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ABSTRACT
This paper investigates the expressiveness of a fragment of first-

order sentences in Gaifman normal form, namely the positive

Boolean combinations of basic local sentences. We show that they

match exactly the first-order sentences preserved under local ele-

mentary embeddings, thus providing a new general preservation

theorem and extending the Łós-Tarski Theorem.

This full preservation result fails as usual in the finite, and we

show furthermore that the naturally related decision problems

are undecidable. In the more restricted case of preservation under

extensions, it nevertheless yields new well-behaved classes of finite

structures: we show that preservation under extensions holds if

and only if it holds locally.
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ematics;
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1 INTRODUCTION
Preservation theorems. In classical model theory, preservation

theorems characterise first-order definable sets enjoying some se-

mantic property as those definable in a suitable syntactic fragment

[e.g., 3, Section 5.2]. A well-known instance of a preservation theo-

rem is the Łoś-Tarski Theorem [16, 25]: a first-order sentence φ is

preserved under extensions over all structures—i.e., A |= φ and A is

an induced substructure of B imply B |= φ—if and only if it is equiv-
alent to an existential sentence. Similarly, the Lyndon Positivity
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Theorem applied to a unary predicate X [17] connects surjective

homomorphisms that are strong in every predicate except X to

sentences that are positive in X . These two preservation theorems

can be seen as bridges between syntactic and semantic fragments

in Figure 1.

As most of classical model theory, preservation theorems typ-

ically rely on compactness, which is known to fail in the finite

case. Consequently, preservation theorems generally do not rela-

tivise to classes of structures, and in particular to the class Fin(σ)

of all finite structures [see the discussions in 21, Section 2 and 13,

Section 3.4]. For example, Lyndon’s Positivity Theorem fails even

over the class of finite words [14]. Nevertheless, there are a few

known instances of classes of finite structures where some preser-

vation theorems hold [2, 12, 22, 23], and this type of question is still

actively investigated [e.g. 4, 7, 14].

We say that a class C satisfies preservation under extensionswhen-
ever first order sentences are preserved under extensions (over C)

if and only if they are equivalent (over C) to an existential sentence.

In the particular case of the class C = Struct(σ) of all structures,

this is the Łoś-Tarski Theorem. When investigating preservation

under extensions that hinges on the interplay between the proper-

ties of the ordering and those of rist-order logic, one will typically

focus on either of these two aspects.

Focusing on the ordering, one can ask for the class C of consid-

ered structures to be well-quasi-ordered with respect to the induced

substructure ordering (hereafter written ⊆i ). In order-theoretic

terms, the set JφKC of models of a sentence φ in C is upwards-closed
whenever φ is preserved under extensions. The assumption that C

is well-quasi-ordered implies that JφKC has finitely many minimal

elements for ⊆i and this is well known to imply preservation under

extensions. Practical instances where ⊆i gives rise to a well-quasi-

order are scarce; it is the case for graphs of bounded tree-depth

[8], but to our knowledge the characterisation by Daligault, Rao,

and Thomassé [5] of which classes of bounded clique-width are

well-quasi-ordered yields the broadest known such class (see the

left column in Figure 3).

Focusing on first-order logic, one can leverage finite model the-

ory results over classes of structures provided they are somewhat

locally well-behaved; this can be ensured for instance by some

flavour of sparsity. Two instances of this are classes of bounded

degree and the class of all graphs of treewidth less than k [1]. This

is the direction we take in this paper.

Locality. Given a structure A over a finite relational signature

σ , its Gaifman graph has the elements of A as vertices and an

edge (a,b) whenever both a and b are in relation in A. The dis-

tance dA(a,b) between two elements of A is their distance in the

Gaifman graph of A. For a tuple a ∈ A, and a radius r ∈ N

https://doi.org/10.1145/3531130.3532498
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Figure 1: Comparison of the expressiveness of different frag-
ments of FO[σ] over general structures.

one can consider the r -neighborhood around a in A defined as

NA(a, r ) ≜ {a′ ∈ A | ∃a ∈ a,dA(a,a′) ≤ r } =
⋃
a∈aNA(a, r ); we

emphasise that this union is not required to be disjoint. Slightly

abusing notations, we identify the set NA(a, r ) ⊆i A with the cor-

responding induced substructure of A.
A first-order formula φ(x) is said to be r -local if its evaluation

over a structure A and a tuple a from A only depends on the r -
neighborhood of a in A, i.e. A, a |= φ if and only if NA(a, r ), a |= φ.
In the particular case of r = 0, local sentences are equivalent to

quantifier free sentences. Since σ is a finite relational signature,

every formula φ can be relativised to a r -local formula, hereafter

denoted by φ≤r , which coincides with φ over neighborhoods of

size r , although φ≤r might have a higher quantifier rank.

It is more delicate to craft a notion of locality for first order

sentences since they have no free variables. The classical approach

is to consider basic local sentences of the form ∃x.∧i,j d(xi ,x j ) >
2r ∧

∧
i ψ≤r (xi ) whereψ≤r is a formula relativised to the r neigh-

borhood of its single free variable. Simply put, the evaluation of a

local r -basic sentence is determined solely by the evaluation ofψ≤r
over disjoint neighborhoods of radius r . Note that the predicates
d(x ,y) ≤ r and y ∈ N(x, r ) are definable for each fixed r ∈ N.

The Gaifman Locality Theorem [10] states that every first-order

sentence is equivalent to a Boolean combination of basic local sen-

tences. This can be thought of as FO[σ] being limited to describing

the local behaviour of structures. In the study of preservation theo-

rems such as the Łoś-Tarski Theorem over finite structures, a first

step is often to use Gaifman’s normal form and rely on the structural

properties of models as a substitute for compactness [1, 2, 7, 12].

In Figure 1 several variants of the Gaifman normal form are

listed along with their correspondence to syntactic fragments of

first-order logic. For instance, in order to provide a faster model

checking algorithm, Grohe and Wöhrle crafted an existential Gaif-
man normal form as follows: every existential first order sentence is

equivalent to a positive Boolean combination of existential basic lo-
cal sentences [11], where an existential basic local sentence is of the

form ∃x.∧i,j d(xi ,x j ) > 2r ∧
∧
i ψ≤r (xi ) andψ≤r is an existential

formula relativised to the r -neighborhood of its one free variable.

Note that this not an equivalence: ∃x .∃y.d(x ,y) > 2 is in exis-

tential Gaifman normal form but not preserved under extensions

nor equivalent to an existential sentence. Another variant of the

Gaifman normal form, tailored to the study of Lyndon’s Positivity

Theorem over one unary predicate X is defined by Dawar, Grohe,

Kreutzer, and Schweikardt [6, Theorem 2]. It allows the authors to

provide approximation schemes for evaluating sentences positive

in one unary predicate.

1.1 Contributions
Our first main contribution is a new line of equivalent character-

isations through local normal forms, syntactic restrictions, and

preservation under some ordering, as embodied in Figure 1. This

generalises the correspondences between the existential Gaifman

normal forms defined by Grohe and Wöhrle, existential sentences,

and preservation under extensions.

1.1.1 Existential Local Sentences, Positive Gaifman Normal Forms.
This paper studies a positive variant of locality through the prism

of existential closures of r -local formulas, abbreviated here as exis-
tential local sentences. Those are of the form ∃x.τ (x) where τ is an

r -local formula.

As opposed to basic local sentences, existential local sentences
allow interaction between the existentially quantified variables,

which increases their expressiveness. Existential local sentences

also generalise existential sentences, as quantifier free formulas are

0-local (conversely, 0-local formulas can be rewritten as quantifier

free formulas). Thus, by allowing formulas with a non-zero locality

radius, we provide a middle ground between existential sentences

and arbitrary sentences.

We prove that existential local sentences and positive Boolean
combinations of basic local sentences are equally expressive, regard-

less of the class of structures considered. This theorem, proven in

Section 3, is related to the existential Gaifman normal form of Grohe

and Wöhrle [11] and relies, in part, on similar combinatorial argu-

ments.

Theorem 1.1 (Positive Locality). Let C ⊆ Struct(σ) be a class of
structures and φ ∈ FO[σ] be a first-order sentence. The sentence φ
is equivalent over C to an existential local sentence if and only if it
is equivalent over C to a positive Boolean combination of basic local
sentences.

1.1.2 A Semantic Characterisation of Existential Local Sentences.
Recall that a map h : A → B is an elementary embedding whenever

for every first order sentence φ(x) and every a ∈ Ak A, a |= φ if and

only if A,h(a) |= φ. A localised notion of elementary embeddings is

obtained as follows:h : A → B is a local elementary embeddingwhen
for every k ≥ 1, r ≥ 0, a ∈ Ak , and r -local formulaφ,A, a |= φ if and

only if B,h(a) |= φ. This definition is a strengthening of the induced
substructure ordering, defined by A ⊆i B whenever there exists an

injective morphism h : A → B such that for all relations R ∈ σ and

elements a ∈ Ak , A, a |= R(x) if and only if B,h(a) |= R(x).
We define another natural ordering on structures by writing

A⇛r,k
q B whenever, for all φ = ∃x1, . . . xk .τ (x) where τ is an r -

local formula of quantifier rank at most q, A |= φ implies B |= φ.

An existential local sentence is naturally preserved under⇛r,k
q for
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some r ,q ≥ 0 and k ≥ 1. We define the limit of those preorders as

⇛∞,∞
∞ ≜

⋂
r ≥0

⋂
q≥0

⋂
k≥1

⇛r,k
q . (1)

Theorem 1.2 (Local preservation). Let φ be a sentence in FO[σ].
The following properties are equivalent over the class Struct(σ) of all
structures.
(a) The sentence φ is equivalent to an existential local sentence.
(b) There exist r ,q,k ∈ N such that φ is preserved under⇛r,k

q .
(c) The sentence φ is preserved under⇛∞,∞

∞ .
(d) The sentence φ is preserved under local elementary embeddings.

1.1.3 Non-relativisation in the Finite. The proof of Theorem 1.2

does not relativise to classes of finite structures, except for the

equivalence (a) ⇔ (b). Our second main contribution in Section 5

is to show that Theorem 1.2 fails over Fin(σ) the class of finite

structures, and to characterise for which parameters (r ,k,q) preser-

vation under⇛r,k
q leads to an existential local form over Fin(σ).

The picture is even bleaker when applying the methodology

of Chen and Flum [4] for the Łoś-Tarski Theorem or Kuperberg

[14] for Lyndon’s Positivity Theorem: we show that most decision

problems ensuing this failure are undecidable. Namely, we show in

Section 5.2 that it is not possible to decide whether a sentence is

preserved under local elementary embedding in the finite setting,

nor is it possible to decide whether a sentence preserved under

elementary embedding is equivalent to an existential local one,

and even under the promise that the sentence is equivalent to an

existential local one such an equivalent sentence is not computable.

1.1.4 Application to Preservation Under Extensions. We leverage

our understanding of existential local sentences to split the proof of

preservation under extensions over a class C in two distinct steps:

(✁) C is localisable, i.e. sentences preserved under extensions over

C are equivalent to existential local sentences C, (✻) C satisfies

existential local preservation under extensions, i.e. existential local
sentences preserved under extensions over C are equivalent to ex-

istential sentences over C. A class C that satisfies both (✁) and (✻)

satisfies preservation under extensions, hence this proof scheme is

correct. Moreover, existential sentences are existential local there-

fore this proof scheme is complete. Section 6 is devoted to exploring

the new classes of structures where preservation under extensions

holds that are gained through this proof scheme. This is done by

providing a finer understanding of the interaction between locality

and combinatorial arguments in preservation under extensions.

(✁) Let us say that a class C ⊆ Fin(σ) is closed under disjoint

unions when the disjoint union of one structure from C and

a finite structure from Fin(σ) remains in C. When the class

C is stable under induced substructures, we say that C is

hereditary. We prove in Section 6.1 that hereditary classes

of finite structures closed under disjoint unions are localis-
able (Theorem 6.3). This is the diagonal edge labelled (✁)

in Figure 2, that this bypasses the non-relativisation of The-

orem 1.2 in the finite. As a consequence, the class Fin(σ) of

finite structures satisfies (✁). Moreover, we prove in Sec-

tion 2 that closure under local elementary embeddings coin-

cides with closure under disjoint unions in the case of finite

structures. This highlights the crucial use of local elementary

embeddings in the literature [1, 2, 22], in the guise of disjoint

unions.

(✻) We prove in Section 6.2 that a hereditary class C satisfies (✻)

if and only if its “local neighbourhoods” Balls(C, r ,k) satisfy
preservation under extensions for r ,k ≥ 0 (Lemma 6.6). We

construct the local neighbourhoods of a class C by collecting

the neighbourhoods around k points in structures of C as

follows:

Balls(C, r ,k) ≜
{
NA(a, r ) | A ∈ C ∧ a ∈ A≤k

}
. (2)

This allows to bridge the gap between existential sentences

and existential local sentences preserved under extensions

in Figure 2 via the edge labelled (✻).

The remaining of Section 6.3 is devoted to proving that the

combination of (✁) Theorem 6.3 and (✻) Lemma 6.6 strictly gener-

alise previously known properties that imply preservation under

extensions. To that end, we study classes C that are hereditary,

closed under disjoint unions, and “locally well-behaved”, i.e. such

that Balls(C, r ,k) is “well-behaved” for all r ,k ≥ 0. Instances of

“well-behaved” are finite classes, classes of bounded tree-depth, or

more generally classes that are well-quasi-ordered with respect to

⊆i , as depicted in the left column of Figure 3. By localising these

properties in our Theorem 6.9, we obtain the right column of Fig-

ure 3, which still implies preservation under extensions, but strictly

improves previously known results, with the exception of “locally

finite classes” that coincides with the “wide classes“ of Atserias et al.

[1, Theorem 4.3]. This validates our proof scheme as we effectively

decoupled the locality of first-order logic (✁) from the combinato-

rial behaviour considered (✻) in our proofs of preservation under

extensions.

Local elementary

embeddings

Extensions

Semantic preservation

Existential Local

Sentences

Existential

Sentences

Syntactic

(✻) Lem. 6.6 + ⊆i

Cor. 5.7

(✁
) C

or
. 6
.4

Figure 2: Comparison of the expressiveness of fragments of
FO[σ] over hereditary classes of finite structures stable un-
der disjoint unions. Single headed arrows represent strict in-
clusions.

Due to page limitation, some proofs are omitted in the paper

and can be found in its full version available on arxiv at https:

//arxiv.org/abs/2204.02108.

2 LOCALITY PREORDERS
As most of this paper is centered around preorders of the form

⇛r,k
q , we start by illustrating them over several examples and by

https://arxiv.org/abs/2204.02108
https://arxiv.org/abs/2204.02108
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Figure 3: Implications of properties over hereditary classes
of finite structures stable under disjoint unions.

relating them to well-known preorders for specific values of r ,q
and k .

Given a structure A ∈ Struct(σ) and a tuple a of elements from

A, let us write tp
q
A (a, r ) for the (q, r )-local type of a, i.e., the set of

all formulas of quantifier rank at most q with |a| free variables that
are r -local such that (A, a) |= φ(x). Note that there are only finitely

many possible local types for a given pair (q, r ) ∈ N2 and a given

number of variables |a|. Those local types can be collected to fully

describe the local behaviour of A in

Types
q,k
r (A) ≜

{
tp
q
A (a, r ) | a ∈ A≤k

}
. (3)

We shall often use this collection of types to reason with our pre-

orders.

Fact 2.1 (Type collection). Let r ,q,k ∈ N with k ≥ 1. For all A,B ∈

Struct(σ), A⇛r,k
q B if and only if Types

q,k
r (A) ⊆ Types

q,k
r (B).

Proof. Assume that A⇛r,k
q B. Let us write T for the finite set

(up to logical equivalence) of possible r -local formulas at radius

r , quantifier rank q and k variables. Given a vector a ∈ Ak , define
T+ ≜ tp

q
A (a, r ) and T− ≜ T \ T+. Those are finite collections of

r -local formulas of quantifier rank at most q with k free variables

x1, . . . xk . Let us writeψ (x) ≜
∧
t ∈T+ t(x) ∧

∧
t ∈T− ¬t(x), which is

r -local and of quantifier rank at most q. The structure A satisfies

φ ≜ ∃x.ψ (x) through the choice of the vector a. Because A⇛r,k
q B,

B |= φ and this provides a vector b ∈ Bk such that B, b |= ψ (x). In
turn, this proves that the sentences of quantifier rank at most q and

locality radius r that hold over b are exactly those in T+. Finally,
tp
q
B (b, r ) = tp

q
A (a, r ).

Conversely, assume that Types
q,k
r (A) ⊆ Types

q,k
r (B). Let φ be a

sentence of the shape ∃x.τ (x), where |x| = k and τ (x) is an r -local
formula of quantifier rank at most q, that is true inA. There exists a

vector a ∈ Ak such that A, a |= τ (x), in particular τ (x) ∈ tp
q
A (a, r ).

Since Types
q,k
r (A) ⊆ Types

q,k
r (B), there exists b ∈ Bk such that

tp
q
A (a, r ) = tp

q
B (b, r ). Thus, B, b |= τ (x) and therefore B |= φ. □

Fact 2.2 (Refinement). If (q, r ,k) ≤ (q′, r ′,k ′) component-wise,

then⇛r ′,k ′
q′ ⊆ ⇛r,k

q .

Example 2.3 (Inequalities between two structures). We consider

undirected graphs as structures in Struct(σ) where σ ≜ {(E, 2)}.
Let Pn be a finite path of size n and Cm be a finite cycle of sizem.

We can prove that Cm ⇛
r,k
q Pn whenever n ≥ m > k(2r + 1).

Indeed, consider k points of Cm and their balls of radius r . As
m > k(2r + 1), the unions of these balls exclude at least one point
of Cm , and are thus a finite union of paths. As n ≥ m, it is possible

to find points in Pn behaving similarly at radius r .
However, as soon as k, r and q ≥ 1, Pn is not below Cm for

⇛r,k
q . Indeed, it suffices to select an endpoint of the path Pn , and

to assert that it is of degree one using a sentence of quantifier rank

1 evaluated at radius 1. One cannot find a similar point inCm as all

nodes are of degree two.

The connection between disjoint unions, local elementary em-

beddings and induced substructures is provided in the following

lemmas and examples that are detailed in the full paper.

Lemma 2.4. lemma Let A,B be two structures in Struct(σ). If
h : A → B is a local elementary embedding then A⇛∞,∞

∞ B.

Proof. Fix q, r ,k ∈ N, and consider a tuple a ∈ Ak . By construc-

tion, the tuple h(a) ∈ Bk satisfies the same local FO formulas, and

in particular, tp
q
A (a, r ) = tp

q
B (h(a), r ), thus A⇛r,k

q B. □

Lemma 2.5 (Preorders in the finite). LetA,B be two finite structures
in Fin(σ). The following statements are equivalent.

(1) There exists C such that A ⊎C = B.
(2) A⇛∞,∞

∞ B.
(3) A⇛r,∞

q B for some r ,q ≥ 1.
(4) There exists a local elementary embedding from A to B.

Proof of (1) ⇒ (2). Given a vector a ∈ Ak , a radius r , and
quantifier rank q, one notices that NA(a, r ) = NA⊎C (a, r ), hence
tp
q
A (a, r ) = tp

q
B (a, r ). We have proven that A⇛∞,∞

∞ B. □

Proof of (2) ⇒ (3). By definition. □

Proof of (3) ⇒ (4). Let us consider a ∈ A |A |
a vector contain-

ing all the points of A exactly once. There exists a vector b ∈ B |A |

such that tp
1

A (a, 1) = tp
1

B (b, 1). As a consequence, NB (b, 1) =
NB (b, 0) since this equation holds for a and is expressible using one
universal quantifier. The mapping h : a 7→ b is a local elementary

embedding. Indeed, r -neighborhoods around a (resp. b) are subsets
of a (resp. b). This proves that r -local formulas around a (resp. b)
can be rewritten as 0-local, and we conclude using the equality of

their (1, 1)-local types. □

Proof of (4) ⇒ (1). Let h : A → B be a local elementary em-

bedding. Let D be the substructure induced by h(A) in B; since h is

a local elementary embedding, A and D are isomorphic. Let us con-

sider a point c ∈ B \ D. Assume by contradiction that there exists a

relation containing both c and an element of d ∈ D. Let φ(x) be a 1-
local formula of quantifier rank 1with |A| free variables stating that
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there exists a point not in x connected to some element of x. Since
h is a local elementary embedding and d ∈ h(A), B,h(A) |= φ(x) and
A,A |= φ(x). This is absurd, hence B = D⊎(B \D) = A⊎(B \D). □

However, the existence of a local elementary embedding is in

general not equivalent to⇛∞,∞
∞ , as shown next.

Example 2.6 (Preorder difference). Over the signature of graphs,

let G be an infinite grid, and G ′ ≜ G ⊎ G. There exists no local

elementary embedding from G ′
to G but G ′⇛∞,∞

∞ G.

Over finite structures, when the parameter values of r ,q or k are

too small, one ends up with a preorder that is trivial, except for one

specific combination where we obtain the extension preorder ⊆i .

Fact 2.7 (Trivial orders). Over finite structures, the following pre-

orders are trivial, i.e. every pair of structures is related:⇛r,0
q when-

ever r ,q ∈ N ∪ {∞}, and⇛∞,1
0

.

Lemma 2.8 (Extension preorder). Over finite structures and for all
q, r ∈ N ∪ {∞},⇛0,∞

q = ⇛r,∞
0
= ⊆i .

3 POSITIVE GAIFMAN NORMAL FORM
The aim of this section is to provide a connection between the

positive variant of Gaifman normal forms and existential local

sentences. The theorem and its proof are heavily inspired by the

combinatorics behind Grohe and Wöhrle’s proof of the existential

Gaifman normal form. In particular, the main issue arises from

finding points with disjoint neighborhoods.

As basic local sentences are existential local, the only difficulty

in Theorem 1.1 is converting an existential local sentence into a

positive Boolean combination of basic local sentences. We split this

transformation into intermediate syntactic steps

Existential local ∃x.ψ (x) whereψ is an r -local formula.

Almost basic local ∃x.∧i,j d(xi ,x j ) > 2r ∧ψ (x) whereψ is

an r -local formula.

Asymmetric basic local ∃x.∧i,j d(xi ,x j ) > 2r ∧
∧
i ψi (xi )

where (ψi )i is a family of r -local formulas with exactly one

free variable.

Basic local ∃x.∧i,j d(xi ,x j ) > 2r ∧
∧
i ψ (xi ) where ψ is an

r -local formula with exactly one free variable.

Asymmetric basic local sentences already appear as an inter-

mediate steps towards basic local sentences in the constructions

of Grohe and Wöhrle [11] and Dawar et al. [6]. Most of the trans-

formations will rely on the description of the ‘spatial’ repartition of

elements in a given structureA. We handle this description through

the following lemma

proven in the full paper.

Lemma 3.1. For every k, r ≥ 0, for every structure A ∈ Struct(σ)

and vector a ∈ A≤k there exists a vector b ∈ A≤k and a radius
r ≤ R ≤ 4

kr such that NA(a, r ) ⊆ NA(b,R) and ∀b , b ′ ∈

b,NA(b, 3R) ∩ NA(b
′, 3R) = ∅.

3.1 From Existential Local Sentences to
Asymmetric Basic Local Sentences

Using Lemma 3.1 it is already possible to transform an existential

local sentence into a positive Boolean combination of almost basic
local sentences.

Lemma 3.2 (From Existential local to Almost basic local). Let φ(x)
be an r -local formula. There exist 1 ≤ n ≤ 4

|x |r and ψ1, . . . ,ψn
almost basic local sentences such that ∃x.φ(x) is equivalent to the
disjunction

∨
1≤i≤k ψi over Struct(σ).

Proof. Let us define ∆ ≜
{
(k,R) | 0 ≤ k ≤ |x| ∧ r ≤ R ≤ 4

|x |r
}

and

ψ(k,R) ≜ ∃b1, . . . ,bk .∧
1≤i<j≤k d(bi ,bj ) > 2R

∧ ∃x ∈ N(b,R).φ(x)
(4)

To conclude it suffices to prove that ∃x.φ(x) is equivalent to∨
(k,R)∈∆ψ(k,R) ≜ Ψ.

• Assume that A ∈ Struct(σ) satisfies ∃x.φ(x). Then there

exists a ∈ A |x |
such thatNA(a, r ) |= ∃x.φ(x) sinceφ is r -local

around x. Using Lemma 3.1, there exists a size 0 ≤ k ≤ |a|
a radius r ≤ R ≤ 4

|a |r , and a vector b ∈ Ak such that

NA(a, r ) ⊆ NA(b,R) and the balls of radius 3R around the

points of b do not intersect.

In particular,

⊎
b ∈bNA(b,R) |= ∃x.φ(x) since witnesses in

NA(a, r ) can still be found and φ is r -local. This proves that
A |= ψ(k,R) hence that A |= Ψ.

• Assume that A ∈ Struct(σ) satisfies Ψ. Then there exists

(k,R) such that A |= ψk,R thus proving that there exists

b ∈ Ak such that

⊎
b ∈bNA(b,R) |= ∃x.φ(x). Since r ≤ R and

φ is r -local this proves A |= ∃x.φ(x). □

An application of the Feferman-Vaught technique [9, 18] allows

to transform almost basic local sentences into the asymmetric ones
introduced by Grohe and Wöhrle [11], i.e. to sentences of the form

∃x.∧i,j d(xi ,x j ) > 2r ∧
∧
i ψi (xi ) where each ψi is a r -local for-

mula when i ranges from 1 to |x|. The combination of this transfor-

mation

(detailed in the full paper)

with Lemma 3.2 generalises a similar statement over existential

sentences [11, Theorem 6] to existential local sentences.

Lemma 3.3 (From Almost basic local to Asymmetric Basic local).
Every almost basic local sentence is equivalent to a disjunction of
asymmetric basic local sentences.

3.2 From Asymmetric Basic Local to Basic
Local Sentences

We are now ready to build the final transformation between asym-

metric basic local sentences and basic local sentences, reusing some

of the combinatorics of Grohe and Wöhrle [11, Lemma 4].

As a convenience, let us write ϕ/i for the sentence φ where the

variable xi and local sentence ψi are ‘removed.’ For instance, if

ϕ ≜ ∃x1,x2.d(x1,x2) > 2r ∧ψ1(x1) ∧ψ2(x2) then ϕ/1 = ∃x2.ψ2(x2)
and ϕ/2 = ∃x1.ψ1(x1).
Fact 3.4 (Removing variable weakens). If φ is an asymmetric ba-

sic local sentence of the form ∃x1, . . . ,xk .∧i,j d(xi ,x j ) > 2r ∧∧
i ψi (xi ), A |= φ and 1 ≤ i ≤ k , then A |= φ/i .

The following lemma allows us to reduce the number of vari-

ables in an asymmetric basic local sentence under the assump-

tion that some witness is frequent. To simplify notations, let us



LICS ’22, August 2–5, 2022, Haifa, Israel Aliaume Lopez

write ∃≥n
r x .θ (x) as a shorthand for ∃x1, . . . ,xn .∧i,j d(xi ,x j ) >

2r ∧
∧
i θ (xi ). When θ (x) is a r -local sentence, ∃≥n

r x .θ (x) is a basic
local sentence.

Lemma 3.5 (Repetitions). If φ is an asymmetric basic local sentence
of the form ∃x1, . . . ,xk .∧i,j d(xi ,x j ) > 2r ∧

∧
i ψi (xi ) and A |=

φ/i ∧ ∃≥k
2r x .ψi (x), then A |= φ.

Proof. LetA be a structure such thatA |= φ/i ∧∃≥k
2r x .ψi (x). By

definition of φ/i there exists a vector a ∈ Ak−1 of points at pairwise
distance greater than 2r such that A,aj |= ψj (x) for 1 ≤ j , i ≤ k .
To prove that A |= φ, it suffices to find some witness ai forψi that
is at distance greater than 2r of a.

The fact that A |= ∃≥k
2r x .ψi (x) guarantees that we can find k

witnesses forψi at pairwise distance greater than 4r , let us write b
this set of witnesses.

Assume by contradiction that ∀b ∈ b,∃a ∈ a.d(a,b) ≤ 2r . Since
|a| = k − 1 and |b| = k , there exists a point a ∈ a such that

two elements b1 and b2 of b are at distance less than 2r of a. The
triangular inequality implies that d(b1,b2) ≤ 4r which is absurd.

We have proven that there exists a b ∈ b such that b is at distance
greater than 2r of all elements in a, therefore A |= φ. □

Let us temporarily fix a structure A. To transform an asymmet-

ric basic local sentence into a positive Boolean combination of

basic local sentences, one can proceed by induction on the num-

ber of outer existential quantifications. Whenever Fact 3.4 can be

applied, it suffices to use the induction hypothesis. As a conse-

quence, the base case of our induction is when Fact 3.4 cannot

be applied at all. For such an asymmetric basic local sentence

φ ≜ ∃x1, . . . ,xk .∧1≤i,j≤k d(xi ,x j ) > 2r ∧
∧

1≤i≤k ψi (xi ) , the
setW of elements inA that satisfy at least oneψi enjoys some spar-

sity property. Namely, it is not possible to find more than k(k − 1)

points inW whose neighborhoods of radius 2r do not intersect.

To handle this base case, we enumerate the possible behaviours

of the setW through template graphs. Given a structure A, a non-
empty finite set Q of r -local properties, a radius R and a vector a of
elements in A such that every a ∈ a satisfies at least one property
p ∈ Q , we build the template graphGR

a as follows: its vertices are the

elements of a and it has a labelled edge (u,v,dA(u,v)) whenever
dA(u,v) ≤ R. Moreover, a node a ∈ V (G) is coloured by p ∈ Q
whenever A,a |= p(x). Be careful that a vertex can have multiple

colours; the set of colours of a vertex v is written C(v).
Given a maximal size K , a radius R and a non-empty finite set Q

of r -local properties, we define ∆(K ,R,Q) to be the set of template

graphs with at mostK vertices, colours inQ and edges labelled with

integers at most R. Graphs in ∆(K ,Q,R) are ordered using G ≤ G ′

whenever there exists an isomorphism h : G → G ′
between the

underlying graphs respecting edge labels such that C(v) ⊆ C(h(v))
for v ∈ V (G). In a structure A, a graph G is represented by a vector

a whenever GR
a ≥ G.

From a graph G ∈ ∆(K ,R,Q) where Q is a non-empty finite set

of r -local properties, one can build the (R + r )-local formula θRG (x)

that finds a representative of G as follows

θRG (x) ≜∃v1, . . . ,v |V (G) | ∈ N(x ,R).∧
(vi ,vj ,h)∈E(G)

d(vi ,vj ) = h

∧
∧

vi ∈V (G)

∧
p∈C(i)

p(vi )

∧
∧

vi ∈V (G)

N(vi , r ) ⊆ N(x ,R) .

Fact 3.6 (Graph representation). Let A be a structure, r ,R ≥ 1, Q
be a non-empty finite set of r -local properties, G ∈ ∆(K ,R,Q) be a
template graph, and a ∈ A be an element of A. Then A,a |= θRG (x)

if and only if NA(a,R) contains points b such that GR
b ≥ G and

NA(b, r ) ⊆ NA(a,R).

Template graphs miss one key compositional property, namely

if A is a structure and a, b are two vectors, it is not immediate to

recover GR
ab from GR

a and GR
b . This is dealt with by restricting our

attention to vectors that are far enough from one another.

Fact 3.7. Let A be a finite structure, Q a non-empty finite set of

r -local properties, and a, b be vectors of elements ofAwhose neigh-

borhoods of radius R ≥ r do not intersect. Then the template graph

GR
ab is the disjoint union of GR

a and GR
b .

To ensure that we can use Fact 3.7, we add security cylinders
around points, as ensured by the following max(3R,R + r )-local
formula whose behaviour is detailed in the full paper

πRQ (x) ≜∀y ∈ N(x , 3R).
©­«
∨
p∈Q

p(u)
ª®¬ =⇒ N(y, r ) ⊆ N(x ,R) .

Lemma 3.8 (Security Cylinders). For every radii R, r ≥ 1, for every
non-empty finite set Q of r -local properties, for every graph G ∈

∆(K ,R,Q), for every structure A, for every points a,b ∈ A such that
d(a,b) ≤ 2R, A,a |= θRG (x) and A,b |= πRQ (x) implies A,b |= θRG (x).

Lemma 3.9 (From Asymmetric basic local to Basic Local). Every
asymmetric basic local sentence is equivalent to a positive Boolean
combination of basic local sentences.

Proof. Let φ be of the form ∃x1, . . . ,xk .∧i,j d(xi ,x j ) > 2r ∧∧
i ψi (xi ). We prove by induction over k that φ is equivalent to a

positive Boolean combination of basic local sentences. When k ≤ 1,

φ is already a basic local sentence hence we assume k ≥ 2.

For 1 ≤ i ≤ k , we apply the induction hypothesis on φ/i , which

has strictly fewer existentially quantified variables, and call φ/i the
obtained positive Boolean combination of basic local sentences.

Let Q ≜ {ψ1, . . . ,ψk } and for convenience, let ∆ be a shorthand

for ∆(k, 4k
2

6r ,Q). We defineM to be the multisets of ℘(∆) with up

to k(k −1) repetitions per element of ℘(∆). Given a multisetM ∈ M
and a radius R we can write the following conjunction of basic local

sentences

ΘR
M ≜

∧
S ∈℘(∆)

∃≥M (S )
3R x .πRQ (x) ∧

∧
G ∈S

θRG (x) ∧
∧
G<S

¬θRG (x) .

The set of graphs obtainable from a multisetM ∈ M is written

Obt(M) and defined inductively by Obt(∅) ≜ ∅ and Obt({S} +M)
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defined as collection of graphsG ,G ′
andG⊎G ′

forG ∈ Obt(M) and

G ′ ∈ S . We call a multiset M valid whenever there exists a graph

G obtainable fromM that contains vertices v1, . . . ,vk at pairwise

weighted distance greater than 2r and such that vi is coloured by

ψi . The finite set of valid multisets is writtenMV .

Let us prove that φ is equivalent to the positive Boolean combi-

nation of basic local sentences Ψ defined as

Ψ ≜

( ∨
1≤i≤k

φ/i ∧ ∃≥k
2r x .ψi (x)

)
∨

©­«
∨

M ∈MV

∨
6r ≤R≤4k26r

ΘR
M

ª®¬ .
Assume first thatA |= φ. Using Fact 3.4,A |= φ/i for all 1 ≤ i ≤ k

and by construction this proves that A |= φ/i for all 1 ≤ i ≤ k . As a

consequence, we only need to treat the case whereA ̸ |= ∃≥k
2r x .ψi (x)

for all 1 ≤ i ≤ k .
In such a structure A, let us callW the set of elements in A that

satisfy at least oneψi . It is not possible to find more than k(k − 1)

points inW whose neighborhoods of radius 2r do not intersect.

This implies that there exists a vector c in A of size less or equal

k(k − 1) such thatW ⊆ NA(c, 6r ).
Using Lemma 3.1 over c and 6r one obtains a radius 6r ≤ R ≤

4
k2

6r and a vector b such thatNA(c, 6r ) ⊆ NA(b,R) and the neigh-

borhoods of radius 3R around points in b do not intersect.

Given an element b ∈ b, construct Sb the collection of the

template graphs GR
a when a ranges over the sets of k points of

W ∩ NA(b,R). By construction, Sb ∈ ℘(∆). Let us write Mb the

multiset obtained by collecting the sets Sb for b ∈ b.
We now prove thatMb is valid. As A |= φ, there exists a vector

a ∈ Ak of points at pairwise distance greater than 2r such that

A,ai |= ψi (x) hence it suffices to prove that GR
a ∈ Obt(Mb) to

conclude thatMb is valid.
Remark that a is included in the disjoint union of the 3R neigh-

borhoods of the elements of b. As a consequence of Fact 3.7 GR
a =⊎

b ∈bG
R
a/b where a/b is the vector of elements of a that are at

distance less than 3R of b. This proves that GR
a ∈ Obt(Mb).

As a consequence, A |= ΘR
Mb

with M valid and 6r ≤ R ≤ 4
k2

6r

and therefore A |= Ψ.

Assume conversely that A |= Ψ. If A |= φ/i ∧ ∃≥k
2r x .ψi (x)

for some i , then by definition A |= φ/i ∧ ∃≥k
2r x .ψi (x) and using

Lemma 3.5, A |= φ.
Otherwise A |= ΘR

M where M is a valid multiset. Let us write

M = {S1, . . . , Sn } and each Si is repeatedmi ≤ k(k − 1) times. By

construction of ΘR
M , there exist points b

j
i for 1 ≤ i ≤ n and 1 ≤ j ≤

mi in A such that A,b
j
i |= πRQ (x) ∧

∧
G ∈Si θ

R
G (x) ∧

∧
G<Si ¬θ

R
G (x).

Moreover, for each i the points b
j
i are at distance greater than 6R.

Our goal is to prove that the points b
j
i are at pairwise distance

greater than 2R when i varies. Assume by contradiction that there

exists i, j and i ′, j ′ such that i , i ′ and d
(
b
j
i ,b

j′
i′

)
≤ 2R. We are

going to prove that Si = Si′ . Assume by contradiction that there

existsG ∈ Si \Si′ . We know thatA,b
j
i |= θRG (x) andA,b

j′
i′ |= ¬θRG (x).

As A,b
j
i |= πRQ (x), Lemma 3.8 implies that A,b

j′
i′ |= θ

R
G (x) which is

absurd. Hence, Si = Si′ , which is in contradictionwith the definition

ofM , and finally, the points b
j
i must be at distance greater than 2R.

As the multisetM is valid, there exists a graphG ∈ Obt(M) with

vertices v1, . . . ,vk at pairwise distance greater than 2r such that

vi is coloured by ψi . By induction on the construction of G, and

since the R-neighborhoods around the points b
j
i do not intersect,

we can use Fact 3.7 to build a vector c in A such that GR
c ≥ G.

As a consequence, there exists k points a1, . . . ,ak in c that are at
pairwise distance greater than 2r and such that A,ai |= ψi (x). We

have proven that A |= φ. □

Proof of Theorem 1.1. This follows from lemmas 3.2 to 3.3.

□

Notice that we do not recover the existential locality of Grohe

and Wöhrle using a radius 1 since we introduce negations in the

construction of the basic local sentences. Conversely, we did not

manage to apply directly their result to obtain Theorem 1.1.

4 A LOCAL PRESERVATION THEOREM
Positive Locality Theorem. In order to prove Theorem 1.2, we

use a classical construction of model theory. Given a structure

A ∈ Struct(σ), one can build a new langage LA consisting of the

relations in σ extended with constants ca for a ∈ A; the structure A
is then canonically interpreted as a structure in LA by interpreting

ca with the element a; this structure is written Â. Be careful that
this construction makes us temporarily leave the realm of finite
relational signatures. It is possible, given a fragment F of FO over

the extended language to build a theory T+(F,A) consisting of all
the sentences of F true in Â.

Proof of Theorem 1.2. The implications (a) ⇒ (b) ⇒ (c) ⇒

(d) are consequences respectively of the definition of⇛r,k
q , Fact 2.2

and Lemma 2.4. As a consequence, let us focus on the implication

(d) ⇒ (a).
Assume thatA is a structure such thatA |= φ. Let us buildLA the

extended language of A and F the set of sentences that are r -local
around the constants ca .

Whenever B̂ is a structure over the extended language such that

B̂ |= T+(F,A) we have an interpretation ν of the constants ca in

B. Notice that the function h : A → B defined by h(a) ≜ ν (ca ) is a
local elementary embedding from A to B.

Because A |= φ, the theory T+(F,A) ∪ {¬φ} is inconsistent in
the language LA. Indeed, assume there exists a structure B̂ such

that B̂ |= ¬φ and B̂ |= T+(F,A). Then there exists an elementary

embedding h : A → B and A |= φ so B |= φ. As φ does not contain

any constant of the form ca this proves that B̂ |= φ which is absurd.

This entails by the compactness theorem the existence of a sen-

tence ψA, a finite conjunction of sentences in T+(F,A) such that

ψA =⇒ φ. Moreover, since finitely many constants appear in the

sentenceψA, we can build a sentence θA by quantifying existentially

over them. In particular, the sentence θA is a first-order sentence

over the finite relational signature σ. Recall that Â |= T+(F,A) by
definition, hence Â |= ψA and in particular A |= θA.
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Let us build Tφ ≜ {¬θC | C |= φ}. We prove that Tφ ∪ {φ} is
inconsistent as a model B of this theory is such that ¬θB ∈ Tφ
hence B |= ¬θB , but this contradicts the fact that B |= θB .

A second use of the compactness theorem allows us to extract

C1, . . . ,Cn such thatφ =⇒ θC1
∨· · ·∨θCn . Conversely, sinceCi |=

φ, whenever B |= θCi the structure B models φ. As a consequence,
φ ⇐⇒ θC1

∨ · · · ∨ θCn . Notice that this is a finite disjunction of

finite conjunctions of sentences that are of the form ∃x.τ (x) with τ
local around x, hence of the appropriate form. □

Adaptation to the Finite Case. As hinted in the introduction, the

proof of Theorem 1.2 does not relativise to finite classes of structures

due to its intensive use of the compactness theorem of first order

logic. We know from Lemma 2.5 that (c) and (d) remain equivalent

in the finite, and will prove in Section 5.1 that the equivalence

between (a) and (c) fails in the finite. The following lemma salvages

the equivalence between (a) and (b) in the finite.

Lemma 4.1 (Local preservation in the finite). Let C ⊆ Struct(σ) be
a class of structures. For a sentence φ ∈ FO[σ] the following properties
are equivalent

(a) The sentence φ is equivalent (over C) to an existential local sen-
tence.

(b) There exist r ,q,k ∈ N such that φ is preserved under⇛r,k
q over

C.

Proof. A sentence of the form ∃x.τ with τ a r -local sentence of
quantifier rank at most q is always preserved under⇛

r, |x |
q , which

allows us to conclude (a) =⇒ (b).
For the converse direction, assume that φ is preserved under

⇛r,k
q for some r ,q,k ∈ N. ComputeU as the image of JφKC through

the map Types
q,k
r . For a set T of local types in U , one can build

the sentenceψT ≜
∧
τ (x)∈T ∃x.τ (x). We defineψ ≜

∨
T ∈U ψT and

prove the following, where the second equality stems from our

hypothesis (a)

Jψ KC =
{
B ∈ C | ∃A ∈ JφKC ,A⇛

r,k
q B

}
= JφKC . (5)

Whenever B |= ψ , there exists T ∈ U such that B |= ψT . Hence,

there exists A ∈ X such that A |= φ, and T = Types
q,k
r (A). Thanks

to Fact 2.1, A⇛r,k
q B.

Conversely, let A ∈ C such that A |= φ and B ∈ C such that

A⇛r,k
q B. Let us writeT ≜ Types

q,k
r (A) andT ′ ≜ Types

q,k
r (B). It is

always the case that B satisfies its local types so B |= ψT ′ and since

T ⊆ T ′
we can conclude that B |= ψT which entails that B |= ψ .

We have proven that φ is equivalent to ψ which is a positive

Boolean combination of existential local sentences, thus, equivalent

to an existential local sentence. □

5 FAILURE IN THE FINITE CASE
The goal of this section is to prove that Theorem 1.2 does not

relativise to finite structures, in particular we show in Section 5.1

that (a)⇎ (c) in the finite.

This naturally leads to a decision problem: given a sentence φ
preserved under disjoint unions over Fin(σ), can it be rewritten as

an existential local sentence? We prove in Section 5.2 that this prob-

lem, and two other associated decision problems, are undecidable.

We complete the picture in Section 5.3 by describing the param-

eters (r ,q,k) such that first-order sentences preserved under⇛r,k
q

over Fin(σ) are equivalent to an existential local sentence.

5.1 A Generic Counter Example
In the following, we will add whenever necessary a unary predicate

B to the signatures in order to construct the following property:

φB ≜ ∀x .¬B(x) ∨ φCC , where φCC checks that the Gaifman graph

of the structure has at least two connected components. Notice that

φB may not be definable in FO[σ] since φCC may not be definable.

Over a class C of finite structures where φCC is definable as an

existential local sentence, the sentence φB is well-defined and pre-

served under disjoint unions. Whenever the class C contains large

enough structures, φB cannot be expressed using an existential

local sentence. Indeed, such an existential local sentence will not

distinguish between a large connected component with one B node

(not satisfying φB ) and two connected components with one B node

(satisfying φB ). A prototypical example is the class of finite paths.

Example 5.1 (Finite paths). If σ = {(E, 2)} and ⊎P is the class of

disjoint unions of finite paths, φB is definable, closed under disjoint

unions, and is not expressible as an existential local sentence.

Proof. One can detect the presence of two connected compo-

nents using the fact that paths have at most two vertices of degree

below 2 through φCC defined as the disjunction of the following

sentences: ∃x1,x2,x3,x4.∧1≤i,j≤4 xi , x j ∧
∧

4

i=1 deg(xi ) = 1),

∃x1,x2.x1 , x2 ∧ deg(x1) = deg(x2) = 0), and ∃x1,x2,x3.x1 ,
x2 ∧ x2 , x3 ∧ x3 , x1 ∧ deg(x1) = deg(x2) = 1 ∧ deg(x3) = 0.

Assume by contradiction that there exists a sentenceψ = ∃x.θ (x)
with θ (x) a r -local sentence of quantifier rank q such that φB is

equivalent toψ over ⊎P. Consider the family of structures P¬Bk that

are paths of length k labelled by ¬B so that P¬Bk |= φB . Consider

k > |x| · (2r + 1). Since P¬Bk |= ψ , there exists a vector a with |x|
elements of P¬Bk such thatNP¬B

k
(a, r ) |= θ (x) andNP¬B

k
(a, r ) ⊊ P¬Bk .

Consider a point b ∈ P¬Bk that is not in NP¬B
k

(a, r ), and build PBk
by colouring this point with B. The structure PBk is still a path but

does not satisfy φB . However, P
B
k |= ψ by construction, and this is

absurd. □

Assume that C
ord

is a class of finite structures defined over Fin(σ)

through a finite axiomatisation A
ord

using universal local sentences
(negations of existential local sentences). The following fact allows

lifting arguments over C
ord

to Fin(σ).

Fact 5.2 (Relativisation to C
ord

). A sentence φ is equivalent over

C
ord

to an existential local sentence if and only if A
ord
=⇒ φ is

equivalent to an existential local sentence over Fin(σ). Similarly, a

sentence φ is preserved under disjoint union over C
ord

if and only

if A
ord
=⇒ φ is preserved under disjoint union over Fin(σ).

Note that the class ⊎P of finite paths has no finite axiomatisation

in Fin(σ). Thus, Fact 5.2 cannot be used to lift Example 5.1 to the

class of all finite structures. As a workaround, we refine the counter

example provided by Tait [24] in the case of the Łoś-Tarski Theorem

and leverage the idea given by the class of finite paths. For this

purpose, we let σ ≜ {(≤, 2), (S, 2), (E, 2)}. DefineOn to be the struc-

ture {1, . . . ,n} with S interpreted as the successor relation, ≤ as the
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≤

E

S

Figure 4: The structure O2 +O3 +O4 +O5

usual ordering of natural numbers and E the empty relation. Given

natural numbers 2 ≤ m ≤ n one can build a structure denoted by

Om + · · · +On by extending the disjoint union

⊎
m≤i≤n Oi with

new relations S(a,b) whenever a is the last element ofOi and b the

first of Oi+1, and E(a,b) whenever a ∈ Oi , b ∈ Oi+1 and b is below

a when interpreted as integers. An example of such a structure

is given in Figure 4 with m = 2 and n = 5. We define then C
ord

to be the class of finite disjoint unions of structures of the form

Om + · · · +On with 2 ≤ m ≤ n.

Lemma 5.3 (Definition of φCC for C
ord

). There exists a sentence
φCC that is existential local such that for all A ∈ C

ord
, A |= φCC if

and only if A contains at least two connected components.

Proof. DefineφCC ≜ ∃x1,x2.x1 , x2∧∀y.¬S(y,x1)∧¬S(y,x2).
□

The translation of Example 5.1 to C
ord

is a simple exercise de-

tailed in the full paper.

Lemma 5.4 (Counter-example over C
ord

). The sentence φB ≜
∀x .B(x) ∨φCC is preserved under disjoint unions over C

ord
but is not

equivalent to any existential local sentence over C
ord

.

We give the following axiomatic definition of C
ord

as follows

(i) ≤ is transitive, reflexive and antisymmetric,

(ii) ≤ has connected components of size at least two: ∀a,∃b .a <
b ∨ b < a,

(iii) S is an injective partial function without fixed points,

(iv) S and ≤ cannot conflict: ∀a,b .¬(S(a,b) ∧ b ≤ a),
(v) There exists a proto-induction principle: ∀a < b,∃c, S(a, c) ∧

a ≤ c ∧ c ≤ b,
(vi) Edges E can be factorised trough (≤)(S\≤)(≤): ∀a,b .E(a,b) ⇒

∃c1, c2.a ≤ c1 ∧ c1Sc2 ∧ ¬(c1 ≤ c2) ∧ c2 ≤ b,
(vii) Pre-images through E form a suffix of the ordering: ∀a,b, c .a ≤

b ∧ E(a, c) ∧ S(a,b) ⇒ E(b, c),
(viii) Images through E form a prefix of the ordering: ∀a,b, c .b ≤

c ∧ E(a, c) ∧ S(b, c) ⇒ E(a,b),
(ix) Images through E are strictly increasing subsets: ∀a,b .aSb ∧

a ≤ b ⇒ ∃c .E(b, c) ∧ ¬E(a,b),
(x) Pre-images through E are strictly decreasing: ∀a,b .aSb ∧ a ≤

b ∧ (∃c .E(c,a)) ⇒ ∃c .E(c,a) ∧ ¬E(c,b),

(xi) The last element of an order cannot be obtained through E:
∀a,b .E(a,b) ⇒ ∃c .S(b, c) ∧ b ≤ c ,

(xii) The relation (≤)(S \ ≤) is included in E: ∀a,b .∃c .a ≤ c ∧

S(c,b) ∧ ¬(c ≤ b) ⇒ E(a,b).

The goal of the rest of this section is to prove that JA
ord

K
Fin(σ) =

C
ord

. To simplify notations, let us consider for a structureA ∈ Fin(σ)

the structure (A, ≤) to be the structure A without the relations S
and E. Using this convention, a ≤-component of a structure A is

defined as a connected component of the Gaifman Graph of (A, ≤).
The detailed proofs of lemmas 5.5 and 5.6 can be found in the

full paper.

Lemma 5.5 (C
ord

models A
ord

). The class C
ord

is contained in
JA

ord
K
Fin(σ).

Lemma 5.6 (JA
ord

K
Fin(σ) ⊆ C

ord
). A structureA that modelsA

ord

satisfies the following properties:
(a) If B is a ≤-component of A then the substructure induced by B in

A is isomorphic to a total ordering of size greater than two with
no E relations, i.e. ({1, . . . ,n}, ≤,+1, ∅) with n ≥ 2;

(b) If B1 and B2 are two ≤-components of A that are connected in A
with the relation S , either the last element of B1 is connected to
the first one of B2 or the last element of B2 is connected to the first
one of B1;

(c) If B1 and B2 are two ≤-components of A connected through the
relation E, then B1 and B2 are connected through the relation S ;

(d) If B1 and B2 are two ≤-components of A connected through the
relation S , the function f : a 7→ max≤ {d | E(a,d)} is a ≤-strictly
increasing non-surjective function from B1 to B2, mapping the
≤-minimal element of B1 to the ≤-minimal of B2 satisfying
f (S(a)) = S(f (a)).

(e) Connected components of A are in C
ord

.

Through Lemma 5.6 and Lemma 5.5 we learn that C
ord

is defin-

able using finitely many universal local sentences. We can lift the

counter example provided in Lemma 5.4 using Fact 5.2.

Corollary 5.7 (Counter example over Fin(σ)). There exists a sen-
tence φ preserved under disjoint unions over Fin(σ) but not equivalent
to an existential local sentence over Fin(σ).

5.2 Undecidability
We have proven that deciding whether a sentence preserved un-

der local elementary embeddings is equivalent to an existential

local sentence is a non-trivial problem in Fin(σ). We strengthen

this by proving said problem is actually undecidable. This work

was initially inspired by the work of Kuperberg [14] proving that

Lyndon’s Positivity Theorem fails for finite words and providing

undecidability of the associated decision problem. Moreover, the

statements and theorems can be interpreted as variations of those

from Chen and Flum [4], who considers preservation under induced

substructures.

Given a Universal Turing Machine U over an alphabet Σ and

with control states Q , we extend the signature of C
ord

with unary

predicates q/1 for q ∈ Q , Pa/1 for a ∈ Σ, P
$
/1 and P□/1 to encode

configurations ofU in ≤-components. Without loss of generality,

we assume that this Universal Turing Machine accepts only on a

specific state qaf ∈ Q and rejects only on a specific state qrf ∈ Q ;
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those two states being the only ones with no possible forward

transitions. In a structureA, we callC(a) the ≤-component of a ∈ A.

Fact 5.8. There exists a 1-local formula θC (x) such that for all

structure A ∈ C
ord

, element a ∈ A, A,a |= θC (x) if and only if C(a)
represents a valid configuration ofU .

The only difficulty in representing runs of the machine U is

to map positions from one ≤-component to its successor. To that

end, we exploit the first-order definability of the function f : a 7→

max≤ {d | E(a,d)} that links ≤-components (see the full paper).

Lemma 5.9 (Transitions are definable). There exists a 1-local for-
mula θT (x ,y) such that for every structure A ∈ C

ord
and points

a,b ∈ A the following two properties are equivalent:
(i) The ≤-components of a and b are connected through S and

represent valid configurations C and C ′ satisfying C →U C ′,
(ii) A,ab |= θT (x ,y).

Fact 5.10. Given a wordw ∈ Σ∗ there exists a 1-local formula θwI (x)
such that for A ∈ C

ord
and a ∈ A, A,a |= θwI (x) if and only if C(a)

is the initial configuration of U onw and has no S-predecessor in
A.

Fact 5.11. Given a wordw ∈ Σ∗ there exists a 1-local formula θF (x)
such that for A ∈ C

ord
and a ∈ A, A,a |= θF (x) if and only if C(a)

is a final configuration ofU and has no S-successor in A.

Fact 5.12. There exists a 1-local formula θN (x) such that for A ∈

C
ord

and a ∈ A, A,a |= θN (x) if and only ifC(a) has no S-successor
in A.

Theorem5.13 (Undecidability). It is in general not possible to decide
whether a sentence φ closed under disjoint unions over Fin(σ) has an
existential local equivalent form.

Proof. Without loss of generality thanks to Fact 5.2, we only

work over C
ord

, and we reduce from the halting problem.

LetM be a Turing Machine and ⟨M⟩ its code in the alphabet of

the Universal Turing MachineU . Let φM be defined as the follow-

ing existential local sentence: ∃x .θ ⟨M ⟩

I (x) ∧ ∀x ,y.S(x ,y) ∧ ¬(x ≤

y) =⇒ θT (x ,y). We consider the sentence φ ≜ φM ∨ φCC that is

closed under disjoint unions over C
ord

. This sentence is computable

from the data ⟨M⟩.

Assume that M halts in at most k ′ steps, there exists a bound
k for the run of the universal Turing Machine U . Given a size

n ∈ N, we define φnM to be the following existential local sentence:

∃x1, . . . ,xn .θ ⟨M ⟩

I (x1) ∧θT (x1,x2) ∧ · · · ∧θT (xn−1,xn ) ∧θN (xn ). It
is a routine check that φ is equivalent to φCC ∨

∨
1≤k≤n φ

n
M over

C
ord

.

Assume thatM does not halt. The universal Turing MachineU
does not halt on the word ⟨M⟩. Assume by contradiction that φ is

equivalent to a sentenceψ ≜ ∃x1, . . . ,xk .θ where θ is r -local. Find
a run of size greater than k · (2r + 1) and evaluateψ . It cannot look
at all the configurations simultaneously; change the state of the one

not seen: it still satisfiesψ but this is no longer a run ofU , which is

absurd. □

An analogous proof allows us to conclude that the semantic prop-

erty of closure under disjoint unions is also undecidable (see the full

paper). Theorem 5.13 is then strengthened to prove that equivalent

existential sentences are uncomputable in general.

Theorem 5.14 (Undecidable semantic property). It not possible,
given a sentence φ, to decide whether or not it is closed under disjoint
unions over Fin(σ).

Theorem 5.15 (Uncomputable equivalence). There is no algorithm,
which given a sentence φ that is equivalent to an existential local
sentence over Fin(σ) computes such a sentence.

Proof. Without loss of generality thanks to Fact 5.2, we only

work over C
ord

, and we reduce from the halting problem. LetM be

a Turing Machine, φM ≜ ∃x .θ ⟨M ⟩

I (x) ∧ ∃x .θF (x) ∧ ∀x ,y.S(x ,y) ∧
¬(x ≤ y) =⇒ θT (x ,y), and φ ≜ φM ∨ φCC .

Assume thatM halts. Then φ is equivalent to an existential local

sentence φ ′∨φCC , as noticed in the proof of Theorem 5.13. Assume

that M does not halt. Then φ is equivalent to φCC , which is exis-

tential local. We have proven that φ is equivalent to an existential

local sentence in all cases.

Assume by contradiction that there exists an algorithm comput-

ing an existential local sentence µ that is equivalent to φM ∨ φCC
over C

ord
. One can use µ to decide whetherM halts. Let us write k

for the number of existential quantifiers of µ and r for the locality
radius of its inner formula. If the sentence µ accepts the coding of
a run of size greater than 2k · (2r + 1), then it accepts structures

that are not coding runs of U , and µ cannot be equivalent to φ.
As a consequence, if M terminates, it must terminate in at most

2k · (2r + 1) steps, which is decidable. □

5.3 Generalisation to Weaker Preorders
We characterise in this section the set of parameters (r ,q,k) for

which a sentence preserved under⇛r,k
q over Fin(σ) is equivalent

to an existential local sentence through a finer analysis of A
ord

.

Lemma 5.16 (Failure at arbitrary radius). There exists a sentence
φB preserved under ⇛∞,k

q over Fin(σ) for k ≥ 2 and q ≥ 1 that is
not equivalent to an existential local sentence over Fin(σ).

Proof. Using Fact 2.2 it suffices to consider the case where k = 2

and q = 1 to conclude.

A first check is that C
ord

can alternatively be defined by sentences

that have atmost 2 universal quantifiers over variablesx1 andx2 and
then one variable y at distance at most 1 from the tuple x1x2. This

proves that C
ord

is definable and downwards closed for ⇛1,2
1

. In

particular, sentences preserved under⇛∞,2
1

over C
ord

are preserved

under⇛∞,2
1

over Fin(σ), which is a strengthening of Fact 5.2.

Using the same syntactical analysis, φCC is preserved under

⇛∞,2
1

over C
ord

. As a consequence it is an easy check that φB ≜

∀x .¬B(x) ∨ φCC is preserved under⇛∞,2
1

over C
ord

. Moreover, it

was stated in Lemma 5.4 that φB cannot be defined as an existential

local sentence over C
ord

. □

Using similar techniques one can tackle the case q = ∞, k ≥ 2

and r ≥ 1. When k = 1 such methods will not apply because the

preorders ⇛r,1
q cannot distinguish a structure A from A ⊎ A. We

use this fact in the full paper to provide a positive answer in this

case.
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Lemma 5.17 (Failure at arbitrary quantifier rank). For every r ≥

1,k ≥ 2, there exists a sentence φ preserved under⇛r,k
∞ over Fin(σ)

but not equivalent to an existential local sentence over Fin(σ).

Lemma 5.18 (Success at k = 1). For every 0 ≤ r ,q ≤ ∞, for
every sentence φ preserved under ⇛r,1

q over Fin(σ), there exists an
existential local sentenceψ that is equivalent to φ over Fin(σ).

We provide in Figure 5 a panel of the existence of an existential

local form for different values for r ,q and k over the class of finite

structures Fin(σ), collecting the results from lemmas 5.16 to 5.18,

Lemma 4.1, and the forthcoming Corollary 6.4 in the case of induced

substructures.

k = 1 k ≥ 2 k = ∞

q = ∞

q ≥ 1

q = 0

r =
0

r =
∞

r ≥
1

r =
0

r =
∞

r ≥
1

r =
0

r =
∞

r ≥
1

⊎

⊆i

Figure 5: Parameters (r,q,k) leading to an existential normal
form (white), those with a counter example (dots).

6 LOCALISING THE ŁOŚ-TARSKI THEOREM
Let us recall our proof scheme to handle preservation under ex-

tensions over subclasses of Fin(σ) in two distinct steps: (✁) C is

localisable, i.e. sentences preserved under extensions over C are

equivalent to existential local sentences C, (✻) C satisfies existential
local preservation under extensions, i.e. existential local sentences
preserved under extensions over C are equivalent to existential

sentences over C. We prove in Section 6.1 that step (✁) can be done

on every hereditary class of finite structures stable under disjoint

unions, generalising the proof of preservation under extensions

over structures of bounded degree of Atserias et al. [1, Theorem 4.3].

Moreover, we show in Section 6.2 that (✻) can be done under very

mild assumptions on the class. These two results are represented as

a path from sentences preserved under extensions to existential sen-

tences in Figure 2, which allows us to significantly improve known

classes of finite structures enjoying preservation under extensions

in Section 6.3, as depicted in Figure 3. Let us recall hereafter the

definition of Balls(C, r ,k)

Balls(C, r ,k) ≜
{
NA(a,k) | A ∈ C, a ∈ A≤k

}
(6)

6.1 Localisable Classes (✁)
Given a sentence φ preserved under extensions, our goal is to prove

that it has an existential local normal form. As a typical first step in

preservation theorems, we will focus on the ⊆i -minimal models of

φ. For this study to make sense we restrict our attention to classes

C that are preserved under induced substructures, also known as

hereditary classes.

Lemma 6.1 (Minimal models). Let C be a hereditary class of finite
structures. A sentence φ preserved under extensions over C has an

equivalent existential local normal form if and only if there exists
k ≥ 1, r ≥ 0 such that its ⊆i -minimal models are all found in
Balls(C, r ,k).

Proof of⇒. If φ ≡ ∃x.τ (x) over C where τ (x) is a r -local for-
mula, then aminimal modelA ∈ C ofφ necessarily contains a vector

a such that NA(a, r ), a |= τ . This shows that NA(a, r ) |= φ where

NA(a, r ) ⊆i A by definition. Since C is hereditary, NA(a, r ) ∈ C,

thus A = NA(a, r ) by minimality and A ∈ Balls(C, r , |x|). □

Proof of⇐. Assume that the minimal models ofφ are all found

in Balls(C, r ,k). Let q be the quantifier rank of φ. We are going

to show that φ is preserved under ⇛r,k
qr over C and deduce by

Lemma 4.1 that φ has an equivalent existential local sentence

over C.

Let A |= φ and A⇛r,k
qr B. Since A |= φ, there exists a minimal

model A0 ∈ Balls(C, r ,k) with A0 ⊆i A. Let a ∈ Ak be the centers

of the balls of radius r in A that contain A0. Since A⇛
r,k
qr B there

exists a vector b ∈ Bk such that tp
qr
A (a, r ) = tp

qr
B (b, r ).

Notice that A0 ⊆i NA(a, r ), hence NA(a, r ) |= φ since φ is pre-

served under extensions. Thus,NA(a, r ), a |= φ≤r (x) where φ≤r (x)
is an r -local formula around its k variables x with quantifier rank

qr . This shows that NB (b, r ), b |= φ≤r (x) using the equivalence of
types up to quantifier rank qr . To conclude, observe that this entails
NB (b, r ) |= φ, hence B |= φ since NB (b, r ) ⊆i B and φ is preserved

under extensions. □

The proof of preservation under extensions over some specific

classes provided by Atserias et al. [1, Theorem 4.3] is done by

contradiction, using the fact that minimal structures that are large

enough must contain large scattered sets of points. Forgetting about

the size of the structure, this actually proves that minimal models

do not have large scattered sets, hence are in some Balls(C, r ,k) for
well-chosen parameters.

See the full paper for a proof of the following variant of Atserias

et al.’s result.

Lemma 6.2 (Minimal models). Let C ⊆ Fin(σ) be a hereditary class
of finite structures closed under disjoint unions and φ ∈ FO[σ] be a
sentence preserved under ⊆i over C. There exist R,K such that the
minimal models of φ are in Balls(C,R,K).

Theorem 6.3 (Localisable Classes ✁). If C ⊆ Fin(σ) is hereditary
and closed under disjoint unions then it is localisable.

Proof. Consider a sentence φ preserved under local elementary

embeddings over C. Using Lemma 6.2 its minimal models are in

someBalls(C, r ,k), and using Lemma 6.1 this provides an equivalent

existential local sentence over C. □

Corollary 6.4. A sentence φ preserved under extensions over Fin(σ)
is equivalent over Fin(σ) to an existential local sentence.

The use of disjoint unions was crucial in the construction, and

removing the assumption that C is closed under this operation

provides counter-examples to Theorem 6.3 (see the full paper).

Example 6.5 (Counter example without disjoint unions). Let C

be the downwards closure of the class of finite cycles for ⊆i . The

sentence φ ≜ ∀x . deg(x) = 2 is preserved under extensions over C

but not equivalent to an existential local sentence over C.
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6.2 Existential Local Preservation Under
Extensions (✻)

Given an existential local sentence φ preserved under extensions,

we want to prove that φ is equivalent to an existential sentence. As

existential local sentences focus on neighbourhoods of the struc-

tures, we decompose our class C of finite structures into local
neighbourhoods, that is Balls(C, r ,k) with r ,k ranging over the nat-

ural numbers. As we assume C to be hereditary, this is a subset

Balls(C, r ,k) ⊆ C of the structures in C. Quite surprisingly, we do

not need closure under disjoint unions to carry on step (✻).

Lemma 6.6 (Locally well-behaved classes). Let C be a hereditary
class of finite structures, the following properties are equivalent:

(i) Balls(C, r ,k) satisfies preservation under extensions for r ,k ≥ 0.
(ii) Existential local sentences preserved under extensions over C are

equivalent to existential sentences.

Proof of (i) =⇒ (ii). Let us consider a sentence φ preserved

under extensions over C. As C is localisable, φ is equivalent to an

existential local sentence and Lemma 6.1 provides k and r such that

the minimal models of φ are all found in Balls(C, r ,k).
As Balls(C, r ,k) ⊆ C, the sentence φ is also preserved under

extensions over Balls(C, r ,k). Hence, there exists an existential

sentence θ equivalent to φ over Balls(C, r ,k). Moreover, C is hered-

itary, which entails that θ has finitely many ⊆i -minimal models

A1, . . . ,Am in C.

Let us defineM ≜ max1≤i≤m |Ai |. Consider a minimal model B
of φ in C and assume by contradiction that |B | > M+k+r ·M . Since

B |= φ and B ∈ Balls(C, r ,k), B |= θ and there exists a ⊆i -minimal

model A of θ such that A ⊆i B. There exists a vector b ∈ Bk

such that B = NB (b, r ). It is then possible to define an induced

substructure A′ ⊆i B that contains both A and b and belongs to

Balls(C, r ,k): this is ensured by adding paths taken from B of length

at most r from each element of A to an element of b. Hence, A′ |= θ
because A ⊆i A

′
, and therefore A′ |= φ because A′ ∈ Balls(C, r ,k).

But |A′ | ≤ |A| + k + r · |A| ≤ M + k + r ·M < |B |, which is absurd.

See the full paper for a graphical representation of this construc-

tion.

Therefore, ⊆i -minimal models of φ have bounded size. It is a

usual consequence that φ is definable as an existential sentence. □

Proof of (ii) =⇒ (i). Let φ be a sentence preserved under ex-

tensions over Balls(C, r ,k). Let us write φ≤r (x) the relativisation
of φ to the r neighbourhood of its k fresh free variables x.

The sentenceψ ≜ ∃x.φ≤r (x) is preserved under extensions over
C. Let A ⊆i B through a map h : A → B and A |= ψ . There exists
a ∈ A such that NA(a, r ) |= φ. Notice that NA(a, r ) ⊆i NB (h(b), r )
through h, hence that NB (h(b), r ) |= φ, since φ is preserved under

extensions over Balls(C, r ,k). As a consequence, B |= ψ .
We conclude that ψ is equivalent to an existential sentence θ

over C. Remark that φ is equivalent to ψ over Balls(C, r ,k). As
a consequence, φ is equivalent to an existential sentence θ over

Balls(C, r ,k). □

6.3 Preservation under Extensions on Locally
Well-Behaved Classes

We can now combine our study of step (✁) in Section 6.1 and step

(✻) in Section 6.2 to harvest new classes enjoying preservation

under extensions, by characterising classes satisfying preservation

under extensions as those locally satisfying preservation under ex-

tensions. Quite surprisingly given the non-relativisation properties

of preservation theorems, we are able to state an equivalence be-

tween preservation under extensions over a set C and preservation

under extensions on its local neighbourhoods.

Theorem 6.7 (Local preservation under extensions). Let C be a
hereditary class of finite structures stable under disjoint unions. Preser-
vation under extensions holds over C if and only if preservation under
extension holds over Balls(C, r ,k) for all r ≥ 0 and k ≥ 1.

Proof. Assume that the preservation under extensions holds

over Balls(C, r ,k) for r ,k ≥ 0. Let φ be a sentence preserved under

extensions over C. Because C is hereditary and closed under disjoint

unions, we can apply Theorem 6.3, and C satisfies (✁). Hence, φ
is equivalent to an existential local sentenceψ over C. Since C is

hereditary and locally satisfies preservation under extensions, we

can apply Lemma 6.6, and C satisfies (✻). Therefore,ψ is equivalent

over C to an existential sentence. We have proven that C satisfies

preservation under extensions.

Conversely, assume that the preservation under extensions holds

over C. In particular, existential local sentences preserved under

extensions are equivalent over C to existential sentences. Thanks

to Lemma 6.1, this proves that Balls(C, r ,k) satisfies preservation
under extensions for r ,k ≥ 0. □

The spaces Balls(C, r ,k) appear naturally in the study of sparse
structures [20], through the notions of wideness and quasi-wideness,
which were already at play in recent proofs of preservation theo-

rems [1, 2]. Indeed, they rely crucially on the existence of (r ,m)-

scattered sets, that is, sets ofm points with disjoint neighborhoods

of size r . Recall that a class C ⊆ Fin(σ) is wide when there exists

ρ : N2 → N, such that for all n,m ∈ N, for all A ∈ C of size greater

than ρ(r ,m), there exists a (r ,m)-scattered set inA. In particular At-

serias, Dawar, and Grohe prove that for a wide, hereditary, closed
under disjoint unions class of structures C, preservation under ex-

tensions holds [1, Theorem 4.3]. Hereditary wide classes are exactly

those that are locally finite.

Fact 6.8 (Nešetřil and Ossona de Mendez [19, Theorem 5.1]). For

a hereditary class C it is equivalent to ask for C to be wide or for
Balls(C, r ,k) to be finite for all r ,k ≥ 1.

Over a finite set of finite models, every sentence φ is equivalent

to an existential sentence, hence preservation under extensions

holds trivially. We can recover Atserias et al.’s result: hereditary

wide classes closed ender disjoint unions enjoy preservation un-

der extensions. Indeed, hereditary wide classes are locally finite

(Fact 6.8), and hereditary locally finite classes stable under disjoint

unions satisfy preservation under extensions (Theorem 6.7). This

proof scheme is generalised in the following theorem.

Theorem 6.9 (New Classes Satisfying Preservation Under Exten-

sions). The following properties imply preservation under extensions
over C assuming that C is hereditary and closed under disjoint unions.
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(i) C is locally finite (i.e., wide).
(ii) C has locally bounded tree-depth.
(iii) C is locally wqo.
(iv) C locally satisfies preservation under extensions.
Moreover, (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) and these implications are strict.

The remaining of this section is devoted to proving Theorem 6.9,

together with their relation with previously known properties as

illustrated in Figure 3. Recall that in this figure arrows represent

strict inclusions of properties and dashed boxes are the new proper-

ties introduced in this paper. In particular, the examples prove that

we strictly generalise previously known properties implying preser-

vation under extensions. As no logic is involved in the generation

of these new classes, we effectively decoupled our proofs of preser-

vation theorems in a locality argument followed by a combinatorial
argument.

Recall here that the tree-depth td(G) of a graphG is the minimum

height of the comparability graphs F of partial orders such thatG is a

subgraph of F [20, Chapter 6]. This extends as usual to structures by

considering the tree-depth of the Gaifman graphs of said structures.

We shall say that C has locally bounded tree-depth, if for all r ,k ≥ 1,

there is a bound on the tree-depth of the structures in Balls(C, r ,k).
Note that working with Balls(C, r ,k) rather than Balls(C, r , 1) is

a somewhat uncommon way to localise properties. Thankfully, for

properties that are well-behaved with respect to disjoint unions,

the localisation using a single ball or several ones will coincide;

examples of such properties are wideness, exclusion of a minor, or

bounded clique-width. The following proposition illustrates this

point in the case of bounded tree-depth.

Lemma 6.10 (Locally bounded tree-depth). A class C ⊆ Struct(σ)

has locally bounded tree-depth if and only if ∃ρ : N → N,∀A ∈

C,∀a ∈ A,∀r ≥ 1, td(NA(a, r )) ≤ ρ(r ).

Example 6.11 (Stars). The class Star of stars is of tree-depth

bounded by 1, hence of locally bounded tree-depth, but is not locally

finite.

Example 6.12 (Cliques). Consider the class ⊎K of finite disjoint

unions of cliques. This class is not of locally bounded tree-depth

but locally well-quasi-ordered.

Example 6.13 (Diamonds). Let us call Dn the cycle of length n
extended with two new points a and b such that both are connected

to every node of the cycle using a path of length n. Consider the
class ⊎D of induced subgraphs of finite disjoint unions of some

Dn . This class is not well-quasi-ordered nor locally finite, but is of

locally bounded tree-depth.

Example 6.14 (Pointed graphs). Consider the class ∆2 of graphs

of degree bounded by 2. The class P∆2 is obtained by adding one

point connected to every other point in a structure of ∆2. The class

is not locally well-quasi-ordered but locally satisfies preservation

under extensions.

Proof of Theorem 6.9. Properties (i) to (iv) all imply that the

class C locally satisfies preservation under extensions. Thanks to

Theorem 6.7, this proves that C satisfies preservation under ex-

tensions. The implications are strict thanks to Examples 6.11, 6.12

and 6.14. □

Moreover, notice that, as explained in Figure 3, “locally wqo”

strictly generalises “wqo” (see Example 6.13), which strictly gen-

eralises locally bounded treedepth (see Example 6.12). Notice that

locally bounded treedepth already strictly generalises “wqo” via

Example 6.13.

7 CONCLUDING REMARKS
We investigate the notion of positive locality through three frag-

ments of first-order logic: existential local sentences, a positive

variant of the Gaifman normal form, and sentences preserved under

local elementary embeddings. We prove that those three fragments

are equally expressive in the case of arbitrary structures, but that

this fails in the finite. Following the line of undecidability results for

preservation theorems [4, 14], we prove that most of the associated

decision problems are undecidable in the case of finite structures.

Maybe surprisingly, the study of this seemingly arbitrary no-

tion of positive locality has a direct application in the study of

preservation under extensions over classes of finite structures. In

the case of finite structures, our notion of local elementary em-

beddings describes exactly disjoint unions, and might explain why

they featured so prominently in the study of preservation under

extensions [1, 2, 12, 22].

We prove that under mild assumptions on the class C of struc-

tures considered, sentences preserved under extensions can be

rewritten as existential local sentences. We leverage this to craft a

locality principle relating preservation under extensions over the

neighborhoods of a class and preservation under extensions over

the whole class.

This allows us to build new classes of structures where preser-

vation under extensions holds by localising known properties. This

proof scheme does not always yield new classes: for instance,

nowhere dense classes [see 20, Chapter 5] are locally nowhere dense
and vice-versa.
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