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ACT I: Where queries are optimised
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Preservation Under Extensions, a.k.a., Łoś (1955); Tarski (1954)

© Query Optimisation

Input Some FO sentence φ
Promise Upwards closure

for induced substructures (⊆i) – a.k.a. extensions
Output A simplified query (existential)

G |= φ M
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Preservation Under Extensions, a.k.a., Łoś (1955); Tarski (1954)

Theorem (Łoś (1955); Tarski (1954))
This algorithm exists.

Proof.

• an equivalent existential sentence exists (heavy use of
compactness)

• one can enumerate proofs ⊢ ψ ↔ φ with ψ existential.
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Łoś (1955); Tarski (1954) in a diagram?

FO

EFO

P(C)

UpSet(C)

¬ vertex cover of size 1¬∃x.∀y, z.E(y, z) =⇒ x = y ∨ x = z

G ⊆i H ∧ G ∈ S =⇒ H ∈ S

Beware: In computer science C is a class of finite structures!

{A ∈ C | A |= φ}

{A ∈ C | A |= φ}

su
bl
at
tic

e

su
bl
at
tic

e
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ACT II: Where all is lost in a fire
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Preservation Under Extensions, a.k.a., Łoś (1955); Tarski (1954)

© Query Optimisation ⋆ over C ⋆

Input Some FO sentence φ
Promise Upwards closure ⋆ over C ⋆
Output An existential sentence ψ equivalent to φ ⋆ over C ⋆

Over finite structures

• Tait (1959): no such ψ!
• Chen and Flum (2021): no algorithm even if ψ exists.

4/11



ACT III: Where the problem is solved
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Finding the right nails for our hammer

FO

EFO

P(C)

UpSet(C)

In computer science C is a class of finite structures!Easy case: C is a finite class of finite structures.Combinatorics: C is well-quasi-ordered (WQO).Model Theory: the theory of C is model complete.
Non Trivial: C is hereditary (down-
wards closed), wide, and closed under
⊎ (Atserias et al., 2008).

{A ∈ C | A |= φ}

{A ∈ C | A |= φ}

su
bl
at
tic

e

su
bl
at
tic

e
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Finding the right nails for our hammer

Property implication over hereditary classes of finite structures
closed under ⊎.

Finite

Bounded Tree
depth

WQO

Fo
lk
lo
re

Wide
(Atserias et al., 2008)

Preservation
under
extensions

Finite

Bounded Tree
Depth

WQO

Preservation
under
extensions

locally

¬

Thm. Theorem ¬

local↔global
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Locally satisfying a property?

Local(C, r, k) ≜ {NA(a⃗, r) | A ∈ C, a⃗ ∈ Ak}

A structure A.A structure A, with 2 selected nodes.A structure A, with 2 selected nodes, and a 1-local neighborhood.An element of Local(C,1,2).
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Locally satisfying a property?

Local(C, r, k) ≜ {NA(a⃗, r) | A ∈ C, a⃗ ∈ Ak}

¨ Localise Bounded Degree
C is of bounded degree if and only if Local(C, r, k) is finite for all
k, r ≥ 0, i.e., locally finite

Corollary (of theorem ¬; known from Atserias et al. (2008))
Hereditary classes of bounded degree, closed under ⊎, satisfy
preservation under extensions.
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ACT IV: Behind the scenes
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Snowy mountain tops

© Why assume C to be hereditary (downwards closed)?
Let φ ∈ FO be upwards closed, t.f.a.e.:

(i) φ ≡C ψ with ψ ∈ EFO.
(ii) φ has finitely many minimal models in C.
(iii) minimal models of φ in C have bounded size.
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Proof scheme of Theorem ¬

Assume φ is upwards-closed with respect to ⊆i over C.

Step Minimal Models Sentence ≡C φ

! bounded radius (r, k) ∃x1, . . . , xk.ψ(⃗x), ψ r-local
[ bounded size ℓ ∃x1, . . . , xℓ.ψ(⃗x), ψ quantifier free

existential
definable and
upwards closed

existential
local and

upwards closed

[ !
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ACT V: The friends made along the way
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Locality and preservation under extensions

Existential
Gaifman normal form

Existential
Sentences

Extensions (⊆i)

Positive
Gaifman normal form

Existential local
Sentences

Local elementary
embeddings

Gaifman normal form Arbitrary
Sentences None

(Łoś, 1955; Tarski, 1954)(Tait, 1959; Chen and Flum, 2021)(Grohe and Wöhrle, 2004)

(Gaifman, 1982)

Thm.
®

Thm.
¯
Thm.
°

Over arbitrary structures
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Existential
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Positive
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