Locality and Preservation Theorems

Aliaume Lopez 28 / 03 / 2022

DAAL, Lille, 2022

Logic. Logic? Logic!

Semantics of FO

 $\llbracket \varphi \rrbracket \triangleq \{ \boldsymbol{A} \mid \boldsymbol{A} \models \varphi \}$

 $\llbracket \varphi \rrbracket \triangleq \{A \mid A \models \varphi\}$ Wait... where does A live?

 $\llbracket \varphi \rrbracket_{\boldsymbol{X}} \triangleq \{ \boldsymbol{A} \in \boldsymbol{X} \mid \boldsymbol{A} \models \varphi \}$

$$\llbracket \varphi \rrbracket_{\boldsymbol{X}} \triangleq \{ \boldsymbol{A} \in \boldsymbol{X} \mid \boldsymbol{A} \models \varphi \}$$

Choices of ambiant space X

M.T. Struct(σ)

$$\llbracket \varphi \rrbracket_{\boldsymbol{X}} \triangleq \{ \boldsymbol{A} \in \boldsymbol{X} \mid \boldsymbol{A} \models \varphi \}$$

Choices of ambiant space X

M.T. Struct(σ) Stone Spaces, Compactness

 $\llbracket \varphi \rrbracket_{\boldsymbol{X}} \triangleq \{ \boldsymbol{A} \in \boldsymbol{X} \mid \boldsymbol{A} \models \varphi \}$

Choices of ambiant space X

M.T. $Struct(\sigma)$ Stone Spaces, Compactness F.A.M.T. $Fin(\sigma)$

$$\llbracket \varphi \rrbracket_{\boldsymbol{X}} \triangleq \{ \boldsymbol{A} \in \boldsymbol{X} \mid \boldsymbol{A} \models \varphi \}$$

Choices of ambiant space X

M.T. Struct(σ) Stone Spaces, Compactness F.A.M.T. Fin(σ) No compactness, most model theory fails

Logic. Logic? Logic!

Locality

$\mathcal{N}_{A}(\vec{a},r) \triangleq \{c \in A \mid d_{A}(\vec{a},c) \leq r\}$

Parent	Child
Frank Bob Alice Martin	Bob Jeanne Martin Chloé
Person	Activity

$\mathcal{N}_{A}(\vec{a},r) \triangleq \{c \in A \mid d_{A}(\vec{a},c) \leq r\}$

Parent	Child
Frank	Bob
Bob	Jeanne
Alice	Martin
Martin	Chloé
Person	Activity
Person Bob	Activity Kite Surf
Person Bob Jeanne	Activity Kite Surf Rock
Person Bob Jeanne Jeanne	Activity Kite Surf Rock Piano

What is the distance between "Frank" and "Alice"?

$\mathcal{N}_{\mathcal{A}}(\vec{a},r) \triangleq \{ c \in \mathcal{A} \mid d_{\mathcal{A}}(\vec{a},c) \leq r \}$

Parent	Child
Frank	Bob
Bob	Jeanne
Alice	Martin
Martin	Chloé
Person	Activity
Person Bob	Activity Kite Surf
Person Bob Jeanne	Activity Kite Surf Rock
Person Bob Jeanne Jeanne	Activity Kite Surf Rock Piano

What is the distance between "Frank" and "Alice"?

Answer: 3

$$\mathcal{N}_{\mathcal{A}}(ec{a},r) riangleq \{ c \in \mathcal{A} \mid d_{\mathcal{A}}(ec{a},c) \leq r \}$$

Parent	Child
Frank	Bob
Bob	Jeanne
Alice	Martin
Martin	Chloé
Person	Activity
Person Bob	Activity Kite Surf
Person Bob Jeanne	Activity Kite Surf Rock
Person Bob Jeanne Jeanne	Activity Kite Surf Rock Piano

What is the distance between "Frank" and "Alice"? Answer: 3 Kite Surf Alice Bob

$A, \vec{a} \models \varphi(\vec{x})$ if and only if $\mathcal{N}_A(\vec{a}, r), \vec{a} \models \varphi(\vec{x})$

$$A, \vec{a} \models \varphi(\vec{x})$$
 if and only if $\mathcal{N}_A(\vec{a}, r), \vec{a} \models \varphi(\vec{x})$

• Quantifier free formulas are 0-local.

 $A, \vec{a} \models \varphi(\vec{x})$ if and only if $\mathcal{N}_A(\vec{a}, r), \vec{a} \models \varphi(\vec{x})$

• Quantifier free formulas are 0-local.

•
$$\forall y.E(x,y) \implies x=y.$$

 $A, \vec{a} \models \varphi(\vec{x})$ if and only if $\mathcal{N}_A(\vec{a}, r), \vec{a} \models \varphi(\vec{x})$

- Quantifier free formulas are 0-local.
- $\forall y.E(x,y) \implies x=y.$
- $Q_1y_1 \in \mathcal{N}(\vec{x}, r) \dots Q_n y_n \in \mathcal{N}(\vec{x}, r) . \psi$.

Local sentences?

Name	Syntactic Form
Existential sentence	$\exists \vec{x}.\psi_{qf}(\vec{x})$
Existential local sentence	$\exists \vec{x}.\psi_{loc}(\vec{x})$
Basic local sentence	$\exists \vec{x}. igwedge_{i \neq j} d(x_i, x_j) > 2r \wedge igwedge_{i=1}^n \psi_{loc}(x_i)$

Local sentences?

Name	Syntactic Form
Existential sentence	$\exists \vec{x}.\psi_{qf}(\vec{x})$
Existential local sentence	$\exists \vec{x}.\psi_{loc}(\vec{x})$
Basic local sentence	$\exists \vec{x}. igwedge_{i \neq j} d(x_i, x_j) > 2r \wedge igwedge_{i=1}^n \psi_{loc}(x_i)$

Gaifman Locality Theorem: FO = B(BasicLocal).

Independent of *X*.

Preservation under extensions

Induced Substructure

Notion of sub-database

Deleting a user from a database should remove *all* entries where that user appears.

$$D_1 \subseteq_i D_2$$

Conversely, a "larger database" will not contain new relations between pre-existing atoms.

What are the FO sentences that are invariant under *database extensions*?

Answer: existential sentences Łoś [2], Tarski [4].

Preservation under extensions

Proof Scheme

Preservation under extensions

This terminates by compactness.

 $X = \text{Struct}(\sigma)$

Mitigated results

- Tait [3]: The theorem fails on $Fin(\sigma)$.
- Atserias, Dawar, and Grohe [1]: The theorem succeeds on bounded degree structures

Mitigated results

- Tait [3]: The theorem fails on $Fin(\sigma)$.
- Atserias, Dawar, and Grohe [1]: The theorem succeeds on bounded degree structures
- Under extra assumptions: hereditary and closed under disjoint unions

Proof scheme over structures of bounded degree.

- 1. Use the Gaifman Normal Form.
- **2.** Consider a minimal structure $A \models \varphi$.
- **3.** Extract "positive witnesses" from A to build $A_0 \subseteq_i A$.
- **4.** If $A_0 \not\models \varphi$, Repeat step (3) with $A \subseteq_i A_0 \uplus A$, finding new witnesses in A far from A_0 .

This process terminates in a number of steps dependent on φ but not ${\cal A}.$

Disjoint unions... Sort of

Local Elementary Embeddings

$X \subseteq \mathsf{Fin}(\sigma)$

Induced Substructure

Preserve quantifier free formulas.

Local Elementary Embedding

Preserve local formulas.

$X \subseteq \mathsf{Fin}(\sigma)$

Induced Substructure

Preserve quantifier free formulas.

Local Elementary Embedding

Preserve local formulas.

Induced Substructure

Preserve quantifier free formulas.

Local Elementary Embedding

Preserve local formulas.

Induced Substructure

Preserve quantifier free formulas.

Local Elementary Embedding

Preserve local formulas.

Induced Substructure

Preserve quantifier free formulas.

Local Elementary Embedding

Preserve local formulas.

$X \subseteq \mathsf{Fin}(\sigma)$

Induced Substructure

Preserve quantifier free formulas.

Local Elementary Embedding

Preserve local formulas.

Induced Substructure

Preserve quantifier free formulas.

Local Elementary Embedding

Preserve local formulas.

Disjoint unions... Sort of

A nice preservation theorem

 $X = \text{Struct}(\sigma)$

Profit?

There exists φ preserved under \uplus and not existential local.

Undecidable/Uncomputable problems

- Decide if a sentence is preserved under disjoint unions
- Decide if a sentence is equivalent to an existential local sentence
- Compute, under the promise that the sentence is equivalent to an existential local sentence, an equivalent existential local sentence.

But what about Atserias et al.'s proof scheme?

Specific implications

Weakening the preorders

 $X = Fin(\sigma)$

Did we actually gain anything?

YES

Factorised Proof Scheme

 $\mathsf{sentence} \to \mathsf{existential} \; \mathsf{local} \to \mathsf{existential}$

Theorem

For a hereditary class X closed under disjoint unions the following are equivalent

- 1. Preservation under extensions holds,
- 2. Preservation under extensions holds over Balls(X, r, k).

New classes obtained through locality

Atserias et al.

Thank You

- Atserias, A., Dawar, A., and Grohe, M. (2008). Preservation under extensions on well-behaved finite structures. *SIAM Journal on Computing*, 38(4):1364–1381.
- [2] Łoś, J. (1955). On the extending of models (I). *Fundamenta Mathematicae*, 42(1):38–54.
- [3] Tait, W. W. (1959). A counterexample to a conjecture of Scott and Suppes. *Journal of Symbolic Logic*, 24(1):15–16.
- [4] Tarski, A. (1954). Contributions to the theory of models. I. *Indagationes Mathematicae (Proceedings)*, 57:572–581.

A Very Grid-Like Structure

The class of such structures is definable using the negation of an existential local sentence.

Lemma (Type covering)

For all $r, q, k \ge 0$, there exists K_m and R_m such that one can build for every structure A

- C^A exhausting "rare types".
- G^A collecting "frequent types".
- Controlled size and distances independently from A.

