Locally Grown Preservation Theorems

Aliaume Lopez Ph.D Student of Sylvain Schmitz and Jean Goubault-Larrecq

Thursday, February 2nd, 2023 LaBRI, Bordeaux

As in the locality of FO

As in Łós-Tarski

Locally Grown Preservation Theorems

Aliaume Lopez Ph.D Student of Sylvain Schmitz and Jean Goubault-Larrecq

Thursday, February 2nd, 2023 LaBRI, Bordeaux

New things

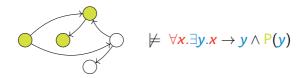
New "positive" Gaifman Normal Form New local to global relativisation of Łós-Tarski New classes where Łós-Tarski relativises

Preservation Theorems 101

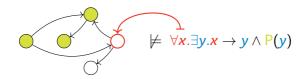
Logic, models, classes and fragments

Logic first order logic, a.k.a. $FO[\sigma]$. **Models** relational structures, a.k.a. $Struct(\sigma)$.

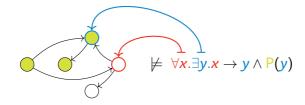
Logic first order logic, a.k.a. $FO[\sigma]$. **Models** relational structures, a.k.a. $Struct(\sigma)$.



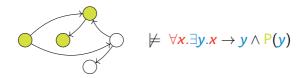
Logic first order logic, a.k.a. $FO[\sigma]$. **Models** relational structures, a.k.a. $Struct(\sigma)$.



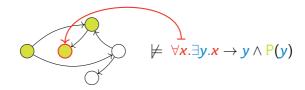
Logic first order logic, a.k.a. $FO[\sigma]$. **Models** relational structures, a.k.a. $Struct(\sigma)$.



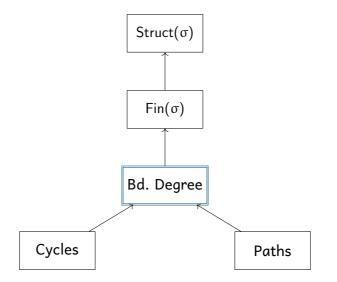
Logic first order logic, a.k.a. $FO[\sigma]$. **Models** relational structures, a.k.a. $Struct(\sigma)$.



Logic first order logic, a.k.a. $FO[\sigma]$. **Models** relational structures, a.k.a. $Struct(\sigma)$.



Classes of structures



Name of the fragment	Example
FO	$\forall x. \exists y. \neg (E(x, y)) \lor x \neq y$
EFO	$\exists x. \exists y. \neg (E(x, y)) \lor x \neq x$
UCQ≠	$\exists x. \exists y. E(x, y) \lor x \neq y$
UCQ	$\exists x. \exists y. E(x, y) \lor x = x$
CQ	$\exists x. \exists y. E(x, y) \land E(x, x)$

Let $F \subseteq FO$.

Ordering models using sentences

 $M \leq_{\mathsf{F}} M'$ when for all $\phi \in \mathsf{F}$, $M \models \phi$ implies $M' \models \phi$.

Let $F \subseteq FO$.

Ordering models using sentences

 $M \leq_{\mathsf{F}} M'$ when for all $\phi \in \mathsf{F}$, $M \models \phi$ implies $M' \models \phi$.

• With F = FO

Let M, M' be two finite structures. Then $M \leq_{FO} M' \Leftrightarrow M \simeq M'$.

Ordering models using formulas

 $M \rightarrow_{\mathsf{F}} M'$ when there exists a map $h: M \rightarrow M'$ such that for every $\phi \in \mathsf{F}, M, \vec{x} \models \phi$ implies $M', h(\vec{x}) \models \phi$.

Ordering models using formulas

 $M \rightarrow_{\mathsf{F}} M'$ when there exists a map $h: M \rightarrow M'$ such that for every $\phi \in \mathsf{F}$, $M, \vec{x} \models \phi$ implies $M', h(\vec{x}) \models \phi$.

♣ With F = EFO

Let $G \triangleq \mathbb{Z} \times \mathbb{Z}$ be a infinite grid. Then:

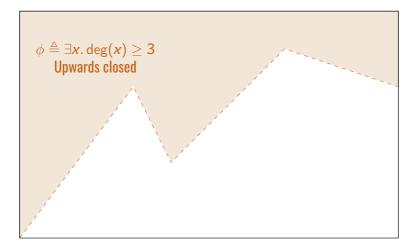
- $\uplus_{\lambda \in \mathbb{R}} G \leq_{\mathsf{EFO}} G$,

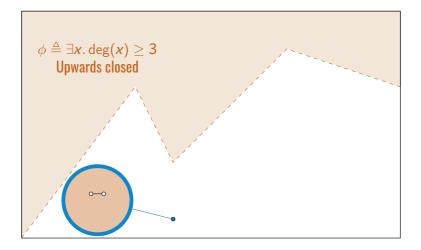
Fragment F	Specialisation	$\textbf{Symbol} \rightarrow_{\sf F}$
CQ	homomorphism	\rightarrow
UCQ	homomorphism	\rightarrow
UCQ≠	substructure	\subseteq
EFO	extension	\subseteq_i
FOLoc	local elementary embedding	\Rightarrow
FO	elementary extension	\preceq

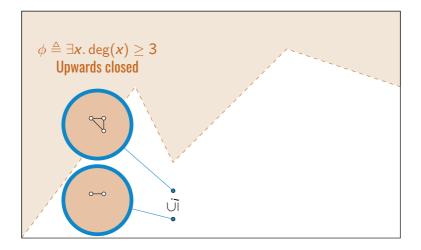
_			
	Fragment F	Specialisation	$\textbf{Symbol} \rightarrow_{F}$
-	CQ	homomorphism	\rightarrow
This Talk!	UCQ	homomorphism	\rightarrow
	UCQ≠	substructure	\subseteq
	EFO	extension	\subseteq_i
	FOLoc	local elementary embedding	\Rightarrow
	FO	elementary extension	\preceq

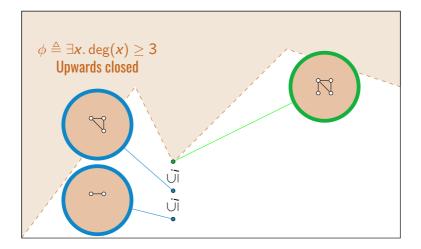
Preservation Theorems 101

Example of Preservation Theorems









Upwards closed sets

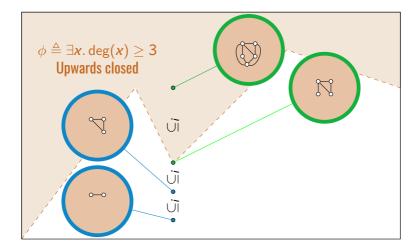


Figure 2: Finite graphs encoded using $\Sigma \triangleq \{E\}$

• "Query Optimisation" over a class C

Input Some FO sentence φ **Promise** $M \models \varphi \land M \subseteq_i M' \Rightarrow M' \models \varphi$

Output A simplified query (existential) over C

• "Query Optimisation" over a class C

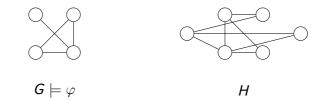
Input there exists no vertex cover of size 1 in *G* **Promise** $M \models \varphi \land M \subseteq_i M' \Rightarrow M' \models \varphi$ **Output** A simplified query (existential) over *C*

 $\pmb{G}\models \varphi$

• "Query Optimisation" over a class C

Input $\neg(\exists x. \forall yz. E(y, z) \implies z = y \lor z = x)$

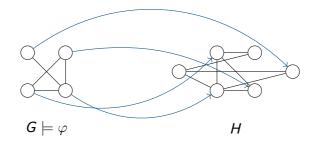
Promise Covers restrict to induced subgraphs **Output** A simplified query (existential) over C



• "Query Optimisation" over a class C

Input $\neg(\exists x. \forall yz. E(y, z) \implies z = y \lor z = x)$

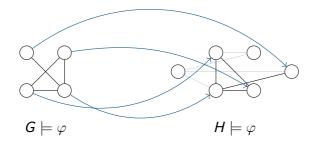
Promise Covers restrict to induced subgraphs **Output** A simplified query (existential) over C



• "Query Optimisation" over a class C

Input $\neg(\exists x. \forall yz. E(y, z) \implies z = y \lor z = x)$

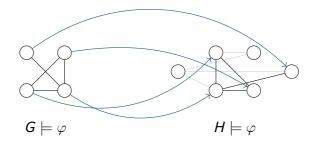
Promise Covers restrict to induced subgraphs **Output** A simplified query (existential) over C



• "Query Optimisation" over a class C

Input $\neg(\exists x. \forall yz. E(y, z) \implies z = y \lor z = x)$

Promise Covers restrict to induced subgraphs **Output** Finitely many graphs *M_i* to check



 \blacklozenge "Query Optimisation" over a class $\mathcal C$

Input $\neg(\exists x. \forall yz. E(y, z) \implies z = y \lor z = x)$

Promise Covers restrict to induced subgraphs **Output** Finitely many graphs *M_i* to check

Theorem (Łoś (1955); Tarski (1954))

This algorithm exists when $C = Struct(\sigma)$ *.*

Proof.

- an equivalent existential sentence exists (heavy use of compactness)
- one can enumerate proofs $\vdash \psi \leftrightarrow \varphi$ with ψ existential.

In general for $C = Struct(\sigma)$

When F is a reasonable subset of FO, a sentence ϕ preserved by \rightarrow_{F} can be rewritten as a sentence in $\exists \mathsf{F}$.

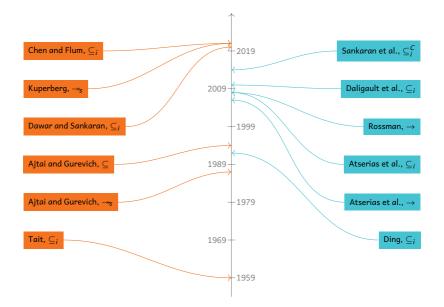
In general for $C = Struct(\sigma)$

When F is a reasonable subset of FO, a sentence ϕ preserved by \rightarrow_{F} can be rewritten as a sentence in $\exists \mathsf{F}$.

A non exhaustive list

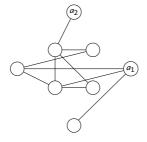
Name	Specialisation	Fragment
Łós-Tarski	\subseteq_i	EFO
Tarski-Lyndon	\subseteq	UCQ≠
H.P.T.	\rightarrow	UCQ

In the finite ($C \subseteq Fin(\sigma)$), the picture is not so clear

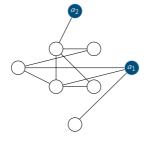


Gaifman Locality

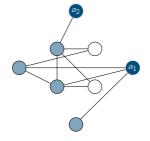
Neighbourhoods



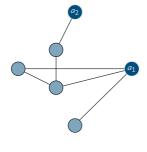
A structure A.



A structure *A*, with 2 selected nodes.



A structure *A*, with 2 selected nodes, and a 1-local neighborhood.



 $\mathcal{N}_{A}(a_{1}a_{2},1)\subseteq_{i}A.$

$$\mathcal{N}_{\mathcal{A}}(ec{a},r) riangleq \{ b \in \mathcal{A} \colon \exists a \in ec{a}. \, ext{dist}_{\mathcal{A}}(a,b) \leq r \} \ = igcup_{a \in ec{a}} \mathcal{N}_{\mathcal{A}}(a,r)$$

$$\mathcal{N}_{\mathcal{A}}(\vec{a},r) \triangleq \{b \in \mathcal{A} \colon \exists a \in \vec{a}. \operatorname{dist}_{\mathcal{A}}(a,b) \leq r\} \ = igcup_{a \in \vec{a}} \mathcal{N}_{\mathcal{A}}(a,r)$$

What about higher arities?

$$\rightarrow (\mathbf{x}, \mathbf{y}) \triangleq \bigvee_{(\mathbf{R}, \mathbf{n}) \in \sigma} \exists z_1, \ldots, z_n \cdot \mathbf{R}(z_1, \ldots, z_n) \land \bigvee_{1 \leq i, j \leq n}^n \mathbf{x} = z_i \land \mathbf{y} = z_j$$

$$\rightarrow (x, y) \triangleq \bigvee_{(R,n)\in\sigma} \exists z_1, \ldots, z_n R(z_1, \ldots, z_n) \land \bigvee_{1 \leq i,j \leq n}^n x = z_i \land y = z_j$$

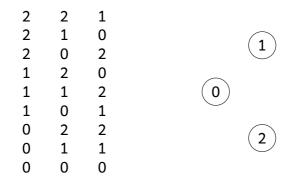


Figure 3: From a table to a graph.

$$\rightarrow (x, y) \triangleq \bigvee_{(R,n)\in\sigma} \exists z_1, \ldots, z_n. R(z_1, \ldots, z_n) \land \bigvee_{1 \leq i,j \leq n}^n x = z_i \land y = z_j$$

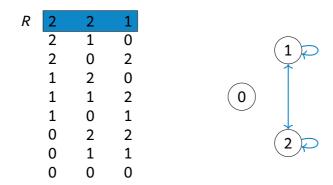


Figure 3: From a table to a graph.

$$\rightarrow (x, y) \triangleq \bigvee_{(R,n)\in\sigma} \exists z_1, \ldots, z_n R(z_1, \ldots, z_n) \land \bigvee_{1 \leq i,j \leq n}^n x = z_i \land y = z_j$$

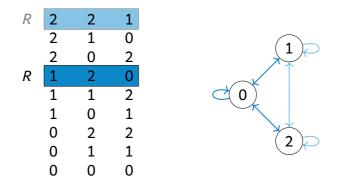


Figure 3: From a table to a graph.

$$\rightarrow (x, y) \triangleq \bigvee_{(R,n)\in\sigma} \exists z_1, \ldots, z_n R(z_1, \ldots, z_n) \land \bigvee_{1 \leq i,j \leq n}^n x = z_i \land y = z_j$$

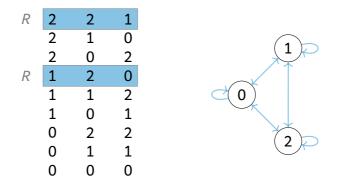


Figure 3: From a table to a graph.

Gaifman Locality

Local Formulas

Semantically local

$A, \vec{a} \models \phi(\vec{x})$ if and only if $\mathcal{N}_A(\vec{a}, r), \vec{a} \models \phi(\vec{x})$.

Semantically local

 $A, \vec{a} \models \phi(\vec{x})$ if and only if $\mathcal{N}_A(\vec{a}, r), \vec{a} \models \phi(\vec{x})$.

Syntactically local

$$A, \vec{a} \models \phi(\vec{x})$$
 if and only if $A, \vec{a} \models (\phi)_{\vec{x}}^r$.

Semantically local

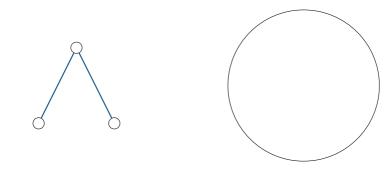
 $A, \vec{a} \models \phi(\vec{x})$ if and only if $\mathcal{N}_A(\vec{a}, r), \vec{a} \models \phi(\vec{x})$.

Syntactically local

- $A, \vec{a} \models \phi(\vec{x})$ if and only if $A, \vec{a} \models (\phi)_{\vec{x}}^r$.
- A non-trivial sentence cannot be local

Fragment F	Specialisation	$\textbf{Symbol} \rightarrow_{\sf F}$
CQ	homomorphism	\rightarrow
UCQ	homomorphism	\rightarrow
UCQ [≠]	substructure	\subseteq
EFO	extension	\subseteq_i
FOLoc	local elementary embedding	\Rightarrow
FO	elementary extension	\preceq

Let $A, B \in Fin(\sigma)$ such that $A \Rightarrow B$.

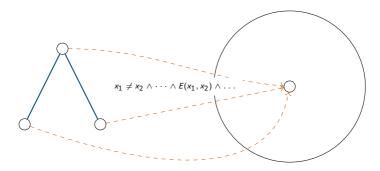


The structure A

The structure B

♣ In the finite...

Let $A, B \in Fin(\sigma)$ such that $A \Rightarrow B$.

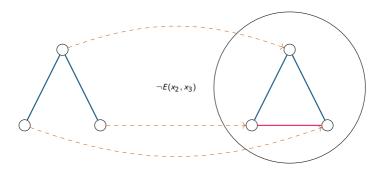


The structure A

The structure B

♣ In the finite...

Let $A, B \in Fin(\sigma)$ such that $A \Rightarrow B$.

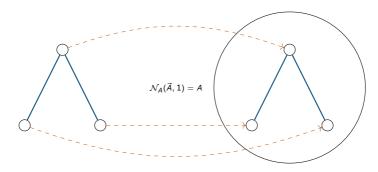


The structure A

The structure B

♣ In the finite...

Let $A, B \in Fin(\sigma)$ such that $A \Rightarrow B$.

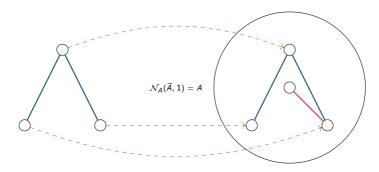


The structure A

The structure B

♣ In the finite...

Let $A, B \in Fin(\sigma)$ such that $A \Rightarrow B$.

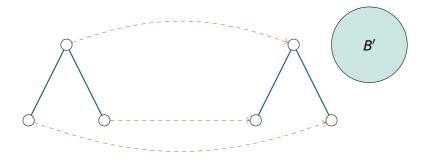


The structure A

The structure B

♣ In the finite...

Let $A, B \in Fin(\sigma)$ such that $A \Rightarrow B$.



The structure A

The structure B

♣ In the finite...

Theorem ((L., 2022, Over $Struct(\sigma)$))

First order sentences preserved under local elementary embeddings (\Rightarrow) *are existential local sentences* (\exists FOLoc).

Theorem ((L., 2022, Over $Struct(\sigma)$))

First order sentences preserved under local elementary embeddings (\Rightarrow) *are existential local sentences (* \exists FOLoc)*.*

existential 0-local = existential

Every first order sentence (FO) *is equivalent to a boolean combination of basic local sentences.*

Basic Local Sentence

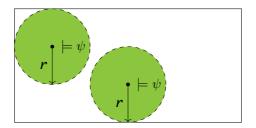
Every first order sentence (FO) *is equivalent to a boolean combination of basic local sentences.*

Basic Local Sentence



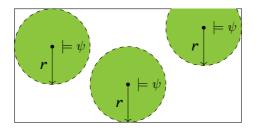
Every first order sentence (FO) *is equivalent to a boolean combination of basic local sentences.*

Basic Local Sentence



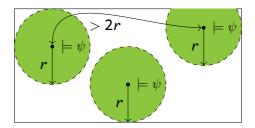
Every first order sentence (FO) *is equivalent to a boolean combination of basic local sentences.*

Basic Local Sentence



Every first order sentence (FO) *is equivalent to a boolean combination of basic local sentences.*

Basic Local Sentence



Fragment	Shape
Basic local	$\exists_r^{\geq n} \mathbf{x}. (\!\!(\psi)\!\!)_r^{\mathbf{x}}$
Existential local	$\exists \vec{\pmb{x}}. (\!\!(\psi)\!\!)_{r}^{\vec{\pmb{x}}}$

Theorem (L. (2022))

The following fragments are equivalent over any $C \subseteq Struct(\sigma)$ *:*

- Positive boolean combinations of basic local sentences
- Existential local sentences

Fragment	Shape
Basic local	$\exists_r^{\geq n} \mathbf{x}. (\!\!(\psi)\!\!)_r^{\mathbf{x}}$
Existential local	$\exists \vec{\pmb{x}}. (\!\!(\psi)\!\!)_{r}^{\vec{\pmb{x}}}$

Theorem (L. (2022))

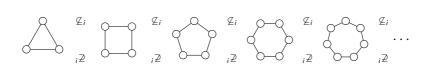
The following fragments are equivalent over any $C \subseteq Struct(\sigma)$:

- Positive boolean combinations of basic local sentences
- Existential local sentences

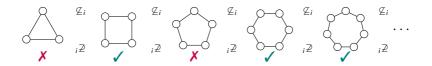
Preservation under local embeddings

Sentences preserved under local elementary embeddings (\Rightarrow) are equivalent to a *positive* Boolean combination of basic local sentences.

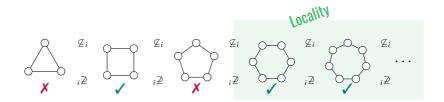
All cycles locally look the same



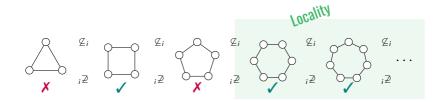
All cycles locally look the same



All cycles locally look the same



All cycles locally look the same



Exactly one 2-neighbourhood

♣ To prove that Łós-Tarski relativises to a class C

- 1. Consider $\phi \in \mathsf{FO}$ preserved under \subseteq_i ,
- 2. It is preserved under local elementary embeddings,
- 3. Hence $\phi \in \exists FOLoc$,
- 4. A sentence in \exists FOLoc preserved under \subseteq_i must be existential.

🛧 To prove that Łós-Tarski relativises to a class ${\mathcal C}$

- 1. Consider $\phi \in \mathsf{FO}$ preserved under \subseteq_i ,
- 2. It is preserved under local elementary embeddings,
- 3. Hence $\phi \in \exists FOLoc$,
- 4. A sentence in \exists FOLoc preserved under \subseteq_i must be existential.

🛧 To prove that Łós-Tarski relativises to a class ${\mathcal C}$

- 1. Consider $\phi \in \mathsf{FO}$ preserved under \subseteq_i ,
- 2. It is preserved under local elementary embeddings,
- **3.** Hence $\phi \in \exists FOLoc$,
- 4. A sentence in \exists FOLoc preserved under \subseteq_i must be existential.

Х

🛧 To prove that Łós-Tarski relativises to a class ${\mathcal C}$

- 1. Consider $\phi \in \mathsf{FO}$ preserved under \subseteq_i ,
- 2. It is preserved under local elementary embeddings,
- 3. Hence $\phi \in \exists FOLoc$,
- 4. A sentence in \exists FOLoc preserved under \subseteq_i must be existential. X

Relativisation to the finite

Failure in the finite

Let ϕ_{CC} be such that $A \models \phi_{CC}$ if and only if A as more than one connected component.

The following is preserved under \uplus

 $\phi_{B} \triangleq \forall \boldsymbol{x}. \neg \boldsymbol{B}(\boldsymbol{x}) \lor \phi_{CC}$

Let ϕ_{CC} be such that $A \models \phi_{CC}$ if and only if A as more than one connected component.

The following is preserved under \uplus

 $\phi_{\boldsymbol{B}} \triangleq \forall \boldsymbol{x}. \neg \boldsymbol{B}(\boldsymbol{x}) \lor \phi_{\boldsymbol{C}\boldsymbol{C}}$

◆ Cannot be rewritten in ∃FOLoc

Distinguish two connected components with one black node, or one connected component with one black node.

Let ϕ_{CC} be such that $A \models \phi_{CC}$ if and only if A as more than one connected component.

The following is preserved under 🖽

 $\phi_{B} \triangleq \forall \mathbf{x}. \neg \mathbf{B}(\mathbf{x}) \lor \phi_{CC}$

◆ Cannot be rewritten in ∃FOLoc

Distinguish two connected components with one black node, or one connected component with one black node.

\clubsuit Wait, is ϕ_{CC} definable ??

Theorem ((L., 2022, in the finite))

There exists $\phi \in FO$ *preserved under disjoint unions over* $Fin(\sigma)$ *but not equivalent to an existential local sentence over* $Fin(\sigma)$ *.*

Theorem ((L., 2022, in the finite))

There exists $\phi \in FO$ *preserved under disjoint unions over* $Fin(\sigma)$ *but not equivalent to an existential local sentence over* $Fin(\sigma)$ *.*

Theorem (L. (2022))

The following are undecidable:

- Is φ preserved under disjoint unions over $Fin(\sigma)$?
- Is φ equivalent to an existential local sentence over Fin(σ)?

Theorem ((L., 2022, in the finite))

There exists $\phi \in FO$ *preserved under disjoint unions over* $Fin(\sigma)$ *but not equivalent to an existential local sentence over* $Fin(\sigma)$ *.*

Theorem (L. (2022))

The following are undecidable:

- Is φ preserved under disjoint unions over $Fin(\sigma)$?
- Is φ equivalent to an existential local sentence over Fin(σ)?

Theorem (L. (2022))

There exists no algorithm that given $\phi \in FO$ and the promise that an equivalent local sentence exists over $Fin(\sigma)$, comptes such a sentence.

Relativisation to the finite

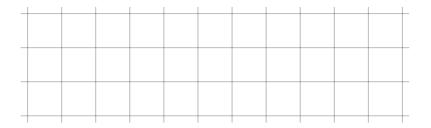
Salvaging some relativisation

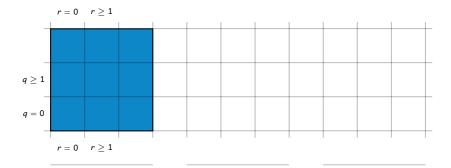
Parameters of a local sentence

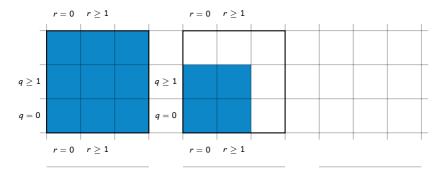
$$\exists x_1,\ldots,x_k (Q_1y_1,Q_2y_2,\ldots,Q_qy_q,\theta(\vec{x},\vec{y})))_{r}^{\vec{x}}$$

♣ Fixing all parameters...

A sentence φ preserved under $(\check{\boldsymbol{p}},\check{\boldsymbol{q}},\check{\boldsymbol{k}})$ -local elementary embeddings is equivalent to an existential local sentence.

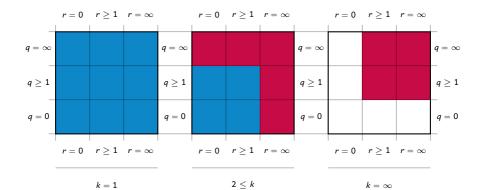


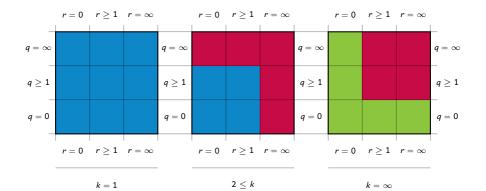




k = 1

 $2 \leq k$





L. (2022)

Let $C \subseteq Fin(\sigma)$ be hereditary and closed under disjoint unions (\uplus). Let $\phi \in FO$ be preserved under extensions, then ϕ is preserved under (r, q, k)-local elementary embeddings for some $0 \le r, q, k < \infty$.

L. (2022)

Let $C \subseteq Fin(\sigma)$ be hereditary and closed under disjoint unions (\forall). Let $\phi \in FO$ be preserved under extensions, then ϕ is preserved under (r, q, k)-local elementary embeddings for some $0 \leq r, q, k < \infty$.

Almost Łós-Tarski!

- ✤ To prove that Łós-Tarski relativises to a hereditary class C closed under disjoint unions (⊕)
 - 1. Consider $\phi \in \mathsf{FO}$ preserved under \subseteq_i ,
 - 2. It is preserved under (r, q, k)-local elementary embeddings for some $0 \le r, q, k < \infty$
 - 3. We know that $\phi \in \exists FOLoc$,
 - 4. A sentence in \exists FOLoc preserved under \subseteq_i must be existential.

- ♣ To prove that Łós-Tarski relativises to a hereditary class C closed under disjoint unions (⊕)
 - 1. Consider $\phi \in \mathsf{FO}$ preserved under \subseteq_i ,
 - 2. It is preserved under (r, q, k)-local elementary embeddings for some $0 \le r, q, k < \infty$
 - 3. We know that $\phi \in \exists FOLoc$,
 - 4. A sentence in \exists FOLoc preserved under \subseteq_i must be existential.

- ♣ To prove that Łós-Tarski relativises to a hereditary class C closed under disjoint unions (⊕)
 - 1. Consider $\phi \in \mathsf{FO}$ preserved under \subseteq_i ,
 - 2. It is preserved under (r, q, k)-local elementary embeddings for some $0 \le r, q, k < \infty$
 - 3. We know that $\phi \in \exists FOLoc$,
 - 4. A sentence in \exists FOLoc preserved under \subseteq_i must be existential.

- ♣ To prove that Łós-Tarski relativises to a hereditary class C closed under disjoint unions (⊕)
 - 1. Consider $\phi \in \mathsf{FO}$ preserved under \subseteq_i ,
 - 2. It is preserved under (r, q, k)-local elementary embeddings for some $0 \le r, q, k < \infty$
 - 3. We know that $\phi \in \exists FOLoc$,
 - 4. A sentence in \exists FOLoc preserved under \subseteq_i must be existential. X

Localising Preservation

Sufficient and necessary condition

$$\mathsf{Local}(\mathcal{C}, r, k) \triangleq \{\mathcal{N}_{\mathcal{A}}(\vec{a}, r) \colon \mathcal{A} \in \mathcal{C}, \vec{a} \in \mathcal{A}^k\}$$

$$\mathsf{Local}(\mathcal{C}, r, k) riangleq \{\mathcal{N}_{\mathcal{A}}(ec{a}, r) \colon \mathcal{A} \in \mathcal{C}, ec{a} \in \mathcal{A}^k\}$$

Localise Bounded Degree

C is of bounded degree if and only if Local(C, r, k) is finite for all $k, r \ge 0$, i.e., *locally* finite

$$\mathsf{Local}(\mathcal{C}, r, k) riangleq \{\mathcal{N}_{\mathcal{A}}(ec{a}, r) \colon \mathcal{A} \in \mathcal{C}, ec{a} \in \mathcal{A}^k\}$$

Localise Bounded Degree

C is of bounded degree if and only if Local(C, r, k) is finite for all $k, r \ge 0$, i.e., *locally* finite

Theorem (Atserias et al. (2008))

Hereditary classes that are locally finite and closed under ightarrow, satisfy preservation under extensions.

L. (2022)

For a hereditary classe of finite structures $\ensuremath{\mathcal{C}}$, the following are equivalent

- Łós-Tarski relativises locally (i.e. relativises to $Local(\mathcal{C},r,k)$ for all $r,k\geq 0$),
- Existential local sentences preserved under extensions are equivalent to existential sentences.

L. (2022)

For a hereditary classe of finite structures $\ensuremath{\mathcal{C}}$, the following are equivalent

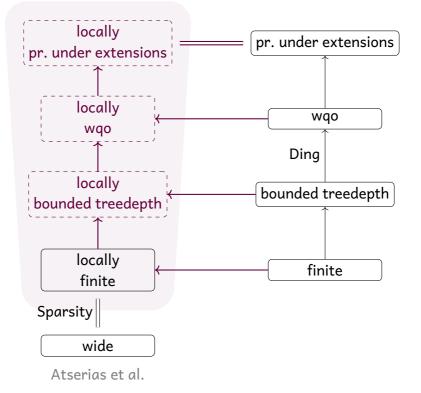
- Łós-Tarski relativises locally (i.e. relativises to $Local(\mathcal{C}, r, k)$ for all $r, k \geq 0$),
- Existential local sentences preserved under extensions are equivalent to existential sentences.

Main Result (assuming hereditary and closed under disjoint unions)

Łós-Tarski relativises to C if and only if it relativises to Local(C, r, k) for all $r, k \ge 0$.

Localising Preservation

Applications, a.k.a., "Was it worth it?"



Thank you!

- Ajtai, M. and Gurevich, Y. (1987). Monotone versus positive. *J. ACM*, 34(4):1004–1015.
- Ajtai, M. and Gurevich, Y. (1994). Datalog vs first-order logic. *J. Comput. Syst. Sci.*, 49(3):562–588.
- Atserias, A., Dawar, A., and Grohe, M. (2008). Preservation under extensions on well-behaved finite structures. *SIAM J. Comput.*, 38(4):1364–1381.
- Atserias, A., Dawar, A., and Kolaitis, P. G. (2006). On preservation under homomorphisms and unions of conjunctive queries. *J. ACM*, 53(2):208–237.
- Chen, Y. and Flum, J. (2021). Forbidden induced subgraphs and the łoś-tarski theorem. In *Proc. LICS'21*, pages 1–13.
- Daligault, J., Rao, M., and Thomassé, S. (2010). Well-quasi-order of relabel functions. *Order*, 27(3):301–315.

- Dawar, A. and Sankaran, A. (2021). Extension Preservation in the Finite and Prefix Classes of First Order Logic. In *Proc. CSL'21*, volume 183 of *LIPIcs*, pages 18:1–18:13. LZI.
- Ding, G. (1992). Subgraphs and well-quasi-ordering. *J. Graph Theory*, 16:489–502.
- Gaifman, H. (1982). On local and non-local properties. In *Proc. Herbrand Symposium*, volume 107 of *Studies in Logic and the Foundations of Mathematics*, pages 105–135. Elsevier.
- Kuperberg, D. (2021). Positive first-order logic on words. In *Proc. LICS'21*, pages 1–13. IEEE.
- L., A. (2022). When Locality Meets Preservation. In *Proceedings of the 37th Annual ACM/IEEE Symposium on Logic in Computer Science*, LICS '22, pages 1–14, New York, NY, USA. Association for Computing Machinery.

- Łoś, J. (1955). On the extending of models (I). *Fund. Math.*, 42(1):38–54.
- Rossman, B. (2008). Homomorphism preservation theorems. *J. ACM*, 55(3):15:1–15:53.
- Sankaran, A., Adsul, B., and Chakraborty, S. (2014). A generalization of the łoś-tarski preservation theorem over classes of finite structures. In *International Symposium on Mathematical Foundations of Computer Science*, pages 474–485. Springer.
- Tait, W. W. (1959). A counterexample to a conjecture of Scott and Suppes. *J. Symb. Logic*, 24(1):15–16.
- Tarski, A. (1954). Contributions to the theory of models. I. *Indag. Math. (Proc.)*, 57:572–581.