Generic Noetherian Theorems

Defining Noetherian Topologies Through Iterations

Aliaume Lopez 11 / 04 / 2022

BRAVAS, ENS Paris-Saclay, 2022

- 1. WQOs and Beyond
- 2. Minimal Bad Sequence Arguments
- 3. Applications
- 4. Open Questions

- 1. WQOs and Beyond Well-quasi-orders Noetherian Spaces
- 2. Minimal Bad Sequence Arguments
- 3. Applications
- 4. Open Questions

WQOs and Beyond

Well-quasi-orders

Quasi-Order	Sequence	Good
(ℕ,=)	$i \mapsto i$	X
(\mathbb{N},\leq)	$i \mapsto i$	✓
({ <i>a</i> , <i>b</i> },⊑)	$i\mapsto a^i$	1
({ <i>a</i> , <i>b</i> },⊑)	$i\mapsto ba^i$	×
$(\{a,b\},\leq_*)$	$i\mapsto ba^i$	1
$(\mathcal{G},\subseteq_i)$	$i \mapsto C_i$	X
($\mathcal{G},\leq_{\textit{minor}}$)	$i \mapsto C_i$	1

finites	set
natural numbe	ers
finite disjoint su	ıms
finite produc	icts
finite words, subword embeddi	ling
finite multisets, multiset embeddi	ling
finite sets, Hoare embeddi	ling
finite trees, Kruskal embeddi	ling

Keep in mind How do we choose the order?

→ Lattice of WQOs
 → Not complete

suffix, pointwise & substructures

suffix, pointwise & substructures

u_0 b_1 u_1 b_2 u_2 b_3 u_3 b_4 u_4 b_5 u_5 b_6 u_6 b_7 u_7

 $a_1 \ a_2 \ a_3 \ a_4 \ a_5 \ a_6 \ a_7$

suffix, pointwise & substructures

suffix, pointwise & substructures

▲ Some constructions fail to preserve WQOs

X* prefix X, suffix X, factor X, pointwise X, subword ✓
 X^ω infinite words with subword X
 P(X) powerset with embedding X

The Powerset Problem

Rado's structure Rado (1954)

WQOs and Beyond

Noetherian Spaces

$\mathbf{Pre-order} \leq$	Topology $Alex(\leq)$
U is upwards-closed f is monotone	<i>U</i> is open f is continuous
<i>E</i> has finitely many minimal elements	<i>E</i> is compact
wqo	Noetherian

• Posets are topological spaces with the Alexandroff topology

- Posets are topological spaces with the Alexandroff topology
- There are topological equivalent to the constructions on posets (products, sums, ...)

- Posets are topological spaces with the Alexandroff topology
- There are topological equivalent to the constructions on posets (products, sums, ...)
- wqo is a way of stating compactness

- Posets are topological spaces with the Alexandroff topology
- There are topological equivalent to the constructions on posets (products, sums, ...)
- wqo is a way of stating compactness

▲ Different approach than BQO

We broaden the notion of "well-behaved" space.

Noetherian space

A topological space (X, τ) is *Noetherian* if every subset of X is compact.

Space	Topology	Compact	Noetherian	WQO
\mathbb{N}	$Alex(\leq)$	√	✓	1
\mathbb{N}	cofinite	\checkmark	\checkmark	×
\mathbb{N}	discrete	×	×	X
Σ^*	$Upper(\sqsubseteq)$	\checkmark	\checkmark	X
Σ^*	Alex(⊑)	\checkmark	×	×
Σ^*	$Alex(\leq_*)$	\checkmark	\checkmark	1
\mathbb{R}	metric	×	×	X
[0, 1]	metric	\checkmark	×	×
\mathbb{C}	Zariski	 Image: A second s	\checkmark	×
Σ^*	regular subword	 Image: A second s	✓	"√"

$D ::= (X, Alex(\leq))$	(X,\leq) wqo
$ \sum_{i=1}^{n} D_i $	finite disjoint sums
$ \prod_{i=1}^n D_i $	finite products
$ D^* $	finite words, regular subword topology
<i>D</i> [⊛]	finite multisets, multiset topology
$ \mathcal{P}(D)$	arbitrary subsets, lower Vietoris topology
$\mid T(D)$	finite trees, regular subtree topology
<i>S</i> (<i>D</i>)	sobrification
$ X^{\omega} $	infinite words, regular subword topology

• prefix 🗡

- prefix X
- suffix 🗡

- prefix 🗡
- suffix X
- factor 🗡

- prefix 🗡
- suffix X
- factor 🗡
- subword

- prefix 🗡
- suffix 🗡
- factor 🗡
- subword

▲ Topologies on Finite Words

prefix topology X

- prefix 🗡
- suffix X
- factor 🗡
- subword

- prefix topology X
- $\sum_{k\geq 0} X^k X$

- prefix 🗡
- suffix 🗡
- factor 🗡
- subword

- prefix topology X
- $\sum_{k\geq 0} X^k X$
- regular subword topology
 [U₁,..., U_n]
 Goubault-Larrecq (2013) ✓

♦ Intuition

topology \simeq logic with infinite disjunction

♦ Intuition

topology \simeq logic with infinite disjunction

Basic LTL Formulas PLTL

 P_U for U open $\Diamond \varphi$ for φ open

Regular subword topology = $\langle \Diamond \varphi \mid \varphi \in \mathsf{PLTL} \rangle$

Keep in mind How do we choose the order topology?

Getting back to preorders

Assume we know the preorder we want. Assert that the topology "corresponds".

Definition (Specialisation Preorder)

 $a \leq_{\tau} b \iff \forall U \in \tau, a \in U \implies b \in U.$

1. WQOs and Beyond

2. Minimal Bad Sequence Arguments

For WQOs

Refinement Functions

Topology Expanders

- 3. Applications
- 4. Open Questions

The following are WQOs

- finite words X* with the Higman's word embedding
- finite trees T(X) with Kruskal's tree embedding
- finite 2-trees $\mu Y.X \times T(Y)$
- finite *n*-trees...
- Graphs generated by a totally ordered monoid with induced subgraph (Daligault et al., 2010)

Using a minimal bad sequence argument.

Minimal Bad Sequence Arguments

For WQOs
- Consider a bad sequence $(w_n)_{n\in\mathbb{N}}$ that is minimal for \sqsubseteq
- It cannot contain ε
- Hence $w_n = a_n v_n$
- The set $S \triangleq \{ v_n \mid n \in \mathbb{N} \}$ is a wqo
- Hence $X \times S$ is a wqo
- But $\{w_n \mid n \in \mathbb{N}\}$ reflects in $X \times S$

- Consider a bad sequence $(w_n)_{n\in\mathbb{N}}$ that is minimal for \sqsubseteq
- + It cannot contain ε
- Hence $w_n = a_n v_n$ decompose using $F(Y) = 1 + X \times Y$.
- The set $S \triangleq \{v_n \mid n \in \mathbb{N}\}$ is a wqo
- Hence $X \times S$ is a wqo stability through F(Y)
- But $\{w_n \mid n \in \mathbb{N}\}$ reflects in $X \times S$

recompose via F

minimality

The proof in full generality

▲ Sufficient conditions?

- Studied by Hasegawa (2002) and Freund (2020)
- Lots of category theory

• Basic idea: order on inductive constructions

- Finite words: μ **Y**.1 + **X** × **Y**
- Finite trees: $\mu Y.X \times Y^*$
- Finite 2-trees: $\mu Y.X \times T(Y)$
- ...

It answers our question on wqos!

And provides a "canonical" ordering on the fixed points.

♦ Goals of this talk

- Adapt to a topological setting
- Justify existing constructions
- Provide new Noetherian spaces

Minimal Bad Sequence Arguments

Refinement Functions

◆ Idea: avoid categories

- The property of being Noetherian does not depend on the points
- We can iteratively refine the topology

▲ Consequence

We decouple the construction of the space and of its topology.

Refinement Function

Fix X a set, a refinement function F maps topologies over X to topologies over X and

- Preserve Noetherian topologies
- Is monotone: $\tau \subseteq \tau' \implies F(\tau) \subseteq F(\tau')$

▲ Limit topology

One can iterate transfinitely *F*. One can define its least fixed point.

▲ Building the prefix topology $F(\tau) \triangleq \langle \{T \cdot V \mid T \in \theta, V \in \tau \} \rangle$

 $\bigcup_{i\in\mathbb{N}}a^ib\Sigma^*$ does not stabilise

▲ Building the prefix topology $F(\tau) \triangleq \langle \{T \cdot V \mid T \in \theta, V \in \tau \} \rangle$

 $\bigcup_{i\in\mathbb{N}} a^i b\Sigma^*$ does not stabilise

▲ Building the prefix topology $F(\tau) \triangleq \langle \{T \cdot V \mid T \in \theta, V \in \tau \} \rangle$

 $\bigcup_{i\in\mathbb{N}} a^i b\Sigma^*$ does not stabilise

Recall why the subword embedding works

We lack the notion of substructures. For $\mu Y.1 + X \times Y$, we have to consider suffixes.

 $F(\tau) \triangleq \langle \{\uparrow_{\sqsubseteq} T \cdot V \mid T \in \theta, V \in \tau \} \rangle$

 $F(\tau) \triangleq \langle \{\uparrow_{\sqsubseteq} T \cdot V \mid T \in \theta, V \in \tau \} \rangle$

 $F(\tau) \triangleq \langle \{\uparrow_{\sqsubseteq} T \cdot V \mid T \in \theta, V \in \tau \} \rangle$

 $F(\tau) \triangleq \langle \{\uparrow_{\sqsubseteq} T \cdot V \mid T \in \theta, V \in \tau \} \rangle$ topology.

Ifp F is the regular subword

Minimal Bad Sequence Arguments

Topology Expanders

Definition

 $\tau | \mathbf{H} \triangleq \{ \mathbf{U} \cup \mathbf{H}^{\mathsf{c}} \mid \mathbf{U} \in \tau \}$

• In the case of $\tau = Alex(\leq)$ and H downwards closed

$$\begin{array}{l} x \leq_{\tau \mid H} y \iff \forall U \in \tau \mid H, x \in U \Rightarrow y \in U \\ \iff \forall U \in \tau, x \in U \cup H^c \Rightarrow y \in U \cup H^c \\ \iff x \in \uparrow x \cup H^c \Rightarrow y \in \uparrow x \cup H^c \\ \iff \begin{cases} x \leq y \in H \\ y \notin H \end{cases}$$

Can we replace "suffix" in general?

Can we replace "suffix" in general?

Topology Expander

F is a refinement function and

$$\forall \tau \subseteq F(\tau), \forall H \text{ closed in } \tau, F(\tau) | H \subseteq F(\tau|H) | H$$

The condition on topologies $F(\tau)|H \subseteq F(\tau|H)|H$ Specialisation preorders $\leq_{F(\leq)|H} \supseteq \leq_{F(\leq|H)|H}$

▲ Refinement happens locally in closed sets

$$x F(\leq |H) y \in H \implies x F(\leq) y \in H$$

Refinement happens "locally"

Refinement happens "locally"

Refinement happens "locally"

Theorem (Iteration)

If τ is Noetherian and $\tau \subseteq F(\tau)$ then $F^{\alpha}(\tau)$ is Noetherian for all α .

Definition (Good sequence)

 $(U_n)_{n\in\mathbb{N}}$ is good if $\exists i.U_i \subseteq \bigcup_{j < i} U_j$

A sequence that is not good is bad.

Goubault-Larrecq (2013, Lemma 9.7.31)

If τ is generated by B, \sqsubseteq is well-founded on B, and (X, τ) is not Noetherian, then there exists a \sqsubseteq -minimal bad sequence of opens in B.

The first ordinal β such that $U \in F^{\beta}(\tau)$.

Very Sketchy Sketch

• If $\alpha = \beta + 1$: automatic

The first ordinal β such that $U \in F^{\beta}(\tau)$.

- If $\alpha = \beta + 1$: automatic
- If α is limit: F^{α} is generated by opens of depth $\beta < \alpha$

The first ordinal β such that $U \in F^{\beta}(\tau)$.

- If $\alpha = \beta + 1$: automatic
- If α is limit: F^{α} is generated by opens of depth $\beta < \alpha$
- In a minimal bad sequence (U_n), $\beta = 0$ or $\beta = \beta' + 1$

The first ordinal β such that $U \in F^{\beta}(\tau)$.

- If $\alpha = \beta + 1$: automatic
- If α is limit: F^{α} is generated by opens of depth $\beta < \alpha$
- In a minimal bad sequence (U_n), $\beta = 0$ or $\beta = \beta' + 1$

• Let
$$V_n \triangleq \bigcup_{i < n} U_i$$
 and $H_n \triangleq X \setminus V_n$

The first ordinal β such that $U \in F^{\beta}(\tau)$.

Very Sketchy Sketch

- If $\alpha = \beta + 1$: automatic
- If α is limit: F^{α} is generated by opens of depth $\beta < \alpha$
- In a minimal bad sequence (U_n), $\beta = 0$ or $\beta = \beta' + 1$

• Let
$$V_n \triangleq \bigcup_{i < n} U_i$$
 and $H_n \triangleq X \setminus V_n$

• $\{U \cup V_n \mid n \in \mathbb{N}, U < U_n\}$ generates a Noetherian topology \mathcal{U}

The first ordinal β such that $U \in F^{\beta}(\tau)$.

- If $\alpha = \beta + 1$: automatic
- If α is limit: F^{α} is generated by opens of depth $\beta < \alpha$
- In a minimal bad sequence (U_n), $\beta = 0$ or $\beta = \beta' + 1$

• Let
$$V_n \triangleq \bigcup_{i < n} U_i$$
 and $H_n \triangleq X \setminus V_n$

- $\{U \cup V_n \mid n \in \mathbb{N}, U < U_n\}$ generates a Noetherian topology \mathcal{U}
- $U_n \cup V_n$ open in $F(\mathcal{U})|H_n$ which is Noetherian

The first ordinal β such that $U \in F^{\beta}(\tau)$.

- If $\alpha = \beta + 1$: automatic
- If α is limit: F^{α} is generated by opens of depth $\beta < \alpha$
- In a minimal bad sequence (U_n), $\beta = 0$ or $\beta = \beta' + 1$

• Let
$$V_n \triangleq \bigcup_{i < n} U_i$$
 and $H_n \triangleq X \setminus V_n$

- $\{U \cup V_n \mid n \in \mathbb{N}, U < U_n\}$ generates a Noetherian topology \mathcal{U}
- $U_n \cup V_n$ open in $F(\mathcal{U})|H_n$ which is Noetherian

•
$$U_{n_0} \subseteq U_{n_0} \cup V_{n_0} \subseteq \bigcup_{n < n_0} U_n \cup V_n = \bigcup_{n < n_0} U_n$$
 absurd

1. WQOs and Beyond

2. Minimal Bad Sequence Arguments

3. Applications

Divisibility Topology and Inductive Definitions On big spaces

4. Open Questions

Applications

Divisibility Topology and Inductive Definitions

Definition (Divisibility topology)

Let $G(\mu G) \simeq_{\delta} \mu G$ and \trianglelefteq the "substructure" ordering on μG . The divisibility topology is the least fixed point of $F_{\Diamond}(\tau) \triangleq \langle \{\uparrow_{\trianglelefteq} \delta(U) \mid U \text{ open in } G^{T}(\mu G, \tau)\} \rangle$

Theorem (Coincidence)

The divisibility topology is Noetherian, and coincides with the Alexandroff topology of the divisibility preorder (Hasegawa, 2002, Def. 2.7) "when it makes sense".
The topologies over trees and words from Goubault-Larrecq (2013) are the divisibility topologies of the appropriate functors

- **1.** $X^* = \mu Y.1 + X \times Y$
- 2. $T(X) = \mu Y X \times Y^*$

▲ We justified their definition

Applications

On big spaces

Theorem (Recurrent Subword Topology)

X^{α} is Noetherian with the topology generated by the following closed sets

 $P ::= T^{?} \qquad T closed$ $|P_{1} \dots P_{n}$ $|P^{<\beta} \qquad \beta \leq \alpha$

▲ This is clearly not WQO!!!

We took advantage of the refinement on a pre-existing space!

- 1. WQOs and Beyond
- 2. Minimal Bad Sequence Arguments
- 3. Applications
- 4. Open Questions

Topological spaces and closed maps

Can we re-interpret the limits in this setting? What would be the relation with PO-dilators Girard (1981); Freund (2020)?

Actions on Invariants

What is the effect of the fixed point on \leq_{τ} ? On the stature of the resulting space?

Check that we can extend the algebra

Check that if $G(X, Y_1, \ldots, Y_n)$ is good, so is $\mu X.G(X, Y_1, \ldots, Y_n)$.

Thank You !

Daligault, J., Rao, M., and Thomassé, S. (2010). Well-quasi-order of relabel functions. *Order*, 27(3):301–315.

- Freund, A. (2020). From kruskal's theorem to friedman's gap condition. *Mathematical Structures in Computer Science*, 30(8):952–975.
- Girard, J.-Y. (1981). π 12-logic, part 1: Dilators. Annals of Mathematical Logic, 21(2-3):75–219.
- Goubault-Larrecq, J. (2013). *Non-Hausdorff Topology and Domain Theory*, volume 22 of *New Mathematical Monographs*. Cambridge University Press.
- Hasegawa, R. (2002). Two applications of analytic functors. *Theoretical Computer Science*, 272(1):113–175. Theories of Types and Proofs 1997.
- Rado, R. (1954). Partial well-ordering of sets of vectors. *Mathematika*, 1(2):89–95.

The Official Université Paris-Saclay Color Palette

It is not that bad!