
Locally Grown Preservation Theorems

Aliaume Lopez
Ph.D Student of Sylvain Schmitz and Jean Goubault-Larrecq

Thursday, February 2nd, 2023

LaBRI, Bordeaux

As in the locality of FO

As in Łós-Tarski



Locally Grown Preservation Theorems

Aliaume Lopez
Ph.D Student of Sylvain Schmitz and Jean Goubault-Larrecq

Thursday, February 2nd, 2023

LaBRI, Bordeaux

As in the locality of FO

As in Łós-Tarski



What to expect from this talk

© New things

New “positive” Gaifman Normal Form

New local to global relativisation of Łós-Tarski

New classes where Łós-Tarski relativises
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Preservation Theorems 101

Logic, models, classes and fragments



Logic, models, satisfiability

Setting: σ a finite relational signature

Logic first order logic, a.k.a. FO[σ].

Models relational structures, a.k.a. Struct(σ).

∀x.∃y.x → y ∧ P(y)6|=

Figure 1: How to check that a models satisfies a sentence over σ , {→,P}.
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Classes of structures

Struct(σ)

Fin(σ)

Bd. Degree

Cycles Paths

3/32



Some fragments of FO

Name of the fragment Example

FO ∀x.∃y.¬(E(x, y))∨x 6=y

EFO ∃x.∃y.¬(E(x, y))∨x 6=x

UCQ 6= ∃x.∃y.E(x, y)∨x 6=y

UCQ ∃x.∃y.E(x, y)∨x=x

CQ ∃x.∃y.E(x, y)∧E(x, x)
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Morphisms revisited Part I

Let F ⊆ FO.

© Ordering models using sentences

M ≤F M
′ when for all φ ∈ F, M |= φ implies M′ |= φ.

¨ With F = FO

Let M,M′ be two finite structures. Then M ≤FO M′ ⇔ M ' M′.
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Morphisms revisited Part II

© Ordering models using formulas

M →F M
′ when there exists a map h : M → M′ such that for every

φ ∈ F , M,~x |= φ implies M′,h(~x) |= φ.

¨ With F = EFO

Let G , Z× Z be a infinite grid. Then:

• ]λ∈RG ≤EFO G,

• ]λ∈RG 6→EFOG.
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Fragments and their orderings.

Fragment F Specialisation Symbol→F

CQ homomorphism →
UCQ homomorphism →

UCQ 6= substructure ⊆

EFO extension ⊆i

FOLoc local elementary embedding V

FO elementary extension �

This Talk!
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Preservation Theorems 101

Example of Preservation Theorems



Upwards closed sets

φ , ∃x. deg(x) ≥ 3

Upwards closed

⊆
i

⊆
i

⊆
i

Figure 2: Finite graphs encoded using Σ , {E}
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Preservation Under Extensions: Łoś (1955); Tarski (1954)

© “Query Optimisation” over a class C

Input Some FO sentence ϕ

Promise M |= ϕ ∧M ⊆i M
′ ⇒ M′ |= ϕ

Output A simplified query (existential) over C

G |= ϕ M (for ⊆)
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Preservation Under Extensions: Łoś (1955); Tarski (1954)

© “Query Optimisation” over a class C

Input there exists no vertex cover of size 1 in G

Promise M |= ϕ ∧M ⊆i M
′ ⇒ M′ |= ϕ

Output A simplified query (existential) over C

G |= ϕ M (for ⊆)
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Preservation Under Extensions: Łoś (1955); Tarski (1954)

Theorem (Łoś (1955); Tarski (1954))

This algorithm exists when C = Struct(σ).

Proof.

• an equivalent existential sentence exists (heavy use of

compactness)

• one can enumerate proofs ` ψ ↔ ϕ with ψ existential.
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Behind the scenes...

In general for C = Struct(σ)

When F is a reasonable subset of FO, a sentence φ preserved by →F

can be rewritten as a sentence in ∃F.

© A non exhaustive list

Name Specialisation Fragment

Łós-Tarski ⊆i EFO

Tarski-Lyndon ⊆ UCQ 6=

H.P.T. → UCQ
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In the finite (C ⊆ Fin(σ)), the picture is not so clear

1959

1969

1979

1989

1999

2009

2019

Tait, ⊆i

Ajtai and Gurevich, �s

Ajtai and Gurevich, ⊆

Dawar and Sankaran, ⊆i

Kuperberg, �s

Chen and Flum, ⊆i

Ding, ⊆i

Atserias et al., →

Atserias et al., ⊆i

Rossman, →

Daligault et al., ⊆i

Sankaran et al., ⊆C
i
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Gaifman Locality

Neighbourhoods



Locality in a graph

a1

a2

A structure A.A structure A, with 2 selected nodes.A structure A, with 2 selected nodes, and a 1-local neighborhood.NA(a1a2,1) ⊆i A.
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NA(~a, r) , {b ∈ A : ∃a ∈ ~a.distA(a,b) ≤ r}

=
⋃
a∈~a

NA(a, r)

¨ What about higher arities?
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Representing relations with arity greater than 2.

The Gaifman Graph

→ (x, y) ,
∨

(R,n)∈σ

∃z1, . . . , zn.R(z1, . . . , zn) ∧
n∨

1≤i,j≤n

x = zi ∧ y = zj

R

R

0 0 0

0 1 1

0 2 2

1 0 1

1 1 2

1 2 0

2 0 2

2 1 0

2 2 1

0

1

2

Figure 3: From a table to a graph.
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Gaifman Locality

Local Formulas



Two equivalent definitions of FOLoc

Semantically local

A, ~a |= φ(~x) if and only if NA(~a, r), ~a |= φ(~x).

Syntactically local

A, ~a |= φ(~x) if and only if A, ~a |= LφMr~x.

© A non-trivial sentence cannot be local
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Fragments and their orderings (BIS)

Fragment F Specialisation Symbol→F

CQ homomorphism →
UCQ homomorphism →

UCQ 6= substructure ⊆

EFO extension ⊆i

FOLoc local elementary embedding V

FO elementary extension �
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What is a local elementary embedding?

Let A,B ∈ Fin(σ) such that A V B.

The structure A The structure B

B′

x1 6= x2 ∧ · · · ∧ E(x1, x2) ∧ . . .¬E(x2, x3)NA(
~A, 1) = A

¨ In the finite...

A V B if and only if there exists B′ such that A ] B′ = B.
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A trivial theorem

Theorem ((L., 2022, Over Struct(σ)))

First order sentences preserved under local elementary embeddings

(V) are existential local sentences (∃FOLoc).

¨ existential 0-local = existential
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A locality theorem

Theorem (Gaifman (1982))

Every first order sentence (FO) is equivalent to a boolean combination

of basic local sentences.

© Basic Local Sentence

∃≥n
r x.ψ(x)

|= ψ

r

|= ψ

r

|= ψ

r

> 2r
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Equivalent fragments

Fragment Shape

Basic local ∃≥n
r x.LψMxr

Existential local ∃~x.LψM~xr

Theorem (L. (2022))

The following fragments are equivalent over any C ⊆ Struct(σ):

• Positive boolean combinations of basic local sentences

• Existential local sentences

¨ Preservation under local embeddings

Sentences preserved under local elementary embeddings (V) are

equivalent to a positive Boolean combination of basic local sentences.
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Application to preservation under extensions

© Ultimately

All cycles locally look the same

Loca
lity

7 3 7 3 3

· · ·
6⊆i

i 6⊇

6⊆i

i 6⊇

6⊆i

i 6⊇

6⊆i

i 6⊇

6⊆i

i 6⊇

Exactly one 2-neighbourhood
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A mostly wrong proof scheme

¨ To prove that Łós-Tarski relativises to a class C

1. Consider φ ∈ FO preserved under ⊆i,

2. It is preserved under local elementary embeddings,

3

3. Hence φ ∈ ∃FOLoc,

7

4. A sentence in ∃FOLoc preserved under ⊆i must be existential.

7
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Relativisation to the finite

Failure in the finite



A connectivity issue

Let φCC be such that A |= φCC if and only if A as more than one

connected component.

The following is preserved under ]

φB , ∀x.¬B(x) ∨ φCC

© Cannot be rewritten in ∃FOLoc

Distinguish two connected components with one black node, or one

connected component with one black node.

¨ Wait, is φCC definable ??

24/32
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It generalises

Theorem ((L., 2022, in the finite))

There exists φ ∈ FO preserved under disjoint unions over Fin(σ) but

not equivalent to an existential local sentence over Fin(σ).

Theorem (L. (2022))

The following are undecidable:

• Is ϕ preserved under disjoint unions over Fin(σ)?

• Is ϕ equivalent to an existential local sentence over Fin(σ)?

Theorem (L. (2022))

There exists no algorithm that given φ ∈ FO and the promise that an

equivalent local sentence exists over Fin(σ), comptes such a sentence.

25/32
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Relativisation to the finite

Salvaging some relativisation



Fixing some parameters r, q, k

Parameters of a local sentence

∃x1, . . . , xk.LQ1y1.Q2y2. . . .Qqyq.θ(~x,~y)M~xr

¨ Fixing all parameters...

A sentence ϕ preserved under (r, q, k)-local elementary embeddings

is equivalent to an existential local sentence.
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The saviour of our proof scheme

L. (2022)

Let C ⊆ Fin(σ) be hereditary and closed under disjoint unions (]).
Let φ ∈ FO be preserved under extensions, then φ is preserved under

(r, q, k)-local elementary embeddings for some 0 ≤ r, q, k <∞.

¨ Almost Łós-Tarski!
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A partially wrong proof scheme

¨ To prove that Łós-Tarski relativises to a hereditary class C
closed under disjoint unions (])

1. Consider φ ∈ FO preserved under ⊆i,

2. It is preserved under (r, q, k)-local elementary embeddings for

some 0 ≤ r, q, k <∞

3

3. We know that φ ∈ ∃FOLoc,

3

4. A sentence in ∃FOLoc preserved under ⊆i must be existential.

7
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Localising Preservation

Sufficient and necessary condition



Locally satisfying a property?

Local(C, r, k) , {NA(~a, r) : A ∈ C, ~a ∈ Ak}

¨ Localise Bounded Degree

C is of bounded degree if and only if Local(C, r, k) is finite for all
k, r ≥ 0, i.e., locally finite

Theorem (Atserias et al. (2008))

Hereditary classes that are locally finite and closed under ], satisfy
preservation under extensions.
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L. (2022)

For a hereditary classe of finite structures C, the following are
equivalent

• Łós-Tarski relativises locally (i.e. relativises to Local(C, r, k) for
all r, k ≥ 0),

• Existential local sentences preserved under extensions are

equivalent to existential sentences.

© Main Result (assuming hereditary and closed under disjoint

unions)

Łós-Tarski relativises to C if and only if it relativises to Local(C, r, k)
for all r, k ≥ 0.
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Localising Preservation

Applications, a.k.a., “Was it worth it?”



finite
locally

finite

bounded treedepth
locally

bounded treedepth

wqo
locally

wqo

pr. under extensions
locally

pr. under extensions

wide

Atserias et al.

Sparsity

Ding
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Thank you!
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