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Preservation Theorems
Illustrating the notions



A sentence over graphs

φ ≜ ∀x.∃y.¬(xEy) ∧ x ̸= y

7 3
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Models of a sentence

JφK : Graph → {0, 1} JφKX ≜ {G ∈ X | G |= φ}

Graph

JφKGraph

X

JφKX
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A natural order for structures

A ⊆i B ⇐⇒ ∃h : A ↪→ B,h(EA) = EB

3

7 3
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A natural order for truth values

0 ≤ 1
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Special kinds of sentences

JφK : (Graph,⊆i) → ({0, 1},≤)

Monotone sentences over X
• (JφK)|X is non-decreasing
• JφKX = ↑ JφKX ≜ {G ∈ X | ∃H ∈ JφKX ,H ⊆i G}
• For all (G1,G2) ∈ X2 such that G1 ⊆i G2 and G1 |= φ, G2 |= φ.
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Preservation Theorems
Evaluating φ



Finite graphs

Recall that φ ≜ ∀x.∃y.¬(xEy) ∧ x ̸= y.

|= φ 3 |= φ 7

⊆i

Not Monotone!
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Paths P

Structure of paths
• Totally ordered for ⊆i

• The sentence φ is monotone

Rewriting φ

JφKP = ↑{P4}

φ ≡P ∃x1, x2, x3, x4.
x1 ̸= x2 ∧ x1 ̸= x3∧
x1 ̸= x4 ∧ x2 ̸= x3∧
x2 ̸= x4 ∧ x3 ̸= x4

≜ ψ4

P1

P2

P3

P4

P5

...
...

...

7

7

7

3

3
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Cycles C

Structure of cycles
• Infinite antichain
• The sentence φ is monotone

Rewriting φ
• JφKC = ↑{P4} ∪ {C4}
• φ ≡C ψ4

C3 C4 C5 C6

7 3 3 3

· · ·

P4

9



Recap

We considered φ and studied whether it was monotone, equivalent
to an existential sentence and had finitely many minimal models
over different classes.

Space Monotone Existential Compact1

Graph 7 7 7

C 3 3 7

P 3 3 3

1Has finitely many minimal models
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Preservation Theorems
Łoś-Tarski and beyond



Łoś-Tarski's preservation theorem over X ⊆ Struct(σ)

Connecting an order to a syntactic fragment.

∀σ.∀φ ∈ FO[σ].

JφKX = ↑ JφKX ⇐⇒ ∃ψ ∈ EFO[σ], JφKX = JψKX
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Preservations Theorems on Finite and Infinite Structures

Struct(σ) Order Fragment FinStruct(σ)

Łós-Tarski 3 ⊆i EFO 7 [Tait, 1959]
Tarski-Lyndon 3 ⊆ PFO 7 [Ajtai and Gurevich, 1994]

H.P.T. 3 → EPFO 3 [Rossman, 2008]

Consequence
No relativisation result in general.

12



Preservation Theorems
Logically defined pre-spectral spaces



Translating to a topological setting

Pre-order Topology

≤ τ

upwards-closed open
monotone continuous
↑F, F finite compact

Converting
• A topology τ has a specialisation pre-order,
x ≤τ y ≜ ∀U ∈ τ, x ∈ U =⇒ y ∈ U.

• A pre-order ≤ has several topologies. We will use Alexandroff
τ≤ ≜ {↑U | U ⊆ X}.
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Why topology matters

The case of cycles

• τ⊆i is the discrete topology.
• EFO defines ⊆i.

Topological Solution
τC ≜ {F ∪ ↑{Pn} | F ⊆f C ∧ n ≥ 1} ∪ {∅}

Note: The specialisation preorder of τC is ⊆i.
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Why topology matters

Topological Solution
τC ≜ {F ∪ ↑{Pn} | F ⊆f C ∧ n ≥ 1} ∪ {∅}

The case of cycles

• Every open set is compact
• Every compact-open set is definable in EFO
• Every continuous sentence φ ∈ FO[σ] is definable in EFO.
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Why topology matters

Some perspectives

• Some sentences in EFO are not continuous in (C, τC)!
• But if φ is not continuous, ¬φ is.
• The complementary of a compact-open set is definable in EFO
• Every sentence φ ∈ FO[σ] is definable in EFO.
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Why topology matters

Slight variations

• ↓C does not validate Łoś-Tarski’s preservation theorem (adding
points make things worse).

• Graphs of degree ≤ 2 validates Łoś-Tarski’s preservation
theorem [Atserias et al., 2008].
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Definition

Spaces of interest
• X ⊆ FinStruct(σ) the support
• τ a topology over X
• K◦(X) the compact-open sets
• FO[σ] the logic

Motto
Definable open sets are compact.
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Definition

Logically-presented pre-spectral spaces (lpps)
For a triplet ⟨X, τ, FO[σ]⟩

Pre-spectral τ = ⟨K◦(X)⟩ and K◦(X) is a lattice
(see [Dickmann et al., 2019])

Presented τ ∩ JFOKX ⊆ K◦(X)

Remark
In a lpps, τ ∩ JFOKX = K◦(X)
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Capturing downwards closed classes

Equivalence with preservation theorems
Let F be a fragment of FO[σ] and ≤ a pre-order on X ⊆ FinStruct(σ)

generated by F. Assume that ≤ is downwards closed in FinStruct(σ).

There is a preservation theorem for (X,≤, F) iff ⟨X, τ≤, FO[σ]⟩ is a lpps.

Note
If ⟨X, τ≤, FO[σ]⟩ is a lpps, then (X,≤, F) always satisfies a preservation
theorem.
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A practical toolset
Combining previous examples



A simple union

Consider U ≜ C ∪ P .

• Does U satisfy Łoś-Tarski’s preservation theorem?

7 ∀x. deg(x) = 2

• Is ⟨U , τ⊆i , FO[E]⟩ a lpps?

7 ∀x. deg(x) = 2

• Can we adapt τC to U?

3
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A simple union

⟨X1, τ1, FO[σ]⟩ ⟨X2, τ2, FO[σ]⟩

⟨X1 ⊎ X2, τ1 + τ2, FO[σ]⟩

3 3

3

Σ
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A practical toolset
More complex construction



A complex class of graphs

Consider B ≜ C ▷◁ P ≜ {Ci ▷◁ Pj | (Ci,Pj) ∈ C × P}.

C3 ▷◁ P3
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Fiddling around

Support Topology Łoś-Tarski Lpps

P τ⊆i 3 3

C τ⊆i 3 7

C τC 3 3

C ▷◁ P τ⊆i ? ?
C ▷◁ P ? ? ?
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A practical toolset
Stability properties



Negative result

Assume ⟨C ▷◁ P, τ⊆i , FO[E]⟩ is a lpps.

Restrictions to definable open or definable closed sets
⟨X, τ, FO[σ]⟩ lpps ∧ JφKX ∈ τ =⇒ ⟨JφKX , τ, FO[σ]⟩ lpps

Continuous FO-interpretation
⟨X, τ, FO[σ]⟩ lpps ∧ f : (X, τ) ↠ (Y, θ) =⇒ ⟨Y, θ, FO[σ]⟩ lpps
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Negative result

Assume ⟨C ▷◁ P, τ⊆i , FO[E]⟩ is a lpps.

Restrictions to definable open or definable closed sets

• ψ1 ≜ ∃x. deg(x) ≥ 4.
• ψ2 ≜ ∀x1, x2. deg(x1) ≥ 4 ∧ deg(x2) ≥ 4 =⇒ x1 = x2.

Continuous FO-interpretation
⟨X, τ, FO[σ]⟩ lpps ∧ f : (X, τ) ↠ (Y, θ) =⇒ ⟨Y, θ, FO[σ]⟩ lpps
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Negative result

Assume ⟨C ▷◁ P, τ⊆i , FO[E]⟩ is a lpps.

Restrictions to definable open or definable closed sets
⟨C≥4 ▷◁ {P1}, τ⊆i , FO[E]⟩ is a lpps

Continuous FO-interpretation
⟨X, τ, FO[σ]⟩ lpps ∧ f : (X, τ) ↠ (Y, θ) =⇒ ⟨Y, θ, FO[σ]⟩ lpps
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Negative result

Assume ⟨C ▷◁ P, τ⊆i , FO[E]⟩ is a lpps.

Restrictions to definable open or definable closed sets
⟨C≥4 ▷◁ {P1}, τ⊆i , FO[E]⟩ is a lpps

Continuous FO-interpretation

• δ(x) ≜ deg(x) ≤ 3.
• ψE(x, y) ≜ E(x, y).
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Negative result

Assume ⟨C ▷◁ P, τ⊆i , FO[E]⟩ is a lpps.

Restrictions to definable open or definable closed sets
⟨C≥4 ▷◁ {P1}, τ⊆i , FO[E]⟩ is a lpps

Continuous FO-interpretation
⟨C≥4, τ⊆i , FO[E]⟩ is a lpps

Absurd.
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Fiddling around
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Positive result

⟨C, τC , FO[E]⟩ ⟨P, τ⊆i , FO[E]⟩

⟨C × P, τC × τ⊆i , FO[E, ε1, ε2]⟩

⟨C ▷◁ P, τC ▷◁ τ⊆i , FO[E]⟩

3 3

3

3

∏
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Fiddling around

Support Topology Łoś-Tarski Lpps
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Answering our last question

Consider (C ▷◁ P, τC ▷◁ τ⊆i).

• Every compact-open set of is definable in EFO.
• Every definable open set is definable in EFO.

Warning!
Some EFO sentences are not continuous.

Exercise
If φ is monotone for ⊆i, and not continuous, then φ has finitely many
models, hence is definable in EFO.
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Fiddling around

Support Topology Łoś-Tarski Lpps

P τ⊆i 3 3
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A practical toolset
Details of the toolset



Closure properties

Constructor Restrictions

Subset definable, open or closed
Image of a morphism
Sum finite
Product finite

Density
Projective limit ⋆
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Brief recap



The Approach

Preservation Theorems LPPS

Noetherian spaces

WQO

∑
,
∏
...

Preservation to LPPS (Theorem 3.4)
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The Approach

Preservation Theorems LPPS

Noetherian spaces

WQO

∑
,
∏
...

Closure Properties (Propositions 5.4, 5.5, 5.8)
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The Approach

Preservation Theorems LPPS
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WQO

∑
,
∏
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The Approach

Preservation Theorems LPPS

Noetherian spaces

WQO

∑
,
∏
...

Thank You!
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Rossman's Proof of the H.P.T.

Xn ≜ ⟨X, τ→n , FO[σ]⟩ Yn ≜
⟨
X, τ→, FOn[σ]

⟩
1. The projective limit of Yn in Top is ⟨X, τ→, FO[σ]⟩.
2. ∃ρ.∀n.K◦(Yn) ⊆ K◦(Xρ(n))
3. Hence ⟨X, τ→, FO[σ]⟩ is lpps.



Logical Closure

X XY

∀φ ∈ FO[σ], JφKX ̸= ∅ ⇐⇒ JφKX ̸= ∅



What we are hoping for

1. New constructions (finite words, infinite words, trees, …).
2. Iterative constructions.
3. Handle smaller fragments ∃k∀.
4. Locally lpps is the same as lpps.
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