition (finite sums, finite products, etc.)
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EXAMPLE AND NON EXAMPLES

We are working with the Łoś-Tarski Theorem for simplicity.
That is, ordering structures with⊆i and using the fragment ∃FO.

Class Relativisation? LPPS?

Paths > >
Cycles > ⊥
Deg≤2, ], ↓ > >
Labelled(Paths, L) ⊥ ⊥
Labelled(Deg≤2, L), ], ↓ > >
Cliques > >
Paths ∪ Cycles ⊥ ⊥
Paths × Cycles > ⊥
Fin ⊥ ⊥
Struct > −

23/38



LPPS captures “reasonable” preservation theorems.

23/38



OTHER KINDS OF TOPOLOGICAL SPACES

Generalises Already Known Spaces

• 〈〈C, τ ,P(C)〉〉 is an LPPS↭ (C, τ) is a Noetherian space (see [GL13])

• 〈〈C, τ , 〈K◦(τ)〉bool〉〉 is an LPPS↭ (C, τ) is a Spectral space (see [DST19])

Compositional?

Both spectral and Noetherian spaces can be composed!
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WHAT ARE THE COMPOSITIONS?

Theorem (LPPS stabilty)

Operation Symbol Extra Hypothesis

sum C + C′ -
product C × C′ -
inner product C ⊗ C′ -
finite words C⋆ -
wreath product C ⋊ C′ C is∞-wqo

Lemma (Other stability results)

• Surjective continuous and definable maps f : C ↠ C′.

• Boolean combinations of compact open subsets.

25/38



WHAT ARE THE COMPOSITIONS?

Theorem (LPPS stabilty)

Operation Symbol Extra Hypothesis

sum C + C′ -
product C × C′ -
inner product C ⊗ C′ -
finite words C⋆ -
wreath product C ⋊ C′ C is∞-wqo

Lemma (Other stability results)

• Surjective continuous and definable maps f : C ↠ C′.

• Boolean combinations of compact open subsets.

25/38



COMPOSING LPPS

SUBSETS AND MAPS



MORPHISMS OF LPPS?

f : (X, τ ,B) → (X2, τ 2,B2)

1. f−1 : τ 2 → τ (continuous), and

2. f−1 : B2 → B (definable).

Lemma

If f is surjective and 〈〈X, τ ,B〉〉 is an lpps, then 〈〈X2, τ 2,B2〉〉 is
also an lpps.

Ex: Continuous first order
interpretations

• Selecting subsets

• Defining new relations using CQs
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COMPOSING LPPS

THE EXAMPLE OF A PRODUCT



WHAT IS THE PRODUCT OF TWO SPACES?

Let 〈〈C, τ ,B〉〉 and 〈〈C′, τ ′,B′〉〉 be LPPS.

The elements of C × C′

Pairs (A,A′), withA ∈ C andA′ ∈ C′.

The open subsets of C × C′

Topology generated by subsets U × U′ with U ∈ τ and U′ ∈ τ ′.

The definable subsets of C × C′ (works for FO!)

Boolean subalgebra generated by subsets D × D′ with D ∈ B and D′ ∈ B′.

Theorem ([Lop21, Proposition 5.8])

〈〈C × C′, τ×,B×〉〉 is an LPPS.
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HOW DO THEY INTERACT?

Let us prove:

τ× ∩ B× ⊆ K◦(τ×) .

Let U ∈ τ× ∩ B×.

U =
∪∩

¬?Di × D′
j . (Use Tychonoff and Zorn)

D0 D1 D2 D3 D4 D5 D6 D7

D′
0

D′
1

D′
2

D′
3

D′
4

C

C′
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We composed two preservation theorems without knowing how they
were obtained!
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WHAT ABOUT THE LOGIC?

The gap

〈〈Paths × Cliques,⊆i, 〈FO[E]× FO[E′]〉bool〉〉 is an LPPS.

〈FO[A]× FO[B]〉bool
?
= FO[A ] B]

Theorem

Yes, using compositional techniques à la Feferman and Vaught [FV59].

Lemma

f : 〈〈Paths × Cliques,⊆i, FO[E ] E′]〉〉 → 〈〈Paths × Cliques,⊆i, FO[E]〉〉
(Pn, Km) 7→ Pn ] Km[E′ 7→ E]

is a surjective continuous and definable map.
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COMPOSING LPPS

COMPLICATED EXAMPLES



EXAMPLE USING THE WREATH PRODUCT

((Paths × Deg≤2) + Cliques)
⋆
× Paths
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EXAMPLE USING THE WREATH PRODUCT

LinOrd ⋊ Paths (for free!)
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CONCLUDING REMARKS



OUTLOOK

Origin Story

• Completion of databases

• Completeness of syntactic fragments

• Preservation theorems in classes of finite structures

Contribution

• A topological framework capturing preservation theorems

• For which compositionality is ensured

• With a nice theory behind it
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WHAT ARE WORLD ASSUMPTIONS?

Associates to a collection of completions to a point

D 7→ {D2 | D2 completes D}

• Closed World Assumption: nulls are mapped to constants

• Open World Assumption: nulls are mapped to constants, and the database can be extended

• Weak Closed World Assumption: null are mapped to constants, the database can be extended, as
long as its active domain does not change.



TOPOLOGIES ARISE THROUGH KURATOWSKI CLOSURE OPERATORS

For our world assumptions

ρ : X 7→
∪
D∈X

{D2 | D2 completes D}

• Closed subsets are upwards closed for a suitable family of homomorphisms.

• Open subsets are their complements.

• In this particular case, the collection of upwards closed susbets also forms a topology.

Alexandroff topologies

1. Are topologies where arbitrary unions of closed subsets are closed

2. Are uniquely determined by an ordering D1 ≤ D2 if and only if D1 ∈ ρ({D2}).



QUERY EVALUATION ON AN ONTOLOGY

Certain answers over the completion

• Consider databases h : D →F D2

• But restrict our attention to databases D2 such that
D2 |= Σ.

The core chase algorithm

• Can be defined whenΣ has a certain shape

• May not terminate on some instances

Setting

• A setΣ of constraints

• An incomplete database D

• A notion of completion→F

Theorem (Deutsch, Nash, and Remmel [DNR08])

The core chase terminates for Q,Σ,D if and only if ↑(Q ∩ Σ) is first order definable (in all structures).



STONE DUALITY

Models Theories

ModelA Complete Theory TA
A |= φ φ ∈ TA

Remark: spectral spaces

Note that the original introduction of Stone defined what is now called Priestley spaces, which are more
general. It was forgotten because the spaces were ”non-standard” (understand, non hausdorff).
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