
Uniform Operational Semantics
And combined probabilistic/non-deterministic choice

Aliaume Lopez
M1 student in Computer Science,

École Normale Supérieure Paris-Saclay,
Université Paris-Saclay, France

aliaume.lopez@ens-paris-saclay.fr

Under the supervision of Pr. Alex Simpson
Faculty of Mathematics and Physics

University of Ljubljana, Slovenia

From the 20/02/2017 to the 07/07/2017

Abstract

The goal of this internship was to give a systematic study of contextual equivalence in the
presence of algebraic effects in a uniform, compact and syntactic way, in the continuation of pre-
existing work [13]. To reach this objective, we extended a call-by-value PCF with a signature of
algebraic effects, and gave an abstract equality between the contextual equivalence for this lan-
guage and a usable logical relation, independently of the signature itself. Generic meta theorems
were then proven using this abstract equivalence. To justify the usefulness of this approach, a
direct link with denotational semantics and the work of Plotkin and Power [22] was developed,
and signature of mixed non-determinism and probabilities was studied in-depth.

aliaume.lopez@ens-paris-saclay.fr

I am grateful to Alex Simpson, who allowed me to have an amazing internship in his lab
I would also like to thank Andrej Bauer for the Slovene support and his great sense of humor

Many thanks to Philip, Niels, Bret, Riccardo, Théo and Pierre-Marie
with whom I discovered Ljubljana’s bars

But this could not have been possible without the help of Jean Goubault-Larrecq . . .

1 Preliminaries

1.1 University of Ljubljana (FMF)

My internship took place in Ljubljana the capital city of Slovenia. The Faculty of Mathematics and
Physics (FMF) of the University of Ljubljana is the main university in Slovenia for mathematical
studies. Located in the southern part of the town, it is accessible by bus and bike, and is at a walking
distance from the center of Ljubljana.

1.2 Research environment

My research supervisor was Alex Simpson who is currently a "Professor of Computer Science" at the
Faculty of Mathematics and Physics (FMF) of Ljubljana. Even if the FMF is not a faculty of computer
science, Alex Simpson is well known in the theoretical area of this discipline and presented two talks
during the CALCO/MFPS conference in Ljubljana on June 2017. This year he was supervising Niels
Vorneeveld, a PhD student, working on effects inside programming languages. The university was
able to give me a desk from the first day, and when Théo Winterhalter — another ENS Paris-Saclay
student — left Ljubljana at the end of his internship, I was able to move to the office of the PhD
students.

The group of PhD students, containing both theoretical computer science and complex analysis
research, was very friendly. Once or twice a week, they would go to the climbing gym, and on a
regular basis having beers in the town center. Every working day we had meals with Andrej Bauer
and Alex Simpson, two teachers and supervisors of some PhD students of the group at the local
restaurant.

I attended the weekly seminars on "Foundations of mathematics and theoretical computer sci-
ence" with the rest of the group. I gave one seminar myself in a joint seminar with Niels, where
we presented the recent work of Dal Lago, Gavazzo and Levy [8] on abstract bisimulations for a
parametrized class of programming languages. I also attended with Niels Voorneveld and Philipp
Haselwarter a reading course given by Dr. Mtija Pretnar for PhD students on operational seman-
tics. The objective of this course was to understand a paper by Andrew Pitts [21], which was tightly
related to the technical tools I was using in my research.

I would also like to mention the presence of Pierre-Marie Pédrot, a former student from ENS Lyon
who was also part of this cohesive group, while not being a PhD student anymore (post-doc).

On top of this ideal setting for research, Ljubljana was hosting the seventh Conference on Algebra
and Coalgebra in Computer Science (CALCO) and Mathematical Foundations of Programming Se-
mantics (MFPS) the same week in the building of the FMF. This was a wonderful week because I had
the opportunity to see the ongoing work in the area I was working on, meet and befriend researchers
in this domain of computer science. The complete list of participants and the abstracts of the talks
are available online at http://coalg.org/mfps-calco2017/.

1.3 Research subject

Even before it started, the internship was tied to an article published in 2010 by Alex Simpson and
two other authors [13]. The paper itself was a step towards having a "General Operational Metathe-
ory" for calculi with effects, a project that can be linked to the theory of algebraic effects of Plotkin
and Power, and from which some technicalities were borrowed, for instance from Adequacy for Al-
gebraic Effects [22].

The goal of the internship was very simple: adapt the previous results from a call-by-name to
a call-by-value setting. It was justified by the fact that it is very unnatural to consider effects in a
programming language where the evaluation order of said effects cannot be determined easily. For
instance, consider the two following programs:

1

http://coalg.org/mfps-calco2017/

(i) A function that returns its input with probability one half, and returns one with probability one
half: function x -> pr (x,1)

(ii) A function that is the identity with probability one half, and the constant function equal to one
with probability one half: pr (function x -> x, function x -> 1)

They represent two functions that give the same result pr(x, 1) when applied to the same input x.
This implies that in a call-by-name evaluation setting they are considered equivalent [13]. However,
it is natural to distinguish the two in a regular programming language: the program (i) represents a
function that is going to toss a coin every time it is called whereas the program (ii) represents a unique
toss of coin to decide to behave as the constant function equal to 1 or as the identity function.

In addition to this main goal, I was given multiple other tasks. The first one was to tie the results
to the denotational setting, in order to make a clear connection between the two approaches to contex-
tual equivalence. Indeed, a parallel approach to contextual equivalence is to consider a denotational
interpretation: a lot of work has been done to link the two, leading to well-known properties such as
full-abstraction [23]. It is clear that being able to reuse results from this field can be useful. The second
one was to consider a non-trivial and well-studied combination of two effects: non-determinism and
probability. This combination is known to be challenging [17] and being able to consider it inside our
restricted setting is a concrete proof of its expressive power.

The restriction in the number of pages prevents the inclusion of all the proofs, and therefore a
notation ?, ??, ???, ???? is used to estimate the difficulty/time-spent on the different results. This
allows to highlight the problematic parts and differentiate them from the "routine" results without
including the full proofs. However this internship has given me the opportunity to prepare a paper
that is going to be submitted to FOSSACS in 2018, a draft containing the proofs can be found in
appendix.

2 Introduction

Contextual equivalence in the style of Morris has imposed itself as a very simple and powerful way to
express what an equivalence on programs should be. In the presence of a typed calculus is generally
defined as follows:

Two terms M and M

0 of type ⌧ are contextually equivalent if and only if for all context1

C such that C[M] and C[M

0
] are terms of a simple type, the observations that can be made

on C[M] are the same as the one that can be made on C[M

0
].

The idea is simple, instead of defining a relation on terms directly, one defines observations that
can be made on terms of a simple type. For instance, the classical contextual equivalence for PCF
is defined using natural numbers as the "simple type" and termination as the only observation [23].
This way, two complex programs are equivalent if and only if they give the same observations when
plugged into a bigger one whose behaviour is easy to define. This equivalence is of interest because it
precisely captures when one program can be substituted by another, which gives a lot of information
on the language itself, but is also necessary when doing optimisation: replacing a piece of code by a
supposedly faster one without changing the meaning of the overall program.

However this operational notion of equivalence is rarely usable as-is [19]. For this reason, many
other forms of equivalences have been developed in the past years: bisimulations and their refine-
ments (environmental bisimulations, bisimulations up-to) [15], game semantics [2], denotational in-
terpretation in domains [26], higher order logic on programs [12] and logical relations [21]. Unsur-
prisingly one can observe extreme variations on the complexity of such methods when changing the
class of effects studied. This has to do with the fact that most of the operational semantics are deeply

1A context is a program with one hole

2

tied with the effects of the language, and adding or removing effects changes the overall shape of
the semantics. For denotational interpretation, the problem is less visible because it is transposed
into domain theoretic constructions, such as powerdomains, distributive laws, and solving domain
equations.

The objective is to apply one of the former method that are useful to study contextual equivalence
of terms, but apply it uniformly across a wide class of languages. This allows, for instance, to extend
a language that is being studied with new effects, without having to redo all the previous work
on contextual equivalence. Following the work done by Patricia Johann, Alex Simpson and Janis
Voigtländer [13], we choose to use a logical relation to capture the contextual equivalence. The class
of languages that is studied is a simply typed lambda-calculus with a parameter ⌃, a list of the effect
constructions that are added. Using this, we derive theorems that apply uniformly across this set of
languages. Examples of languages that can be found in this set are numerous: non-determinism,
probabilities, input-output, and exceptions.

However, the work done by Johann et al. takes as basic language a call-by-name lambda-calculus.
This does not correspond to the large majority of existing calculus and real programming languages
that are in call-by-value. This is an issue because the two following programs are considered con-
textually equivalent in a call-by-name setting, while obviously2 are not in a call-by-value one: (a) A
program of type Nat ! Nat that does not terminate (b) A program of type Nat ! Nat that does not
terminate when applied to a value . This example shows that the contextual equivalence is not the
same in both cases, and theorems have to be adapted.

The report is answering the following goals:

I. Adapt the paper from Johann et al. to a call-by-value setting. This is the first part of this report,
and consists in several stages:

(a) The definition of the parametrized class of languages (syntax, type system, etc.)
(b) The definition of a small-step semantics for the base language (ignoring the effects). In order

to avoid having to define a semantics for the effects, the operational semantics is building
trees where nodes are (uninterpreted) effects, and leaves are values of the base language

(c) The definition of contextual equivalence in this setting. The definition is parametrized both
by ⌃ (the list of effects) and a preorder v

b

on trees of natural numbers with nodes labelled
by elements of ⌃

(d) The construction of the logical relation, and the proof that the logical relation captures the
contextual equivalence, everything still parametrized by ⌃ andv

b

, justifying the uniformity
property of the proof.

II. Continue the work done by Plotkin and Power [22] by using their results to link our setting to
the denotational approach of contextual equivalence. This is done by first relating a denotational
interpretation of our language to the preorders v

b

on trees that can be built, and then using this
result to prove that both approaches to contextual equivalence coincide

III. Compare different ways of using the global method on specific examples: angelic non-determinism,
demonic non-determinism and probabilistic choice. The idea is to compare the different ways
of defining the preorder v

b

, and prove that they coincide. The definitions of v
b

can be obtained
in several ways: (i) using a denotational interpretation (ii) freely generating it from an inequa-
tional theory (iii) defining it operationally on trees

IV. Study the concrete example of a programming language with both probabilistic and non-deterministic
choice, thus extending the previous comparison work to a non-trivial case. This will demon-
strate the applicability of the general method, and is interesting because this is a combination of
effects regularly encountered in denotational models [27] [10] [14] and the study of concurrent
programming languages [17] [18]

2One is a non terminating term, and the other one is a terminating one

3

3 Parametrized class of languages

In order to derive generic theorems and have uniform results across different languages, we are going
to consider a parametrized class of languages. The studied class of languages is based on PCF [23] in
a call-by-value setting parametrized by extra operations called effects, which is a setting very similar
to the one studied by Plotikn and Power [22]. The main motivation is to find result similar to the
ones we already have in a call-by-name setting [13].

The parameter for this class of languages is ⌃, a set of symbols with a finite arity. Refined call-
by-value [8] is used instead of regular call-by-value to help separating effect evaluation and regular
term evaluation in the language. However the results apply equally to both languages because there
is a direct translation from one to the other that can be seen in Figure 2. Moreover, the parameter ⌃
is enough to consider a lot of different effects: non-deterministic choice, probabilistic choice, input-
output, global state storing natural numbers, exceptions [13].

The type system is fairly simple, with only natural numbers and functions from one type to an-
other type as it can be seen in Figure 1. The type inference rules for this language can be seen in
Figure 3, no rule should be surprising but it is worth mentioning that already the inference rules are
making a distinction between computations (terms constructed with the rules for M in Figure 1) and
values (terms constructed with V in Figure 1). Moreover, natural numbers are encoded in unary using
the usual Z and S constructions (zero and successor).

This setting is purposely restricted, and several improvements can be added without technical
issue. For instance, more complex types such as sum, products and even type polymorphism can
be studied in this context. In fact, logical relations excel in proving parametricity results [28]. In
the spirit of simplicity and to allow comparison with the work on bisimulations by Ugo Dal Lago,
Francesco Gavazzo and Paul Blain Lévi [8] we take the same kind of effect signature as they do.
Technically, it means that compared to the paper from Johann et al. [13] it lacks three of the four
effect constructions, but as noticed in the said paper, all of the constructions share the same pattern
of proof, so that they actually treated only one of the four cases in their proofs.

It is worth mentioning that this is a setting very similar to the one of the Eff programming lan-
guage [4], where the programmer can create new effects and describe their semantics withing the
language itself: the parameter ⌃ is this case an open enumeration of effects, and can be extended by
the user.

⌧ := Nat | ⌧ ! ⌧

V := x | �x : ⌧.M | Z | SV
M := returnV | V V | fixV

| caseV of Z)M ; S(x))M

| letx : ⌧ (M inM

| �(M, . . . ,M| {z }
n

) where (�, n) 2 ⌃

Figure 1: Refined Call-By-Value PCF with effects

(�x : ⌧.N)M letx : ⌧ (M inN

MN ! let f : � ! ⌧ (M in letx : � (N in fx

Figure 2: Translation between refined and regular call-by-value

4

�, x : ⌧ `
V

x : ⌧

� `
V

V : ⌧

� `
C

returnV : ⌧

�, x : ⌧ `
C

M : ⌧

0

� `
V

�x : ⌧.M : ⌧ ! ⌧

0 � `
V

Z : Nat

� `
V

V : Nat
� `

V

SV : Nat
� `

V

V : (⌧ ! ⌧

0
)! ⌧ ! ⌧

0

� `
C

fixV : ⌧ ! ⌧

0
� `

V

V : ⌧ ! ⌧

0
� `

V

W : ⌧

� `
C

VW : ⌧

0

� `
V

V : Nat � `
C

M1 : ⌧ �, x : Nat `
C

M2 : ⌧

� `
C

caseV of Z)M1; S(x))M2 : ⌧

� `
C

M : ⌧ �, x : ⌧ `
C

N : ⌧

0

� `
C

letx : ⌧ (M inN : ⌧

0

(�, n) 2 ⌃ 81 i n, � `
C

M

i

: ⌧

� `
C

�(M1, . . . ,Mn

) : ⌧

Figure 3: Inference rules for typing

Example 1 (Signature for combined probabilities and non-determinism). In the case of combining
non-determinism and probabilities, one can consider a fair coin toss pr of arity two, with a demonic
choice operator or of arity two. The signature of the language is therefore ⌃ = {(pr, 2), (or, 2)}.

It can be shown that the set of values of type Nat is isomorphic to N and therefore we will identify
the two sets using n to denote the value corresponding to n.

3.1 Uniform Small-Step Semantics

The first step to define contextual equivalence is to define an operational semantics. Because we are
considering a class of languages we are going to have a two steps approach: first interpret the core
language independently of the parameter ⌃ and only then refine this semantics to give one to the
effects. The small-step operational semantics is given using stack and frames [13]. The link between
this small-step semantics and its big-step counterpart is made both in [22] and in [21]. This method
can be traced back to [3] (1998) page 184 and [9].

E := letx : ⌧ (⇤ inM

S := Id | S � E

Figure 4: Stacks and Frames

The idea of such an operational semantics is to explicitly refer to the evaluation stack in order
to simplify the evaluation process. When evaluating a term, it is sometimes needed to remember
the context in which the evaluation is taking place: this is exactly what the stack is, the list of all
evaluations that have been suspended so far. However, we are going to see that stacks are not just a
convenient tool to encode evaluation, and their introduction is crucial to the next developments. In
a refined call-by-value calculus stacks and frames are very simple as it can be seen in Figure 4, but
few cases does not imply little expressive power, and in fact any term with one free variable can be
turned into a stack. A type system for stacks is also defined Figure 5, where a stack expecting a term
of type ⌧ and outputting a term of type ⌧ 0 is given the type ⌧ (⌧

0.
Because stacks are just a let-binding with one hole, we can define application of a stack to a

computation which returns a computation obtained by substitution as defined in Figure 6. We say
that a pair (S,M) of a stack and a term is well typed when S : � (⌧ and M : �, this will be
consistent with the safety Lemma 1.

Now that evaluation stacks are defined, we can use them to define the operational semantics of
our language. First of all, on simple computations, we can define a term reduction as in Figure 7,

5

then given this basic reduction, we can use stacks to generalise the evaluation process to more terms
as seen in Figure 8.

x : ⌧ `
C

M : ⌧

0

` letx : ⌧ (⇤ inM : ⌧ (⌧

0
` E : ⌧ (⌧

0 ` S : ⌧

0(⌧

00

` S � E : ⌧ (⌧

00

` Id : ⌧ (⌧

Figure 5: Typing of Stacks and Frames

Id{M} = M

(S � E){M} = S{E{M}}
(letx : ⌧ (⇤ inN{M}) = letx : ⌧ (M inN

Figure 6: Stack application

(�x : ⌧.M)V M [x := V]

caseZ of Z)M1; S(x))M2 M1

case S(V) of Z)M1; S(x))M2 M2[x := V]

letx : ⌧ (returnV inM M [x := V]

fixV V (�x. let g ((fixV) in gx)

Figure 7: Term reduction

(S,E{M}) ⇢ (S � E,M)

(S � E, returnV) ⇢ (S,E{returnV })
(S,M) ⇢ (S,M

0
) when M M

0

Figure 8: Evaluation steps

Lemma 1 (Safety ?). Typing of stacks and frame is consistent with the typing of terms and stack application.

�
` S : ⌧ (⌧

0� ^ (`
C

M : ⌧) =)
�
`
C

S{M} : ⌧

0�

Lemma 2 (Safety ?). If a pair (S,M) is well-typed then evaluation preserves this property and the type of
S{M} is preserved during the evaluation process

Proof. Lemma 1 is proven using case analysis on S and Lemma 2 using case analysis on S and M .

Example 2 (Reduction for combination of non-determinism and probabilities). We can consider the
following term in our language with signature ⌃ = {pr, or}:

M = (�x : Nat. pr(x, 1))0

6

This term corresponds to applying 0 to a function that tosses a coin and return either the input
given to the function or 1. It can be shown that (Id,M) reduces to (Id, pr(0, 1)) as one could expect.
However there is no more reduction possible afterwards: the evaluation is stuck, because there is no
rule to evaluate the effect of a coin toss.

3.2 Computation Trees

We now have a definition of an operational semantics for the parametrized language, but it lacks one
thing: any evaluation that encounters an effect is stuck, because there is no rule to deal with them.
The technical tool used to keep the semantics uniform across the class of languages is the notion of
computation tree [22] [13].

The idea is that any effect has a finite amount of arguments defined by its arity in ⌃, because we
do not know what the effect is going to do with the different arguments, we are going to compute all
of them, and build a tree whose nodes are uninterpreted effects, and leaves are syntactical values of
our calculus. One problem arises because of the fixed point operator: some trees can be infinite, and
some computation are not terminating.

To deal with both issues, trees of type ⌧ are going to have an !CPPO structure, meaning that
there is a preorder v on trees, that least-upper bounds of increasing sequences of trees can be taken,
and that there is a bottom tree ? under any other tree. We are in fact building the free ⌃-continuous
algebra over the set of values of type ⌧ [1].

Definition 1 (Trees over a set). A computation tree over a set X is the free continuous ⌃-algebra over
X . A continuous ⌃-algebra is an !CPPO equipped with continuous functions of appropriate arity for
each operation symbol in ⌃; a morphism of such algebras is a strict continuous function preserving
the operations; the free continuous ⌃-algebra functor is the left adjoint to the forgetful functor from
the category of continuous ⌃-algebras to that of sets.

The order on Tree
X

is the following one: a tree t is an approximation of a tree t

0 if and only if t0
can be obtained by replacing some of the leaves labelled by ? in t by arbitrary trees. The picture to
have in mind is that t v t

0 when t is a prefix of t0 with ? leaves where the tree t

0 should continue.

Definition 2 (Computation Tree). Given ⌧ a type, a computation tree of type ⌧ is an element of Tree
⌧

which is a shorthand for the trees over the set of values of type ⌧ . Because Tree
⌧

is the free continuous
⌃-algebra over values of type ⌧ we have the following universal property.

For every function f : Values
⌧

! A where A is a continuous ⌃-algebra, there exists a unique
morphism ˆ

f : Tree
⌧

! A such that:

f =

ˆ

f � i

Values
⌧

A

Tree
⌧

f

i

f̂

We can already see the usefulness of this definition when looking at the construction of substitu-
tion on trees: given abstractly, in full generality and guaranteed to be continuous without any hassle.

Definition 3 (Substitution). Let t 2 Tree
X

and � : X ! Tree
Y

. Using the universal property, there
exists a unique lift �̂ : Tree

X

! Tree
Y

, which is the substitution. We write t� as a shorthand for �̂t.

Using this new construction it is now possible to continue our definition of the operational se-
mantics without interpreting effects by building an infinite tree labeled by the effects encountered
during evaluation. Because of the injection of values of type ⌧ into Tree

⌧

, and to avoid unnecessary

7

clutter in the equations, we are going to treat this injection as an inclusion and write V instead of
i(V).

Definition 4 (Computation tree). Given a well-typed pair (S,M) and an integer n we can compute
the tree |S,M |

n

by induction on n following the rules in Figure 9. The sequence |S,M |
n

is ascending
in n given a fixed pair (S,M) and we write |S,M | for its least upper bound.

|S,M |
n+1 = |S0

,M

0|
n

(S,M)⇢ (S

0
,M

0
)

|Id, returnV |
n+1 = V

|S,�(M1, . . . ,M
l

)|
n+1 = �(|S,M1|n, . . . , |S,M

l

|
n

)

|S,M |0 = ?

Figure 9: Computation tree construction

Example 3 (Non termination). The following term does not terminate, and no effects occurs during
the evaluation of this term:

⌦

⌧

= let g : Nat! ⌧ (fix(�f : Nat! ⌧. return f) in g0

It is therefore possible to conclude that the computation tree associated to this term is always the
least element of Tree

⌧

, independently of the stack ` S : ⌧ ! ⌧

0:

8S : �(⌧, |S,⌦
�

| = ?

One key result about this tree construction is the relationship between substitution on trees and
application of stacks. To compute a computation tree for the pair (S,M) it suffices to compute
the computation tree for (Id,M) and then substitute leaves with the computation tree obtained by
(S, returnV) where V is the corresponding value of the leaf.

Lemma 3 (Stack commutation ?). Let S : ⌧ (⌧

0 and M : ⌧ , we always have:

|S,M | = |Id,M |�
S

Where �
S

(V) = |S, returnV |.

Proof. The proof is done by considering the finite trees |S,M |
n

, using induction on n and case analysis
on the constructions. Afterwards it suffices to consider the least upper bound of |S,M |

n

to conclude.

The last thing to check with our construction is that approximation on trees is indeed capturing
the construction of infinite trees obtained by fixed points in the language. This equivalence is pre-
cisely given by the Theorem 1 stating that the least upper bound of the semantics of the approxima-
tions is exactly the semantics of the fixed point. An equivalent result also exists in call-by-name [13],
note that because of the evaluation strategy, the theorem is stated on trees over values of type Nat to
ensure full evaluation of the fixed-point. Unrolling fixed points is a very common operation [22] and
this approximation result is a basic one in papers defining logical relations [19] [21].

Theorem 1 (Unrolling ??). Let ` S : (� ! ⌧)(Nat be a stack and `
V

V : (� ! ⌧)! � ! ⌧ be a value
term.

G

n�0

|S, unroll
n

V | = |S, fixV |

8

unroll0 V = ⌦

�!⌧

unroll

n+1 V = V (�x : �. let g : � ! ⌧ ((unroll

n

V) in gx)

Figure 10: Unrolling fixed point

Proof. The proof is quite tedious. First of all we replace all trees by their finite approximations, and
then prove by induction that for all finite approximation on one side, there is a finite approximation
on the other side that is above it.

There is now an operational semantics for the language, respecting effects and capturing ap-
proximations. Up to this point, everything has been done uniformly over all signatures ⌃. Given a
computation term M of type ⌧ , one can compute |Id,M | (abbreviated |M |) which is a tree labelled
with effects and has values of type ⌧ as leafs.

The next goal is to define contextual equivalence for a specific signature ⌃. This is usually done
by fixing a relation on computation terms of type Nat. However we can separate the semantics of
the effects contained in this relation from the semantics of the ground language: it suffices to give a
relation on trees of natural numbers to have one over computation terms of type Nat. Indeed, given
a relation on TreeNat it suffices to use the tree computation | � | to transform it into a relation on
computation terms of type Nat. The information required is therefore a simple relation over TreeNat.

Example 4 (Infinite probabilistic tree). Let us consider the following program:

M = fix (�f : Nat! Nat.�x : Nat. pr(returnx, f(Sx))) 0

This program corresponds to a recursive call to a function that uses probabilistic choice to either
return its argument n, or call itself with the value n + 1. Even if the formal semantics of the pr
effect is not yet defined, the intended meaning of such a program is to output 0 with probability one-
half, 1 with probability one-fourth, etc. A hypothetical equivalent OCaml code and the associated
computation tree |M | can can be seen below.

let rec f x =
match randomCoinToss () with
| Heads -> return x
| Tails -> return (f (x+1))

in
f 0

pr

0

pr

1

...

pr

n

...

4 Contextual Preorder

Instead of simply studying the contextual equivalence relation, one can consider a contextual preorder:
instead of stating when two programs can be interchanged, it helps understanding if a program
can be "approximated" by another one. This can be useful when dealing with non-determinism or
probabilistic choice, where one could replace a program with a non-equivalent one that has a strictly
lower probability to fail. Contextual equivalence can then be obtained by considering the intersection
of the contextual preorder with its opposite relation.

Because we are going to study the contextual preorder, the ground relation on trees of type Nat is
going to be a preorder: a reflexive and transitive relation. By building computation trees and using

9

this basic preorder written v
b

, we are going to define an abstract contextual preorder as the largest
relation satisfying some axioms [13] [8]. The definition is borrowed from the work of Andrew Pitts
[21], but can be found in several other papers. The definition of compatibility rules in Figure 11 is
simply obtained by looking at all the language constructions, and the corresponding type inference
rule. The notion of adequacy on the other hand is uniquely determined by the preorder v

b

.

Definition 5 (Formalisation of relations respecting type). Let (E
V

, E
C

) be a pair of relations, the first
one on values and the second one on computations. If • is V or C then the relation E• is a set of tuples
of the form (�•,M,M

0
, ⌧) and for every such tuple inside E we have � `• M : ⌧ and � `• M 0

: ⌧ .

(i) We say that E is compatible when E is closed under rules in Figure 113

(ii) We say that E is v
b

-adequate when for every pair of closed computation terms M and M

0 of
ground type Nat we have M E

C

M

0 implies |M | v
b

|M 0|

We write � `M E M

0
: ⌧ instead of (�,M,M

0
, ⌧) 2 E to simplify reading.

�, x : ⌧ ` x E
V

x : ⌧

� ` V E
V

V

0
: ⌧

� ` returnV E
C

returnV

0
: ⌧

�, x : ⌧ `M E
C

M

0
: ⌧

0

� ` (�x : ⌧.M) E
V

(�x : ⌧.M

0
) : ⌧ ! ⌧

0 � ` Z E
V

Z : Nat
� ` V E

V

V

0
: Nat

� ` SV E
V

SV

0
: Nat

� ` V E
V

V

0
: (⌧ ! ⌧

0
)! ⌧ ! ⌧

0

� ` fixV E
C

fixV

0
: ⌧ ! ⌧

0
� ` V E

V

V

0
: ⌧ ! ⌧

0
� `W E

V

W

0
: ⌧

� ` VW E
C

V

0
W

0
: ⌧

0

� ` V E
V

V

0
: Nat � `M1 EC

M

0
1 : ⌧ �, x : Nat `M2 EC

M

0
2 : ⌧

� ` (caseV of Z)M1; S(x))M2) EC

(caseV

0
of Z)M

0
1; S(x))M

0
2) : ⌧

� `M E
C

M

0
: ⌧ �, x : ⌧ ` N E

C

N

0
: ⌧

0

� ` (letx : ⌧ (M inN) E
C

(letx : ⌧ (M

0
inN

0
) : ⌧

0

(�, n) 2 ⌃ 81 i n, � `M

i

E
C

M

0
i

: ⌧

� ` �(M1, . . . ,Mn

) E
C

�(M

0
1, . . . ,M

0
n

) : ⌧

Figure 11: Rules of compatibility with the language constructions

Definition 6 (Contextual Preorder). There exists a largest compatible andv
b

-adequate relation called
v

ctx

In order to derive some of the theorems, we need to have more information about thev
b

preorder.
One of the first properties is that it should behave nicely with approximation of trees (admissibility)
and that it should behave nicely with composition of trees (compositionality).

Definition 7 (Admissibility). A relation R on TreeNat is admissible for v when for every ascending
chain (t

i

)

i�0 and (t

0
i

)

i�0 such that t
i

R t

0
i

:
0

@
G

i�0

t

i

1

A
R

0

@
G

i�0

t

0
i

1

A

3Any such relation is a congruence, and therefore stable under any context

10

Definition 8 (Compositionality). A relation R on TreeNat is compositional when tR t

0 and 8n, t
n

R t

0
n

implies that:

t[n̄ := t

n

]R t

0
[n̄ := t

0
n

]

Where t[n̄ := t

n

] is defined as the lifted h

�

(t) where �(n) = t

n

.

The compositionality and admissibility requirements are natural ones, and they automatically
have good properties on natural numbers (lemma 4), are nicely related to v (lemma 5) and can be
constructed as the smallest preorder satisfying some inequational theory (lemma 6).

Lemma 4 (Behaviour on natural numbers ?). If the preorderv
b

is compositional, then on natural numbers
we have either that two distinct natural numbers are not comparable, or that every pair of tree is equated by
v

b

.

Proof. Assume that there exists two distinct numbers m and n such that n v
b

m. Let t and t

0 be two
arbitrary trees and define:

�(k) =

8
><

>:

t if k = n

t

0 if k = m

? otherwise

We have � v
b

� because v
b

is reflexive, and therefore using compositionality of v
b

we have:

n� v
b

m�

Hence for every trees t and t

0 we have t v
b

t

0.

Lemma 5 (The preorder is coarser than v ??). Assume that v
b

is admissible and compositional, then
(v) ✓ (v

b

) if and only if ? is a least element for v
b

.

Example 5 (Simple counter example). There exists an admissible and compositional preorder that
does not extend v.

Proof. Define t v
b

t

0 () ? 2 t =) ? 2 t

0 where the ? 2 t means that there exists a leaf of t which
is? or that there exists an infinite branch in t. Compositionality and admissibility are simple, and we
note that ? 6=v

b

n, which proves the claim.

Because the semantics of effects in ⌃ is given through the preorder v
b

, it can be useful to be able
to automatically build such preorders. In fact it is possible to build free preorders respecting v given
an inequational theory T as shown in the following lemma 6. This construction is not a trivial one: in
the case of angelic non-determinism, the free preorder constructed is in fact the one that is expected
(see Lemma 6).

Definition 9 (Horn Clause Inequational Theory). A theory T is a horn-clause inequational theory
over TreeNat if and only if it consists in a list of formulas obtained with the following grammar:

t := x | �(
nz }| {

t, . . . , t) (�, n) 2 ⌃

� := t t

 := � _ · · · _ � _ ¬�

11

Example 6 (Angelic non-determinism). It can be shown that the inequational theory characterising
the powerdomain for angelic non-determinism is the following one [1]:

x or(x, y) or(x, x) x or(x, or(y, z)) or(or(x, y), z)

or(x, y) or(y, x) or(or(x, y), z) or(x, or(y, z))

Moreover the free preorder constructed using this theory corresponds to the following one: a tree
t is under a tree t

0 if and only if all numbers that are obtained by leaves of t are also obtained in leaves
of t0.

Lemma 6 (Free preorder construction ??). Given an inequational theory with horn-clauses T there exists
a smallest admissible and compositional preorder vT on TreeNat satisfying the inequational theory such that
for any tree t, ? vT t.

Proof. It is clear that satisfying some inequational theory is stable by arbitrary intersection. Because
admissibility, compositionality and being a preorder are also stable properties by such intersection,
one can take the intersection of all such preorders.

We now have defined a notion of contextual preorder uniformly across the class of languages con-
sidered. The only specific point is the definition of the preorder v

b

which is a preorder on trees with
leaves of type Nat and nodes labelled by ⌃. Therefore the required informations to use the results is
going to be the pair (⌃,v

b

) where ⌃ is simply carrying the syntactic constructions and v
b

is carrying
the actual semantics for the effects. We then saw that it was possible to build abstractly the preorder
v

b

given a set of Horn-Clauses that the preorder should satisfy.

5 Logical Relation

This section consists in defining a relational interpretation of types by induction on their structure,
and proving that this relational interpretation characterises the contextual preorder v

ctx

. The overall
proof is parametrized in both ⌃ and v

b

, under the assumption that the preorder is admissible and
compositional.

The use of relational interpretation goes back to Reynolds [24] and Wadler [28] where instead
of interpreting terms as elements of a set, and types as sets, terms are left uninterpreted, and types
are interpreted as relations. To benefit from theses results, one need to parametrize over a class of
well-behaved relations [21] and it turns out that biorthogonality is a generic construction that allows to
construct them [16].

In the following section, we will fix a preorder v
b

and assume it admissible and compositional.
This preorder can be used to define an antitone Galois Connection written > between relations on
stacks and relations on closed computation terms, meaning that if r is a relation on closed computa-
tion terms of type ⌧ and s is a relation on stacks of type ⌧ (Nat:

r

> ✓ s () s

> ✓ r

Definition 10 (The > operation). Let s be a relation on stacks of type ⌧ ! Nat and r be a relation on
closed computation terms of type ⌧ :

(S, S

0
) 2 r

> () 8(M,M

0
) 2 r, |S,M | v

b

|S0
,M

0|
(M,M

0
) 2 s

> () 8(S, S0
) 2 s, |S,M | v

b

|S0
,M

0|

12

The main interpretation is that it is possible to relate stacks when we apply them to closed compu-
tation terms we can relate to each other and we can relate closed computation terms when we apply
them to stacks we can relate to each other. The biorthogonal of a relation r on closed computation
terms of type ⌧ is then simply r

>>. It can be intuited that a relation r satisfying r = r

>> going to be a
relation preserving observational equivalence in some way (see Lemma 7), which is exactly the kind
of relation we are looking for. In fact, the function r 7! r

>> is a closure operator, that transforms any
relation into a biorthogonal one.

We are now going to prove a saturation lemma that is going to justify the use of biorthogonality,
and show how most of the proofs using biorthogonality are done: to prove that (M,N) is in r, it
suffices to prove that (M,N) is in r

>>, which is equivalent to proving that for all pairs of stacks
(S, S

0
) 2 r

>, |S,M | v
b

|S0
, N |. One can see that this is clearly where the preorder v

b

is taken into
account, but also where the small-step semantics and computation trees can play a role.

Lemma 7 (Saturation for>>-closed relations andv
ctx

?). Let r be a>>-closed relation on computations,
we always have:

(v
ctx

r v
ctx

) ✓ r

Proof. Assume M,M

0
,M

00
,M

000 are closed computation terms of type ⌧ such that M v
ctx

M

0, (M 0
,M

00
) 2

r and M

00 v
ctx

M

000. Let (S, S0
) 2 r

> we can have the following reasoning:

|S,M | = |S{M}| definition of |�,�|
v

b

|S{M 0}| S is a context
= |S,M 0| definition of |�,�|
v

b

|S0
,M

00| definition of r>

= |S0{M 00}| definition of |�,�|
v

b

|S0{M 000}| S

0 is a context
= |S0

,M

000| definition of |�,�|

Therefore we proved that (M,M

000
) 2 (r

>
)

>, but the assumption was that r was >>-closed, and
therefore (M,M

000
) 2 r.

5.1 Definition of the relation

We combine ideas from [13] for the treatment of effects and [20] for the adaptation to the call-by-value
setting. The evaluation strategy can also be seen in [7] with an equivalent definition and interesting
description of the actual way things are going to compute.

As usual, an operation on relations is defined for each type constructor. Because there is only one
type constructor it suffices to define what is the arrow relation between two relations.

Definition 11 (Arrow relation). Let r1 be a relation on values and r2 be a relation on computations of
type respectively ⌧1 and ⌧2, we define r1 ! r2 a relation on values of type ⌧1 ! ⌧2 as:

r1 ! r2 =
�
(V, V

0
) | 8(W,W

0
) 2 r1, (VW, V

0
W

0
) 2 r2

Note that values of type ⌧1 ! ⌧2 are all of the form �x : ⌧1.M where x : ⌧1 `C M : ⌧2.

The arrow relation is simply stating that two values of type ⌧1 ! ⌧2 are related when for all
related arguments (values) they give related results (computations). It is now possible to write in a
very simple way the logical relation on closed terms, which is going to be automatically >>-closed
on computation terms at any type.

13

Definition 12 (Logical relation on closed terms). The logical relation on closed terms is defined in
Figure 12. For every type ⌧ it defines a relation k⌧k

V

on values of type ⌧ and k⌧k
C

on computations
of type ⌧ .

kNatk
V

= v
b

k⌧ ! ⌧

0k
V

= k⌧k
V

! k⌧ 0k
C

k⌧k
C

=

�
(returnV, returnV

0
) | (V, V 0

) 2 k⌧k
V

 >>

Figure 12: Logical relation

If one of the key results in a logical relation argument is the reflexivity of the relation, it is very
common to have a similar reflexivity result on stacks [21]. We are going to use several times the fact
that (Id, Id) 2 kNatk>

C

which is a consequence of the stack reflexivity at ground type Nat.

Lemma 8 (Stack reflexivity at ground type Nat ??). For any stack ` S : Nat (Nat the pair (S, S) is
inside kNatk>

C

Proof. Let S be a stack such that ` S : Nat (Nat. Let V and V

0 be two values of type Nat such
that V v

b

V

0. Using the stack commutation lemma 3, |S, returnV | = | returnV |�
S

. But we know
that | returnV | = V , and now using compositionality and reflexivity of v

b

it can be shown that
|S, returnV | v

b

|S, returnV 0|. This proves that (S, S) 2 kNatk>
C

because:

kNatk>
C

=

�
(returnV, returnV

0
) | (V, V 0

) 2 kNatk
V

 >

Now in order to compare the logical relation to the contextual preorder, it is needed to be able to
relate open terms (terms with free variables). The usual open extension of a relation is used, while
being careful to only substitute value terms for the free variables.

Definition 13 (Generalisation to open terms). If M and M

0 are two open terms with variables typed
by � then � ` M k⌧k

C

M

0 if and only if for any pair of substitutions ~V and ~

V

0 for the free variables
such that ` V

x

k⌧
x

k
V

V

0
x

for any x : ⌧

x

2 � we have:

`M [x := V

x

] k⌧k
C

M

0
[x := V

0
x

]

The definition can be adapted to value terms in the obvious way.

One direct consequence of this defininition as an open extension is that two related computation
terms with one free variable can be used to extend a stack.

Lemma 9 (Stack extension ??). Let (S, S0
) 2 k⌧k>

C

be two related stacks, and x : � `Mk⌧k
C

M

0. One can
construct new stacks S � (letx : � (⇤ inM) and S

0 � (letx : � (⇤ inM

0
) that have type � (Nat.

Theses two new stacks are related for k�k>
C

.

Proof. Let (V, V 0
) 2 k�k

V

, we can use the definition of the computation tree to reduce the stack:

|S � (letx : � (⇤ inM, returnV | = |S,M [x := V]|

This equation is also valid for the second computation tree built using S

0, M 0 and V

0.
But we know that `M [x := V]k⌧k

C

M

0
[x := V

0
] by definition of the open extension of the relation.

This proves that |S,M [x := V]| v
b

|S0
,M

0
[x := V

0
]| and therefore that the two stacks are indeed

related for k�k>
C

.

14

5.2 Inclusion in contextual preorder

The first step is to prove a soundness result, mainly that if two terms are logically related then they
are contextually related. This soundness is proven in two steps: first prove adequacy of the logical
relation, then prove compatibility with the constructions of the language.

Lemma 10 (Adequacy ?). The logical relation is adequate.

Proof. Let M and M

0 be two computation terms of type Nat such that ; ` MkNatk
C

M

0. We know
that for every pair (S, S0

) 2 kNatk>
C

we have:

|S,M | v
b

|S0
,M

0|

Therefore it suffices to show that (Id, Id) 2 kNatk>
C

to conclude, but this is a direct consequence
of lemma 8.

We are now going to prove compatibility of the logical relation with the different constructions
of the language. To simplify the proofs, compatibility is proven in an empty typing context �, this is
allowed because the logical relation is defined on open terms using closing substitutions.

The compatibility rules are numerous and proofs of half of them are one-liners (variables, return,
function-application, S, Z...). In order to save space, only the proof for the computation binding is
done, but it is they all follow a similar pattern. There is however the exception of the fixed-point rule,
requiring the use of the admissibility property of v

b

and the unrolling theorem on fixed-points as one
could expect.

Lemma 11 (Compatibility for computation binding ??). If � is a typing context, � ` Mk⌧k
C

M

0 and
�, x : ⌧ ` Nk⌧ 0k

C

M

0 then:

� ` (letx : ⌧ (M inN)k⌧ 0k
C

(letx : ⌧ (M

0
inN

0
)

Proof. Let M = letx : � (M1 inM2, M 0
= letx : � (M

0
1 inM

0
2 and assume that ; `M1k�kCM 0

1 and
x : � `M2k⌧kCM 0

2.
Let (S, S0

) 2 k⌧k>
C

, we know that
(
|S,M | = |S � letx : � (⇤ inM2,M1|
|S0

,M

0| = |S0 � letx : � (⇤ inM

0
2,M

0
1|

Therefore to prove the inequality for v
b

it suffices to show that

(S � letx : � (⇤ inM2, S
0 � letx : � (⇤ inM

0
2) 2 k�k>C

This is the exact conclusion of Lemma 9 and therefore we can conclude.

We therefore have the compatibility with respect to the language constructions, allowing us to
state the inclusion of the logical relation inside the contextual preorder.

Theorem 2 (Inclusion of the preorders ?). The logical relation is included in the contextual preorder.

Proof. The logical relation is adequate and compatible, and therefore is included in the largest relation
that is adequate and compatible.

15

5.3 Equality with contextual preorder

Because the language is call-by-value, the logical relation satisfies a very strong property that can be
found in [20] in a slightly different form: the relation can be recovered from its restriction to values.
Separating values from computation makes this result easier to prove and to grasp as seen in lemma
12. This result is necessary to prove completeness of the logical relation with respect to contextual
equivalence, and can easily be extended when adding new types to the language like sum types or
product types.

The proof of equality with the contextual preorder is done as follows:
(a) Prove that the logical relation is the largest adequate, compatible and substitutive relation
(b) Prove that the contextual preorder is substitutive

Lemma 12 (Value relation ??). For any type ⌧ we have

(returnV, returnV

0
) 2 k⌧k

C

() (V, V

0
) 2 k⌧k

V

Proof. By doing a analysis on ⌧ .

Lemma 13 (Largest adequate compatible and substitutive relation ???). The logical relation is the largest
adequate, compatible and substitutive relation. Where being substitutive is being compatible with the rules in
Figure 13.

�, x : ⌧ `W E
V

W

0
: ⌧

0
� ` V E

V

V

0
: ⌧

� `W [x := V] E
C

W

0
[x := V

0
] : ⌧

0

Figure 13: Substitutivity

Lemma 14 (Contextual preorder is substitutive ??).

Proof. Because contextual preorder is transitive, it suffices to show that we have the following equal-
ity when M is a computation term of type ⌧ and V a value term of type � to have the substitutive
property on computation terms:

� `M [x := V] ⌘
ctx

(�x : �.M)V : ⌧

But we have already seen that this equivalence is true for the logical relation, and we know that
the logical relation is included in the contextual preorder, allowing us to conclude.

Theorem 3 (Contextual preorder equals the logical relation ?).

Proof. We already have one inclusion with the Theorem 2 and the second one is given because contex-
tual preorder is an adequate, compatible and substitutive relation, therefore included into the largest
one (the logical relation).

Using the abstract equality between the contextual preorder and the logical relation we defined,
we can prove generic theorems about contextual equivalence independently of the properties of ef-
fects.

The first one is that a relation between effects is true at ground type if and only if they are true at
all type. This justifies the fact that we only ask for a preorder on TreeNat.

16

Theorem 4 (Inequalities between effects are seen at ground type ??). Let t and t

0 be two finite trees in
TreeNat, they can be identified as computation terms of type ⌧ when substituting the leaves with computation
terms of a type ⌧ .

For any pair of such substitutions (�,�

0
) such that the images satisfies ` �(n)k⌧k

C

�

0
(n), the terms t�

and t

0
�

0 are related for k⌧k
C

if and only if it is the case when the property is restricted to substitutions of
computation terms of type Nat.

This theorem is stating that any generic inequalities on effects is already encoded in v
b

, and that
any inequality in v

b

is in fact a generic one at any type. For instance, if pr(a, b) is always approxi-
mating or(a, b) for v

b

on trees of type Nat, then it will also be the case when looking at functions, or
arbitrary complicated computation terms with complex type.

Another example of generic theorem is the reduction of contextual preorder on open terms to the
contextual preorder on closed terms.

Theorem 5 (Contextual preorder can be reduced to closed terms ?). Two open computation terms M

and M

0 are contextually related if and only if for any closing substitution of contextually related values, the
two closed terms obtained are related. This is stating thatv

ctx

is the open extension ofv
ctx

restricted to closed
terms.

Several other global results can be declined, but it is not the goal to enumerate them here. More-
over, it is obvious that without specifying how v

b

is behaving, proving specific results is not going
to be possible.

We can now ask ourselves to what extend we could change the hypothesis on v
b

. The only result
that was discovered is that removing compositionality allows to "break" the behaviour of effects.
The following result is not using the meta-theorems that are themselves using compositionality and
admissibility of v

b

.

Lemma 15 (Admissibility and good behaviour on TreeNat implies compositionality ???). Namely, we
are going to show that if v

b

is admissible then
⇥
(M,M

0
) 2 kNatk

C

() |M | v
b

|M 0|
⇤
() v

b

is compositional

This means that if the preorder is not compositional, the behaviour of computation terms of type
Nat is not fully captured by v

b

.

6 Domain theoretic preorders

The goal of this section is to link the domain theoretic semantics with our setting. The first remark is
that if J·K is a semantic map from TreeNat to an !CPPO (D,), one can define:

t v
b

t

0 () JtK Jt0K

This preorder is not necessarily admissible or compositional, therefore we can ask ourselves what
conditions on the semantic map J·K are sufficient to obtain the desired properties.

One natural requirement for a semantic map is to be scott-continuous, and it turns out that it
automatically gives an admissible preorder.

Lemma 16 (Admissibility ?). If the function is scott-continuous, then the relation defined is admissible.

Proof. Let (t
i

)

i

and (t

0
i

)

i

be two ascending chains for v with least upper bounds t and t

0 such that
Jt

i

K Jt0
i

K for every i.

17

t
G

i

t

i

|
=

G

i

Jt
i

K scott-continuity

G

i

Jt0
i

K hypothesis

=

t
G

i

t

0
i

|
scott-continuity

A natural assumption for compositionality is asking for the interpretation to be a homomorphism
and for D to be a ⌃-continuous algebra. Indeed, we are trying to interpret effects and it seems obvious
that it is a good way to do so: in Plotkin and Power’s work algebraic effects are the one that are
preserved under some homomorphisms.

Lemma 17 (First half of compositionality ??). Assume D is a ⌃-continuous algebra and J·K is a homo-
morphism, then for every tree t and pair of substitutions (�1,�2) such that �1(n) v

b

�2(n) for every n, we
have:

t�1 v
b

t�2

But it is not enough to guarantee compositionality of the preorder, as it can be seen in the example
7.

Example 7 (Simple counterexample). Let ⌃ = {(+, 2), (⇥, 2)} be a signature. Let D be N [{+1}
with the usual ordering and the usual ⌃-algebra structure. It is a continuous ⌃-algebra and the
homomorphism that arises from identity on natural numbers is just the regular interpretation of tree
of operations.

But if t1 = 1 + 2 and t2 = 1⇥ 3, we can take � defined as follows to break compositionality:

�(k) =

(
0 if k = 1

k otherwise

We have t1 v
b

t2 but not t1� v
b

t2 because 2 6 0.

It is therefore necessary to ask for the interpretation to respect effects in a deeper way, related to
the definition of algebraic effects.

Definition 14 (Factorisation of homomorphism). The interpretation J·K factors homomorphisms when
for every function � : Nat! D there exists a homomorphism h

�

: D ! D such that � = h

�

� J·K.

Nat D D

J·K

�

h�

Lemma 18 (Factorisation of tree homomorphisms ??). Assume that J·K factors homomorphisms. If ⌧ :

TreeNat ! D is a homomorphism then there exists h
⌧

a homomorphism from D to D such that ⌧ = h

⌧

� J·K.

Intuitively, it states that the domain D contains enough information about the tree to be able to
use just the information in D when doing computation: this is why a substitution on trees can be
converted into a computation inside D.

18

Example 8 (Probabilities). Restricting ourselves to the case were values on trees can only be in {1, 2}[
{?}. If the domain D is the domain of sub-probability measures on {1, 2}, then a tree is mapped into
a vector of probabilities for each outcome and ? is ignored. The probability vector obtained after a
substitution is exactly the product of the original probability vector with the probability matrix the
substitution represents.

Let t = pr(1, 2), �(1) = pr(1, 2) and �(2) = 1. The semantics of t is the vector (0.5, 0.5), and the
semantics of t� is (0.5 ⇥ 0.5 + 0.5, 0.5 ⇥ 0.5). The calculation is exactly equivalent to the following
matrix product:

✓
0.5 1

0.5 0

◆✓
0.5

0.5

◆

Where the matrix has been obtained by putting in column the probability vectors of �(1) and
�(2). The function h

�

is in our case the product with the transition matrix given by �.
This example can be turned into a counter example. Keeping the same domain, but allowing trees

to have leaves in {1, 2, 3}[{?}, we are forgetting information that is crucial when doing substitution.
Indeed, because we don’t remember what is the probability of 3, a substitution that turns 3 into 1

cannot be turned into a homomorphism from D to D.

Lemma 19 (Second half of compositionality ??). If J·K is a homomorphism that factors functions from Nat
to D then the preorder v

b

is compositional.

6.1 Examples

We now list examples where the previous results can be used to reuse work done on denotational
semantics. The first example is when D is a free algebra. That can happen in cases such as Powerdo-
mains [1], Powercones [27], or Powerkegelspitze [14].

Example 9 (Free algebras). Assume that D is a free algebra over Nat and it holds that it is a ⌃-
continuous algebra. Then the preorder defined using the embedding of Nat into the free structure
gives an admissible and compositional preorder.

The second possibility is to already have a denotational semantics for the language defined in a
monadic way on the category of !CPPOs.

Example 10 (Monadic interpretation). If the language is interpreted in a !CPPO with interpretations
for effect that are natural with respect to the EM-morphisms then the preorder obtained is admissible
and compositional.

The proof is requiring numerous definitions and is therefore omitted even if it is not a complex
one. This result can be used to show that given an interpretation, the contextual preorder we can
define is the same as the contextual preorder defined using first the tree calculation and then the
monadic interpretation. This result comes from [22]. Indeed, in the setting of a monadic interpre-
tation J·K, Plotkin and Power showed that J|M |K = JMK: the monadic semantics of the tree is the
same as the monadic semantics of the original term. This shows that one can define the contextual
preorder using the interpretation on terms or the interpretation on trees indifferently, showing that
using computation trees does not restrict generality in this case.

Using free structures in the category of !CPPO [1] it is possible to define a free preorder in an
abstract way.

Lemma 20 (Free interpretational preorder ?). Given an inequational theory T there exists a preorder vJT K
arising from an interpretation into a ⌃-continuous algebra satisfying the inequational theory T , and containing
any preorder constructed using the same pattern.

This gives us yet another way to define a preorderv
b

from a theory T , and comparing on different
examples the two is going to be the subject of the next section.

19

7 Free preorders

Given an inequational theory T one can always build some preorder v
b

corresponding to it as in
Lemma 20. This uses the previous part about denotational semantics and preorders built using them.
However we saw that one could naturally build the smallest admissible, compositional preorder ex-
tending vwithout requiring such machinery by using Lemma 6. It is not known (yet) if the two con-
structions coincide, however one inclusion is clear: the free preorder obtained using a denotational
interpretation always contains the other one, defined as the intersection of all preorders satisfying ad-
missibilty, compositionality and pointedness properties. The difficulty is going to prove the equality
between the free preorder (obtained via Lemma 6) and the other ones either obtained operationally
or using the denotational free preorder.

Lemma 21 (Demonic preorder ??). Let T
D

be the following theory:

a or a = a

a or b = b or a

a or(b or c) = (a or b) or c

a or b a

The free preorder for the theory T
D

coincides with the preorder v
D

given by:

t v
D

t

0 ()

8
><

>:

? 2 t

0
=) ? 2 t

n 2 t

0
=) n 2 t

? 2 t

And v
D

itself coincides with the denotational iterpretation in the Smyth powerdomain for Nat (the free
meet-semilattice over Nat).

The proof of Lemma 21 is omitted because it consists in applying several rewriting steps on finite
trees and because infinite trees are all equivalent to ?when considering demonic choice4. Moreover,
explicit characterisations of the Smyth powerdomain can be found in the literature [1] and allow to
link the operational view to the denotational one.

Lemma 22 (Probabilistic preorder ??). We use the notation� for the infix notation of pr to ease lecture. Let
T
P

be the following probabilistic theory developed by Heckmann and Reinhold [11]:

a� a = a

a� b = b� a

(a� b)� (c� d) = (a� c)� (b� d)

a� b b =) a b

The free preorder for the theory T
P

coincides with the preorder defined by:

t v
P

t

0 () 8n 2 Nat, ⌫(t) ⌫(t0)

Where ⌫(t) corresponds to the probability distribution over Nat encoded by the tree t.
And v

P

itself coincides with the denotational iterpretation in the probabilistic powerdomain for Nat (the
free full kegelspitze over Nat as defined by Keimel [14]).

Proof. It is easy to check that the operational preorder satisfies the theory T
P

.
For the other inclusion, on finite trees, we can compare two trees t and t

0 by putting them in
a common form (complete binary trees of the same depth), and if their distributions were ordered

4It is indeed always possible for the demon to make the program fail to terminate by always selecting the branch with
infinite depth, existing because the tree is infinite

20

⌫(t) ⌫(t0), then each leaf in the smaller tree t can be put under the same leaf in the bigger one t

0, and
a proof of the inequality can be built using compositionality and the fact that ? is under any other
element.

Let t and t

0 be two possibly infinite trees of natural numbers such that the leaves are bounded by
a constant C and assume that ⌫(t) ⌫(t0). We can make a case distinction:

1. There exists a finite tree t

0
i

such that ⌫(t0
i

) = ⌫(t

0
) and t

0
i

v t

0.

2. For any finite tree t

0
i

such that t0
i

v t

0, there exists an n such that ⌫(t0
i

)(n) < ⌫(t

0
)(n).

Now let’s take two approximating chains of finite trees for t and t

0, and build the chain t

i

� t

0
i

.
We know that ⌫(t

i

� t

0
i

) ⌫(t0) by some simple calculation. Now, assume we are in the first case,
then we have a finite approximating tree t

0
j

with j > i such that ⌫(t
i

� t

0
i

) ⌫(t0
j

). In the second case,
we know that there is an n such that the inequality is strict: but because ⌫ is scott-continuous, there
is a j > i such that ⌫(t

i

� t

0
i

)(n) < ⌫(t

0
j

). Because the support is finite, we know that we can take the
maximum of such j’s and have a finite tree t

0
j

such that ⌫(t
i

� t

0
i

)(n) ⌫(t0
j

).
But all the trees in this last equation are finite, and therefore they are true for vTP .

8i 2 N, 9j > i, t

i

� t

0
i

vTP t

0
j

Using admissibility, we can now conclude:

t� t

0 vTP t

0

But then we can deduce that t vTP t

0 using the last axiom of T .
To extend this result to infinite support, it suffices to use the family of substitutions:

�

k

(i) =

(
? when i > k

i otherwise

If ⌫(t) ⌫(t0) then we know that for all k, ⌫(t�
k

) ⌫(t0�
k

) and they have finite support, therefore
t�

k

vTP t

0
�

k

. To conclude it suffices to see that t = t
k

t�

k

and use admissibility.

8 Preorder for combined non determinism and probabilities

In this section we are going to fix a specific signature ⌃ containing two binary operators pr and
or. The two operators are used to model a language where both probabilistic choice and non-
determinism coexist. Combining these specific effects has been the subject of numerous papers,
and even when restricting ourselves to the denotational setting, the work of Regina Tix on pow-
ercones [27] continued afterwards by Plotkin and Keimel [14] on Kegelspitze shows the interest of
such combination. A more functional version of theses domains can also be found in the work of
Jean-Goubault Larrecq [10].

Given the recent developments of the denotational interpretation, it would be perfectly fine to
use an interpretation to define our basic preorder v

b

. But as we are studying operational semantics,
it is more consistent to use an operational definition of the said preorder.

Example 11 (Concurrent processes). A concrete example where this combination arises is the study
of concurrent processes with probabilistic choice: the scheduler for the different processes is a demon
playing the worst move every time, and the different parts of the program can use a random number
generator to make decisions.

21

A program M is an under approximation of a program M

0 if and only if any choice of the sched-
uler in M

0 leading to some distribution of probability on the values there exists a choice of the sched-
uler of M giving a distribution that is point wise lower.

The natural interpretation is that we are always considering the worst case scenario, and if some-
thing can go wrong (not producing a value because of non-termination) in M

0 then it is necessarily
worse for the approximation M . This way, reasoning on M is safe because if the probability of failure
is bounded for M , the bound is also valid for M 0.

In the case of combined (demonic) non-determinism and probabilities we can define the preorder
v

b

on trees over natural numbers in a simple and effective way. We consider a tree as a Markov
Decision Process and given an cost function from Nat! R+ we find a strategy for the or nodes that
minimizes the average cost of the tree. A tree t is under a tree t

0 for this preorder when for any cost
function, the minimal expected cost for t is under the minimal expected cost for t0.

In order to formalise this intuition, while not diving into the details of all the specifications one
can define S to be the space representing the set of strategies. Given a strategy s 2 S and a tree
t 2 TreeNat, one can build t ⇤ s the application of the strategy to the tree, that builds a new probability
tree, that is without or nodes. Given a probability tree t, and a cost function h from Nat to R+,
one can define the expected cost E(h(t)). It is now possible to write the following definition for the
operational preorder:

t v
b

t

0 () 8h : Nat! R+, inf
s2S

E(h(t ⇤ s)) inf

s2S
E(h(t0 ⇤ s))

Admissibility is going to rely on the Scott-continuity of the following function:

t 7!
✓
h 7! inf

s2S
E(h(t ⇤ s))

◆

Compositionality on the other hand is going to rely on an elementary decomposition result of the
above function.

In order to save space and keep this report readable, definitions and lemmas are not written
explicitly but listed and explained below, highlighting the shape of the construction more than the
technicalities.

1. Definition of the strategy space S as the set of infinite trees labelled by Left and Right.

2. Definition of the application of a strategy to a tree in TreeNat as the tree obtained by "selecting"
the left or right branch for all u-nodes, based on the label found in the corresponding place in
the strategy tree.

3. Definition allowing to transform a tree with only �-nodes into a random variable, allowing
to consider a tree with probabilistic choice and natural number leaves as a random variable
outputting natural numbers.

4. Definition of a function F (t, s, h) that takes as input a tree t, a strategy s and a cost function
h : Nat ! R+ and outputs the expected cost of the random variable h(t ⇤ s) where t ⇤ s is
considered as a random variable

5. Definition of the preorder v
b

on trees as follows

t v
b

t

0 () 8h : Nat! R+, inf
s2S

F (t, s, h) inf

s2S
F (t, s, h)

After formalising the definition of the preorderv
b

, the first goal is to prove its admissibility, which
is done by studying the function F . The proof is done using the following lemmas:

22

1. Lemma stating that the space S is compact by relating it to the Cantor Space

2. Lemma stating that the function (t, s) 7! t ⇤ s from TreeNat ⇥ S to TreeNat applying a strategy is
continuous

3. Lemma stating that the function (t, s) 7! F (t, s, h) is continuous for all fixed cost function h

4. Lemma stating that the function t 7! inf

s2S F (t, s, h) is continuous in t. This is the difficult result
because it requires using the compactness of S and either a tedious proof, or a generic result
about infimum in the case of domains and compact sets [25] (Theorem 7.31).

5. Conclusion: the preorder is admissible when considering the previous Lemma and by adapting
the proof of Lemma 16

The second goal is to obtain compositionality result, this is done using the following steps:

1. Lemma stating a decomposition result about the function F . This result is difficult to prove, but
is a very natural one. Given a function h, a tree t and a substitution �, the following equality
holds:

inf

s

F (t�, s, h) = inf

s

F (t, s, h

�

)

Where
h

�

(n) = inf

s

F (�(n), s, h)

2. Conclusion: the preorder v
b

is compositional, and this follows directly from the previous
Lemma, in conjunction with monotonicity properties of F .

Everything can be adapted to the angelic case by replacing inf with sup in the definition of the
preorder. In fact, admissibility even becomes easier because suprema commute but the general proof
can be almost copy-pasted.

8.1 Link with the denotation and the free preorder

One can consider the preorder vT freely generated (using lemma 6) by some horn-clause inequa-
tional theory T . The inequational theory for demonic non-determinism is well known and we call
it D, a good choice of axiomatisation P for the probability can be found in the work of Heckmann
and Reinhold [11]. This theory has the advantage of not explicitly referring to real numbers and is
therefore perfectly suited to our setting.

P a� a = a

a� b = b� a

(a� b)� (c� d) = (a� c)� (b� d)

a� b b =) a b

D a u a = a

a u b = b u a

(a u b) u c = a u (b u c)

a u b a

Distributivity (a u b)� c = (a� c) u (b� c)

Figure 14: Inequational theory for mixed probability and demonic non determinism

23

Given the two theories, and following the laws from [14] we can build the combined theory of
demonic non-determinism and probabilities by adding a distributivity axiom as seen in Figure 14.

It is already known that each part corresponds to the usual preorders for probability (resp. non
determinism) using Lemma 22 (resp. Lemma 21), and we are going to show the following theorem.

Theorem 6 (Equality of preorders ????). The free preorder of the joint theories as described in Figure 14
is the one that was obtained operationally which is itself equal to the preorder obtained by the interpretation
inside the free algebra for this theory in !CPPO.

The proof of this theorem is long and complex. It uses both domain theory to relate the oper-
ational preorder to the denotational one obtained using a Power Kegelspitze [14], but also when
proving the equality between the freely generated preorder and the operationally defined one. The
proof follows the same pattern as the one for probabilities in Lemma 22 but is very technical and
quite long.

9 Conclusion and future work

The first part of this internship was about extending the results of Patricia Johann, Alex Simpson and
Janis Voigtländer [13] to a call-by-value setting. By doing so, some properties of the basic preorderv

b

were developed and a direct link to denotational semantics has been made. This is a first step in a bet-
ter understanding of basic preorders and the generality of the method itself. Some generic theorems
and sanity checks have been proven abstractly for the logical relation and the contextual preorder
arising from v

b

, allowing to decline them with any effect signature ⌃. The ability to automatically
build free preorders for an equational theory T was studied, and compared to the operational and de-
notational method in the case of probability, non-determinism and the combination of both, showing
how robust this general setting is.

It is clear that the study of basic preorders is not fully satisfactory, if only because the admissibility
property does not seem to be a necessary one. For instance, countable non-determinism does not
have this admissibility property, but is believed to still fit in our setting. On the other side of the
requirements, compositionality could be better understood using sets of observations as done in [13]
or looking at the continuity properties of the monadic multiplication on trees.

It would then be interesting to try and generalise the class of effects, be it by adding more ef-
fects known to be algebraic, or blatantly non algebraic effects such as exception handling that would
require changing the language itself, but still be captured by the same general method.

This work can be extended to a richer type system in an obvious way, and even recursive types
are not problematic thanks to step-indexing techniques [5] or syntactic projections [6].

It could be interesting to generalise the notion of >>-closure to metric relations and talk about
the distance of terms, as many speakers in CALCO and MFPS have suggested.

Finally, the study of mixed non-determinism and probability is done very briefly in this paper,
and there would be a lot more to talk about. For instance, how does the functional representation
evolves when combining angelic, demonic and probability operators ?

24

References

[1] Abramsky, S., Jung, A.: Domain theory. In: Handbook of Logic in Computer Science. pp. 1–168.
Clarendon Press (1994)

[2] Abramsky, S., McCusker, G.: Game semantics. In: Computational logic. pp. 1–55. Springer (1999)

[3] Amadio, R.M., Curien, P.L.: Domains and Lambda-Calculi (Cambridge Tracts in Theoretical
Computer Science). Cambridge University Press, New York, NY, USA, 1 edn. (2008)

[4] Bauer, A., Pretnar, M.: Programming with algebraic effects and handlers. CoRR abs/1203.1539
(2012), http://arxiv.org/abs/1203.1539

[5] Benton, N., Hur, C.K.: Biorthogonality, step-indexing and compiler correctness. ACM Sigplan
Notices 44(9), 97–108 (2009)

[6] Crary, K., Harper, R.: Syntactic logical relations for polymorphic and recursive types. Electronic
notes in theoretical computer science 172, 259–299 (2007)

[7] Dagand, P.É., Scherer, G.: Normalization by realizability also evaluates. In: Vingt-sixièmes
Journées Francophones des Langages Applicatifs (JFLA 2015) (2015)

[8] Dal Lago, U., Gavazzo, F., Blain Levy, P.: Effectful Applicative Bisimilarity: Monads, Relators,
and Howe’s Method (Long Version). ArXiv e-prints (Apr 2017)

[9] Felleisen, M., Hieb, R.: The revised report on the syntactic theories of sequential control
and state. Theor. Comput. Sci. 103(2), 235–271 (Sep 1992), http://dx.doi.org/10.1016/
0304-3975(92)90014-7

[10] Goubault-Larrecq, J.: Isomorphism theorems between models of mixed choice. Mathemat-
ical Structures in Computer Science (2016), http://www.lsv.ens-cachan.fr/Publis/
PAPERS/PDF/JGL-mscs16.pdf, to appear

[11] Heckmann, R.: Probabilistic domains. Trees in Algebra and Programming—CAAP’94 pp. 142–
156 (1994)

[12] Honda, K., Yoshida, N., Berger, M.: An observationally complete program logic for impera-
tive higher-order functions. In: Logic in Computer Science, 2005. LICS 2005. Proceedings. 20th
Annual IEEE Symposium on. pp. 270–279. IEEE (2005)

[13] Johann, P., Simpson, A., Voigtländer, J.: A generic operational metatheory for algebraic effects.
In: 2010 25th Annual IEEE Symposium on Logic in Computer Science. pp. 209–218 (July 2010)

[14] Keimel, K., Plotkin, G.D.: Mixed powerdomains for probability and nondeterminism. Logical
Methods in Computer Science 13(1) (2017), http://dx.doi.org/10.23638/LMCS-13(1:
2)2017

[15] Koutavas, V., Levy, P.B., Sumii, E.: From applicative to environmental bisimulation. Electronic
Notes in Theoretical Computer Science 276, 215–235 (2011)

[16] Mellies, P.A., Vouillon, J.: Recursive polymorphic types and parametricity in an operational
framework. In: Logic in Computer Science, 2005. LICS 2005. Proceedings. 20th Annual IEEE
Symposium on. pp. 82–91. IEEE (2005)

[17] Mislove, M.: Models Supporting Nondeterminism and Probabilistic Choice, pp. 993–1000.
Springer Berlin Heidelberg, Berlin, Heidelberg (2000), http://dx.doi.org/10.1007/
3-540-45591-4_136

http://arxiv.org/abs/1203.1539
http://dx.doi.org/10.1016/0304-3975(92)90014-7
http://dx.doi.org/10.1016/0304-3975(92)90014-7
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/JGL-mscs16.pdf
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/JGL-mscs16.pdf
http://dx.doi.org/10.23638/LMCS-13(1:2)2017
http://dx.doi.org/10.23638/LMCS-13(1:2)2017
http://dx.doi.org/10.1007/3-540-45591-4_136
http://dx.doi.org/10.1007/3-540-45591-4_136

[18] Mislove, M., Ouaknine, J., Worrell, J.: Axioms for probability and nondeterminism. Electronic
Notes in Theoretical Computer Science 96, 7–28 (2004)

[19] Pitts, A.M.: Operationally-based theories of program equivalence. Semantics and Logics of
Computation 14, 241 (1997)

[20] Pitts, A.M.: Existential types: Logical relations and operational equivalence. In: International
Colloquium on Automata, Languages, and Programming. pp. 309–326. Springer (1998)

[21] Pitts, A.M.: Parametric polymorphism and operational equivalence. Mathematical. Structures in
Comp. Sci. 10(3), 321–359 (Jun 2000), http://dx.doi.org/10.1017/S0960129500003066

[22] Plotkin, G., Power, J.: Adequacy for algebraic effects. In: International Conference on Founda-
tions of Software Science and Computation Structures. pp. 1–24. Springer (2001)

[23] Plotkin, G.D.: Lcf considered as a programming language. Theoretical computer science 5(3),
223–255 (1977)

[24] Reynolds, J.C.: Types, abstraction and parametric polymorphism. In: IFIP Congress. pp. 513–523
(1983), http://dblp.uni-trier.de/db/conf/ifip/ifip83.html#Reynolds83

[25] Schalk, A.: Algebras for generalized power constructions. Ph.D. thesis, TH Darmstadt (1993)

[26] Scott, D.S.: Domains for denotational semantics. In: International Colloquium on Automata,
Languages, and Programming. pp. 577–610. Springer (1982)

[27] Tix, R., Keimel, K., Plotkin, G.: Semantic domains for combining probability and non-
determinism. Electronic Notes in Theoretical Computer Science 222, 3–99 (2009)

[28] Wadler, P.: Theorems for free! In: Proceedings of the fourth international conference on Func-
tional programming languages and computer architecture. pp. 347–359. ACM (1989)

http://dx.doi.org/10.1017/S0960129500003066
http://dblp.uni-trier.de/db/conf/ifip/ifip83.html#Reynolds83

	Preliminaries
	University of Ljubljana (FMF)
	Research environment
	Research subject

	Introduction
	Parametrized class of languages
	Uniform Small-Step Semantics
	Computation Trees

	Contextual Preorder
	Logical Relation
	Definition of the relation
	Inclusion in contextual preorder
	Equality with contextual preorder

	Domain theoretic preorders
	Examples

	Free preorders
	Preorder for combined non determinism and probabilities
	Link with the denotation and the free preorder

	Conclusion and future work

