# $\mathbb{Z}$ -polyregular functions

# Thomas Colcombet Gaëtan Douéneau-Tabot Aliaume Lopez Tuesday, June 27, 2023 LICS 2023, Boston, Massachusetts, USA



#### **REGULARITY AND APERIODICITY FOR LANGUAGES**

Finite Automaton Finite Monoid MSO Sentence

Counter-free Automaton Aperiodic Monoid FO Sentence Regular Languages

Star-Free Languages

#### **REGULARITY AND APERIODICITY FOR LANGUAGES**

Finite Automaton Finite Monoid MSO Sentence

Counter-free Automaton Aperiodic Monoid FO Sentence

























#### Star-free is Decidable!

Because one can compute the DFA/the syntactic monoid: canonical model.

# Regularity for word-to-number functions

weighted automata ↔ rational series ↔ weighted logics ↔ rational expressions

•  $\mathbf{1}_L$  is star-free if and only if L is a star-free language

- $\mathbf{1}_L$  is star-free if and only if L is a star-free language
- $\cdot w \mapsto |w|_a$  is star-free

- $\mathbf{1}_L$  is star-free if and only if L is a star-free language
- $\cdot w \mapsto |w|_a$  is star-free
- $w \mapsto (-1)^{|w|} \times |w|$  is not star-free

- $\mathbf{1}_L$  is star-free if and only if L is a star-free language
- $\cdot w \mapsto |w|_a$  is star-free
- $\cdot \ w \mapsto (-1)^{|w|} \times |w|$  is not star-free
- $\cdot \ w \mapsto |w|_a \times |w|_b$  is star-free

- $\mathbf{1}_L$  is star-free if and only if L is a star-free language
- $w \mapsto |w|_a$  is star-free
- $\cdot \ w \mapsto (-1)^{|w|} \times |w|$  is not star-free
- $\cdot \ w \mapsto |w|_a \times |w|_b$  is star-free

- $\cdot$  1<sub>L</sub> is star-free if and only if L is a star-free language
- $w \mapsto |w|_a$  is star-free
- $\cdot \ w \mapsto (-1)^{|w|} \times |w|$  is not star-free
- $\cdot \ w \mapsto |w|_a \times |w|_b$  is star-free

# Not like previous attempts!

Both [Reutenauer, 1980, III.4.4] and [Droste and Gastin, 2019] capture indicator functions of non-aperiodic languages.

### Generalisation

 $f \colon \Sigma^* \to \mathbb{Z}$  is star-free when

 $\forall u, v, w \in \Sigma^*. \quad \exists P_{u,v,w}(X) \in \mathbb{Z}[X]. \quad f(uw^X v) \simeq P_{u,v,w}(X)$ 

### Generalisation

 $f\colon \mathbf{\Sigma}^* o \mathbb{Z}$  is star-free when

 $\forall u, v, w \in \Sigma^*. \quad \exists P_{u,v,w}(X) \in \mathbb{Z}[X]. \quad f(uw^X v) \simeq P_{u,v,w}(X)$ 

# For rational series, this implies polynomial growth!

$$\exists k \in \mathbb{N}. \quad \sup_{|w|=n} |f(w)| = \mathcal{O}(n^k) \quad .$$

# THIS TALK:

Z-rational series:  $f \colon \Sigma^* \to \mathbb{Z}$ With polynomial growth:  $\exists k \in \mathbb{N}, |f(w)| = \mathcal{O}(|w|^k)$ . A lot of effective translations. Decidable notion of star-free!











# $\mathbb{Z}\text{-}\mathsf{polyregular}$ functions

- Counting MSO formulas
- Weighted automata with eigenvalues 0 or roots of unity (≃ non-trivial groups)
- Closure of regular languages under classical operators
- Deterministic suffix transducers

# Star-free $\mathbb{Z}$ -polyregular functions

- Counting FO formulas
- Weighted automata with eigenvalues 0 or 1 (≃ no non-trivial groups)
- Closure of star-free languages under classical operators
- Counter-free deterministic suffix transducers

Non star-free function:  $f(w) \stackrel{def}{=} (-1)^{|w|} \times |w|$ .

Residuals of *f* up to constant growth rate

$$f(aw) - f(w) = (-1)^{|w|+1} \times (1+2|w|)$$
 linear growth  
$$f(aaw) - f(w) = 2 \times (-1)^{|w|}$$
 constant growth

Residuals of f up to constant growth rate: f and f(a-).

Residuals of f up to constant growth rate: f and f(a-).

- $\cdot$  Deterministic machine whose states corresponds to the *residuals* of f
- Output labels are functions of smaller growth applied on suffixes

### A CONCRETE DETERMINISTIC SUFFIX TRANSDUCER

Non star-free function:  $f(w) \stackrel{def}{=} (-1)^{|w|} \times |w|$  of linear growth.

Residuals of f up to constant growth rate: f and f(a-).



### A CONCRETE DETERMINISTIC SUFFIX TRANSDUCER

Non star-free function:  $f(w) \stackrel{def}{=} (-1)^{|w|} \times |w|$  of linear growth.

Residuals of f up to constant growth rate: f and f(a-).



# A CONCRETE DETERMINISTIC SUFFIX TRANSDUCER

Non star-free function:  $f(w) \stackrel{def}{=} (-1)^{|w|} \times |w|$  of linear growth.

Residuals of f up to constant growth rate: f and f(a-).

Residual transducer of the function.



Not *counter-free*: there is a counter between f(-) and f(a-).

### Decide if $\mathbb{N}$ -polyregular is star-free $\mathbb{N}$ -polyregular?

The canonical deterministic suffix transducer *cannot* be build in  $\mathbb{N}$ .

Star-free rational series?

Generalize the notions to functions with exponential growth.

# THANK YOU!

- Droste, M. and Gastin, P. (2019).
  Aperiodic weighted automata and weighted first-order logic.
  In 44th International Symposium on Mathematical Foundations of Computer Science, MFCS 2019, volume 138.
- 📔 Reutenauer, C. (1980).

Séries formelles et algèbres syntactiques.

Journal of Algebra, 66(2):448–483.