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ACT I: Where queries are optimised



Preservation Under Extensions, a.k.a., £os (1955); Tarski (1954)

4 Query Optimisation

Input Some FO sentence ¢

Promise Upwards closure
for induced substructures (C;) - a.k.a. extensions

Output A simplified query (existential)
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Preservation Under Extensions, a.k.a., £os (1955); Tarski (1954)

Theorem (tos (1955); Tarski (1954))

This algorithm exists.

Proof.

* an equivalent existential sentence exists (heavy use of
compactness)

* one can enumerate proofs F ¢ <+ ¢ with ¢ existential. O
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tos (1955); Tarski (1954) in a diagram?
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tos (1955); Tarski (1954) in a diagram?

- vertex cover of size 1

{AcClAlEv}
FO P(C)
(] 1 (O]
O O
S [S
S| S
=y >
0] v
EFO UpSet(C)
{AcC|A ¢}
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tos (1955); Tarski (1954) in a diagram?

—3xVy,z.E(y,z) = x=yVx=2z {AcC|Ak g} - vertex cover of size 1
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tos (1955); Tarski (1954) in a diagram?
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tos (1955); Tarski (1954) in a diagram?

- vertex cover of size 1

-3y, z.E(y,z) = x=yVx=z {AcC|AE o}
FO P(C)
(] 1 (O]
o e
S [S
e e
> >
0] v
EFO UpSet(C)

oO—0 AICCA =) GCiHAGES — HeS
—( \/
Beware: In computer science C is a class of finite structures!
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Preservation Under Extensions, a.k.a., £os (1955); Tarski (1954)

4 Query Optimisation x over C *

Input Some FO sentence ¢
Promise Upwards closure « over C »
Output An existential sentence 1) equivalent to ¢ « over C

Over finite structures

* Tait (1959): no such !
+ Chen and Flum (2021): no algorithm even if ¢ exists.
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ACT III: Where the problem is solved



Finding the right nails for our hammer

{Acclary)

FO P(C)
Q (]
S AL
B e
S S
Qa e
=y =
0 (7]

EFO UpSet(C)

{AcclAk )

In computer science C is a class of finite structures!
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Finding the right nails for our hammer

{Acclary)

FO P(C)
Q (]
S AL
B e
S S
Qa e
=y =
0 (7]

EFO UpSet(C)
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Easy case: C is a finite class of finite structures.
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Finding the right nails for our hammer

{Acclary)

FO P(C)
Q (]
S AL
B e
S S
Qa e
=y =
0 (7]

EFO UpSet(C)

{AcclAk )

Combinatorics: C is well-quasi-ordered (WQO).
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Finding the right nails for our hammer

fAcclak e}
FO P(C)
Q (]
S AL
B e
S S
Qa e
=y =
0 (7]
EFO UpSet(C)
{AcclAk )

Non Trivial: C is hereditary (down-
wards closed), wide, and closed under
w (Atserias et al., 2008).
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Finding the right nails for our hammer

Preservation
under
extensions

' WQo |
Bounded Tree
depth

| Finite |

Folklore

Property implication over hereditary classes of finite structures

closed under w.
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Finding the right nails for our hammer

Preservation Thm. Pr‘zser‘vatlon Theorem @
Under @ vneer ) local«»global
extensions extensions
' wQo ——WQo
o | Bounded Tree Bounded Tree
< s
2| depth Depth
2 [Finite [ Finite k——f Wide
|oca”y (Atserias et al., 2008)

Property implication over hereditary classes of finite structures

closed under w.
6/11



Locally satisfying a property?

Local(C, r, k) £ {Na(d,r) | Ac C,d e AK}

A structure A.
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Locally satisfying a property?

Local(C, r, k) £ {Na(d,r) | Ac C,d e AK}

A structure A, with 2 selected nodes, and a 1-local neighborhood.
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Locally satisfying a property?

Local(C, r, k) £ {Na(d,r) | Ac C,d e AK}

An element of Local(C, 1, 2).
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Locally satisfying a property?
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Locally satisfying a property?
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& Localise Bounded Degree

C is of bounded degree if and only if Local(C, r, k) is finite for all
k,r>0, i.e., locally finite
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Locally satisfying a property?

Local(C, r, k) 2 {Na(d,r) | AcC,dc A}

& Localise Bounded Degree

C is of bounded degree if and only if Local(C, r, k) is finite for all
k,r>0, i.e., locally finite

Corollary (of theorem @; known from Atserias et al. (2008))

Hereditary classes of bounded degree, closed under v, satisfy
preservation under extensions.
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ACT IV: Behind the scenes




Snowy mountain tops

¢ Why assume C to be hereditary (downwards closed)?
Let ¢ € FO be upwards closed, t.f.a.e.:

(1) » =c ¢ with ¢ € EFO.

(i1) ¢ has finitely many minimal models in C.

(iif) minimal models of ¢ in C have bounded size.
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Proof scheme of Theorem @®

Assume ¢ is upwards-closed with respect to C; over C.

Step Minimal Models Sentence =¢ ¢
>  bounded radius (r, k) Xy, ..., X (X)), ¥ r-local
* bounded size ¢ Axy, ..., x0.(X), ¥ quantifier free
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Proof scheme of Theorem @®

Assume ¢ is upwards-closed with respect to C; over C.

Step Minimal Models Sentence =¢ ¢
>  bounded radius (r, k) Xy, ..., X (X)), ¥ r-local
* bounded size ¢ Axy, ..., x0.(X), ¥ quantifier free

definable and

existential K- == === =----+ upwards closed

existential
local and
upwards closed
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ACT V: The friends made along the way



Locality and preservation under extensions

Existential Existential
Gaifman normal form Sentences

Extensions (<)

(Grohe and Wéhrle, 2004) (Lo$, 1955; Tarski, 1954)

Gaifman normal form

Sentences

Arbitrary None

(Gaifman, 1982)

Over arbitrary structures
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Existential Existential
Gaifman normal form Sentences

Extensions (<)

(Grohe and Wéhrle, 2004) (Lo$, 1955; Tarski, 1954)

Existential local
Sentences

Positive
Gaifman normal form

Local elementary
embeddings

Gaifman normal form

Arbitrary
Sentences

None

(Gaifman, 1982)

Over arbitrary structures
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Locality and preservation under extensions

Existential Existential
Gaifman normal form Sentences

Extensions (<)

(Grohe and Wéhrle, 2004) (Tait, 1959; Chen and Flum, 2021)

Existential local
Sentences

Positive
Gaifman normal form

Disjoint unions (1)

Gaifman normal form

Arbitrary
Sentences

None

(Gaifman, 1982)

Over finite structures
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