When Locality Meets Preservation

Aliaume Lopez

Thursday, August 4th, 2022 LICS 2022, Haifa, Israël

ACT I: Where queries are optimised

Input Some FO sentence φ **Promise** Upwards closure for induced substructures (\subseteq_i) – a.k.a. extensions **Output** A simplified query (existential)

Input φ = there exists no vertex cover of size 1 in *G* **Promise** Upwards closure for induced substructures (\subseteq_i) – a.k.a. extensions **Output** A simplified query (existential)

Input φ = there exists no vertex cover of size 1 in *G* **Promise** When $G \subseteq_i H$, a vertex cover of *H* induces a vertex cover of *G* **Output** A simplified query (existential)

Input φ = there exists no vertex cover of size 1 in *G* **Promise** When $G \subseteq_i H$, a vertex cover of *H* induces a vertex cover of *G*

Output A simplified query (existential)

Input φ = there exists no vertex cover of size 1 in *G* **Promise** When $G \subseteq_i H$, a vertex cover of *H* induces a vertex cover of *G*

Output A simplified query (existential)

Input φ = there exists no vertex cover of size 1 in *G*

- **Promise** When $G \subseteq_i H$, a vertex cover of H induces a vertex cover of G
 - **Output** Finitely many graphs *M_i* to check

Input φ = there exists no vertex cover of size 1 in *G* **Promise** When $G \subseteq_i H$, a vertex cover of *H* induces a vertex cover of *G* **Output** Finitely many graphs M_i to check

Theorem (Łoś (1955); Tarski (1954))

This algorithm exists.

Proof.

- an equivalent existential sentence exists (heavy use of compactness)
- one can enumerate proofs $\vdash \psi \leftrightarrow \varphi$ with ψ existential.

н

Beware: In computer science C is a class of finite structures!

ACT II: Where all is lost in a fire

• Query Optimisation \star over \mathcal{C} \star

Over finite structures

- Tait (1959): no such ψ !
- Chen and Flum (2021): no algorithm even if ψ exists.

ACT III: Where the problem is solved

In computer science C is a class of finite structures!

Easy case: C is a *finite* class of *finite* structures.

Combinatorics: *C* is *well-quasi-ordered* (WQO).

Non Trivial: C is hereditary (down-wards closed), wide, and closed under iii (Atserias et al., 2008).

Preservation under extensions

Property implication over **hereditary** classes of **finite structures** closed under \uplus .

Property implication over **hereditary** classes of **finite structures** closed under \uplus .

Property implication over **hereditary** classes of **finite structures** closed under \uplus .

$$Local(\mathcal{C}, r, k) \triangleq \{\mathcal{N}_{\mathcal{A}}(\vec{a}, r) \mid \mathcal{A} \in \mathcal{C}, \vec{a} \in \mathcal{A}^k\}$$

A structure A.

$$Local(\mathcal{C}, r, k) \triangleq \{\mathcal{N}_{\mathcal{A}}(\vec{a}, r) \mid \mathcal{A} \in \mathcal{C}, \vec{a} \in \mathcal{A}^k\}$$

A structure *A*, with 2 selected nodes.

$$Local(\mathcal{C}, r, k) \triangleq \{\mathcal{N}_{\mathcal{A}}(\vec{a}, r) \mid \mathcal{A} \in \mathcal{C}, \vec{a} \in \mathcal{A}^k\}$$

A structure *A*, with 2 selected nodes, and a 1-local neighborhood.

$$Local(\mathcal{C}, r, k) \triangleq \{\mathcal{N}_{\mathcal{A}}(\vec{a}, r) \mid \mathcal{A} \in \mathcal{C}, \vec{a} \in \mathcal{A}^k\}$$

An element of $\mathsf{Local}(\mathcal{C}, 1, 2)$.

$Local(\mathcal{C}, r, k) \triangleq \{\mathcal{N}_{\mathcal{A}}(\vec{a}, r) \mid \mathcal{A} \in \mathcal{C}, \vec{a} \in \mathcal{A}^k\}$

$$\mathsf{Local}(\mathcal{C}, r, k) \triangleq \{\mathcal{N}_{\mathcal{A}}(\vec{a}, r) \mid \mathcal{A} \in \mathcal{C}, \vec{a} \in \mathcal{A}^k\}$$

Localise Bounded Degree

C is of bounded degree if and only if Local(C, r, k) is finite for all $k, r \ge 0$, i.e., *locally* finite

$$\mathsf{Local}(\mathcal{C}, r, k) \triangleq \{\mathcal{N}_{\mathcal{A}}(\vec{a}, r) \mid \mathcal{A} \in \mathcal{C}, \vec{a} \in \mathcal{A}^k\}$$

Localise Bounded Degree

C is of bounded degree if and only if Local(C, r, k) is finite for all $k, r \ge 0$, i.e., *locally* finite

Corollary (of theorem (1); **known from Atserias et al. (2008))** Hereditary classes of bounded degree, closed under \uplus , satisfy preservation under extensions.

ACT IV: Behind the scenes

- Why assume C to be hereditary (downwards closed)? Let $\varphi \in FO$ be upwards closed, t.f.a.e.:
- (i) $\varphi \equiv_{\mathcal{C}} \psi$ with $\psi \in \mathsf{EFO}$.
- (ii) φ has finitely many minimal models in C.
- (iii) minimal models of φ in C have bounded size.

Assume φ is upwards-closed with respect to \subseteq_i over \mathcal{C} .

Step	Minimal Models	Sentence $\equiv_{\mathcal{C}} \varphi$
*	bounded radius (<i>r</i> , <i>k</i>)	$\exists x_1, \ldots, x_k \cdot \psi(\vec{x}), \psi r$ -local
*	bounded size ℓ	$\exists x_1, \ldots, x_\ell. \psi(\vec{x}), \psi$ quantifier free

Assume φ is upwards-closed with respect to \subseteq_i over \mathcal{C} .

Step	Minimal Models	Sentence $\equiv_{\mathcal{C}} \varphi$
*	bounded radius (<i>r</i> , <i>k</i>)	$\exists x_1, \ldots, x_k \psi(\vec{x}), \psi r$ -local
*	bounded size ℓ	$\exists x_1, \ldots, x_\ell. \psi(\vec{x}), \psi$ quantifier free

ACT V: The friends made along the way

Locality and preservation under extensions

Over arbitrary structures

Locality and preservation under extensions

Over arbitrary structures

Locality and preservation under extensions

Over finite structures

- Atserias, A., Dawar, A., and Grohe, M. (2008). Preservation under extensions on well-behaved finite structures. *SIAM J. Comput.*, 38(4):1364–1381.
- Chen, Y. and Flum, J. (2021). Forbidden induced subgraphs and the łoś-tarski theorem. In *Proc. LICS'21*, pages 1–13.
- Gaifman, H. (1982). On local and non-local properties. In *Proc. Herbrand Symposium*, volume 107 of *Studies in Logic and the Foundations of Mathematics*, pages 105–135. Elsevier.
- Grohe, M. and Wöhrle, S. (2004). An existential locality theorem. *Ann. Pure Appl. Logic*, 129(1–3):131–148.
- Łoś, J. (1955). On the extending of models (I). *Fund. Math.*, 42(1):38–54.
- Tait, W. W. (1959). A counterexample to a conjecture of Scott and Suppes. *J. Symb. Logic*, 24(1):15–16.

Tarski, A. (1954). Contributions to the theory of models. I. *Indag. Math. (Proc.)*, 57:572–581.