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WQOs and Beyond

Well-quasi-orders



Think Fast!

Quasi-Order Sequence Good

(N,=) i 7→ i 7

(N,≤) i 7→ i 3

({a,b},⊑) i 7→ ai 3

({a,b},⊑) i 7→ bai 7

({a,b},≤∗) i 7→ bai 3

(G,⊆i) i 7→ Ci 7

(G,≤minor) i 7→ Ci 3

1/33



Algebra of WQOs

D ::= (F,=) finite set
| (N,≤) natural numbers
|Σn

i=1 Di finite disjoint sums
|Πn

i=1 Di finite products
|D∗ finite words, subword embedding
|D⊛ finite multisets, multiset embedding
| Pf(D) finite sets, Hoare embedding
|T(D) finite trees, Kruskal embedding
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Keep in mind
How do we choose the order?

(a) Ù Lattice of WQOs
(b) Ù Not complete
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Ordering on Words: suffix, pointwise & substructures

a1 a2 a3 a4 a5 a6 a7

u1b1 u2b2 u3b3 u4b4 u5b5 u6b6 u7b7u0

≤ ≤ ≤ ≤ ≤ ≤ ≤≤
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Failures

s Some constructions fail to preserve WQOs

X∗ prefix 7, suffix 7, factor 7, pointwise 7, subword 3

Xω infinite words with subword 7

P(X) powerset with embedding 7

u The Powerset Problem
Rado’s structure Rado (1954)
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WQOs and Beyond

Noetherian Spaces



Topology Cheatsheet

Pre-order ≤ Topology Alex(≤)

U is upwards-closed U is open
f is monotone f is continuous

E has finitely many E is compact
minimal elements

wqo Noetherian
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Better than posets?

u Recap of Jean’s talk

• Posets are topological spaces with the Alexandroff topology

• There are topological equivalent to the constructions on posets
(products, sums, ...)

• wqo is a way of stating compactness

s Different approach than BQO
We broaden the notion of “well-behaved” space.
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Noetherian Spaces

Noetherian space
A topological space (X, τ) is Noetherian if every subset of X is
compact.
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Quick Test (2)

Space Topology Compact Noetherian WQO

N Alex(≤) 3 3 3

N cofinite 3 3 7

N discrete 7 7 7

Σ∗ Upper(⊑) 3 3 7

Σ∗ Alex(⊑) 3 7 7

Σ∗ Alex(≤∗) 3 3 3

R metric 7 7 7

[0,1] metric 3 7 7

C Zariski 3 3 7

Σ∗ regular subword 3 3 “3”
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Algebra of Noetherian Spaces

D ::= (X,Alex(≤)) (X,≤) wqo
|Σn

i=1 Di finite disjoint sums
|Πn

i=1 Di finite products
|D∗ finite words, regular subword topology
|D⊛ finite multisets, multiset topology
| P(D) arbitrary subsets, lower Vietoris topology
|T(D) finite trees, regular subtree topology
| S(D) sobrification
|Xω infinite words, regular subword topology
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Focus on Finite Words

s Orders on Finite Words

• prefix 7

• suffix 7

• factor 7

• subword 3

s Topologies on Finite Words

• prefix topology 7

• ∑
k≥0 Xk 7

• regular subword topology
[U1, . . . ,Un]

Goubault-Larrecq (2013) 3
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Regular Subword Topology

u Intuition
topology ≃ logic with infinite disjunction

u Basic LTL Formulas PLTL

PU for U open
♢φ for φ open

Regular subword topology = ⟨♢φ | φ ∈ PLTL⟩
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Keep in mind
How do we choose the order topology?
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Specialisation Preorders

u Getting back to preorders
Assume we know the preorder we want. Assert that the topology
“corresponds”.

Definition (Specialisation Preorder)
a ≤τ b ⇐⇒ ∀U ∈ τ, a ∈ U =⇒ b ∈ U.

Top ⊤ Ord

≤τ

Alex(≤)
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How do you prove...

The following are WQOs

• finite words X∗ with the Higman’s word embedding
• finite trees T(X) with Kruskal’s tree embedding
• finite 2-trees µY.X× T(Y)
• finite n-trees...
• Graphs generated by a totally ordered monoid with induced
subgraph (Daligault et al., 2010)

Using a minimal bad sequence argument.
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Minimal Bad Sequence Arguments

For WQOs



The Usual Proof in 60 seconds

• Consider a bad sequence (wn)n∈N that is minimal for ⊑
• It cannot contain ε

• Hence wn = anvn

decompose using F(Y) = 1+ X× Y.

• The set S ≜ {vn | n ∈ N} is a wqo

minimality

• Hence X× S is a wqo

stability through F(Y)

• But {wn | n ∈ N} reflects in X× S

recompose via F
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The proof in full generality

s Sufficient conditions?

• Studied by Hasegawa (2002) and Freund (2020)
• Lots of category theory

u Basic idea: order on inductive constructions

• Finite words: µY.1+ X× Y
• Finite trees: µY.X× Y∗

• Finite 2-trees: µY.X× T(Y)
• …
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What is the connection with our question?

It answers our question on wqos!
And provides a “canonical” ordering on the fixed points.

u Goals of this talk

• Adapt to a topological setting
• Justify existing constructions
• Provide new Noetherian spaces
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Minimal Bad Sequence Arguments

Refinement Functions



Strategy over Topological Spaces

u Idea: avoid categories

• The property of being Noetherian does not depend on the
points

• We can iteratively refine the topology

s Consequence
We decouple the construction of the space and of its topology.
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Minimal Setting for Minimal Bad Sequences

Refinement Function
Fix X a set, a refinement function F maps topologies over X to
topologies over X and

• Preserve Noetherian topologies
• Is monotone: τ ⊆ τ ′ =⇒ F(τ) ⊆ F(τ ′)

s Limit topology
One can iterate transfinitely F. One can define its least fixed point.
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Iterating does not always work out

s Building the prefix topology
F(τ) ≜ ⟨{T · V | T ∈ θ,V ∈ τ}⟩

Σ∗

∅

aΣ∗ bΣ∗

aaΣ∗ abΣ∗ baΣ∗ bbΣ∗

∪
i∈N aibΣ∗ does not stabilise
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What went wrong?

u Recall why the subword embedding works
We lack the notion of substructures. For µY.1+ X× Y, we have to
consider suffixes.
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What is a topology expander?

u Correcting the prefix topology
F(τ) ≜ ⟨{↑⊑T · V | T ∈ θ,V ∈ τ}⟩

lfp F is the regular subword
topology.

Σ∗

∅

Σ∗aΣ∗ Σ∗bΣ∗

Σ∗aΣ∗aΣ∗ Σ∗aΣ∗bΣ∗ Σ∗bΣ∗aΣ∗ Σ∗bΣ∗bΣ∗
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Minimal Bad Sequence Arguments

Topology Expanders



Can we replace “suffix” in general?

Definition
τ |H ≜ {U ∪ Hc | U ∈ τ}

u In the case of τ = Alex(≤) and H downwards closed

x ≤τ |H y ⇐⇒ ∀U ∈ τ |H, x ∈ U ⇒ y ∈ U
⇐⇒ ∀U ∈ τ, x ∈ U ∪ Hc ⇒ y ∈ U ∪ Hc

⇐⇒ x ∈ ↑x ∪ Hc ⇒ y ∈ ↑x ∪ Hc

⇐⇒

x ≤ y ∈ H
y ̸∈ H
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Can we replace “suffix” in general? YES

X

h1

h2 h3

H

Hc
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Good Setting for Minimal Bad Sequences

Topology Expander
F is a refinement function and

∀τ ⊆ F(τ),∀H closed in τ, F(τ)|H ⊆ F(τ |H)|H
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Translating and building intuition

The condition on topologies
F(τ)|H ⊆ F(τ |H)|H

Specialisation preorders
≤F(≤)|H ⊇ ≤F(≤|H)|H

s Refinement happens locally in closed sets

x F(≤|H) y ∈ H =⇒ x F(≤) y ∈ H
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Refinement happens “locally”

(X,≤)

h1
h2 h3

H

Hc

(X, F(≤))

h1
h2 h3

H

Hc
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Minimal Bad Sequence and Iterations

Theorem (Iteration)
If τ is Noetherian and τ ⊆ F(τ) then Fα(τ) is Noetherian for all α.
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What is a minimal bad sequence?

Definition (Good sequence)
(Un)n∈N is good if ∃i.Ui ⊆

∪
j<i Uj

A sequence that is not good is bad.

Goubault-Larrecq (2013, Lemma 9.7.31)
If τ is generated by B, ⊑ is well-founded on B, and (X, τ) is not
Noetherian, then there exists a ⊑-minimal bad sequence of opens in
B.
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Proof scheme Fα(τ) is Noetherian

Definition (Depth)
The first ordinal β such that U ∈ Fβ(τ).

u Very Sketchy Sketch

• If α = β + 1: automatic

• If α is limit: Fα is generated by opens of depth β < α

• In a minimal bad sequence (Un), β = 0 or β = β′ + 1
• Let Vn ≜

∪
i<n Ui and Hn ≜ X \ Vn

• {U ∪ Vn | n ∈ N,U < Un} generates a Noetherian topology U
• Un ∪ Vn open in F(U)|Hn which is Noetherian
• Un0 ⊆ Un0 ∪ Vn0 ⊆

∪
n<n0 Un ∪ Vn =

∪
n<n0 Un absurd
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Applications

Divisibility Topology and Inductive
Definitions



Forget about categories

Definition (Divisibility topology)
Let G(µG) ≃δ µG and ⊴ the “substructure” ordering on µG. The
divisibility topology is the least fixed point of
F♢(τ) ≜ ⟨{↑⊴δ(U) | U open in GT(µG, τ)}⟩

Theorem (Coincidence)
The divisibility topology is Noetherian, and coincides with the
Alexandroff topology of the divisibility preorder (Hasegawa, 2002,
Def. 2.7) “when it makes sense”.

30/33



Sanity Check

The topologies over trees and words from Goubault-Larrecq (2013)
are the divisibility topologies of the appropriate functors

1. X∗ = µY.1+ X× Y
2. T(X) = µY.X× Y∗

s We justified their definition
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Applications

On big spaces



Big Topologies

Theorem (Recurrent Subword Topology)
Xα is Noetherian with the topology generated by the following closed
sets

P ::=T? T closed
|P1 . . .Pn
|P<β β ≤ α

s This is clearly not WQO!!!
We took advantage of the refinement on a pre-existing space!
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A non exhaustive list

u Topological spaces and closed maps
Can we re-interpret the limits in this setting? What would be the
relation with PO-dilators Girard (1981); Freund (2020)?

u Actions on Invariants
What is the effect of the fixed point on ≤τ? On the stature of the
resulting space?

u Check that we can extend the algebra
Check that if G(X,Y1, . . .Yn) is good, so is µX.G(X,Y1, . . . ,Yn).
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Thank You !
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The Official Université Paris-Saclay Color Palette

A1 A2 A3 A4 A5
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It is not that bad!
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