Preservation Theorems Through the Lens of Topology

A toolset for studying preservation theorems

Aliaume Lopez 9 / 03 / 2020

Under the supervision of Sylvain SCHMITZ Jean GOUBAULT-LARRECQ école_____ normale_____ supérieure_____ paris-saclay____

Preservation Theorems

Illustrating the notions

$\varphi \triangleq \forall x. \exists y. \neg (xEy) \land x \neq y$

 $0 \leq 1$

$\llbracket \varphi \rrbracket : (\mathsf{Graph}, \subseteq_i) \to (\{0, 1\}, \leq)$

Monotone sentences over \boldsymbol{X}

- $\cdot (\llbracket \varphi \rrbracket)_{|X}$ is non-decreasing
- $\cdot \ \llbracket \varphi \rrbracket_X = \uparrow \llbracket \varphi \rrbracket_X \triangleq \{ G \in X \mid \exists H \in \llbracket \varphi \rrbracket_X, H \subseteq_i G \}$
- For all $(G_1, G_2) \in X^2$ such that $G_1 \subseteq_i G_2$ and $G_1 \models \varphi$, $G_2 \models \varphi$.

Preservation Theorems

Evaluating φ

Recall that $\varphi \triangleq \forall x. \exists y. \neg (xEy) \land x \neq y.$

Not Monotone!

Paths \mathcal{P}

Structure of paths

- Totally ordered for \subseteq_i
- The sentence φ is monotone

Rewriting φ

$$[\varphi]]_{\mathcal{P}} = \uparrow \{ P_4 \}$$

$$\varphi \equiv_{\mathcal{P}} \exists x_1, x_2, x_3, x_4.$$

$$x_1 \neq x_2 \land x_1 \neq x_3/$$

$$x_1 \neq x_4 \land x_2 \neq x_3/$$

$$x_2 \neq x_4 \land x_3 \neq x_4$$

$$\triangleq \psi_4$$

÷

$\textbf{Cycles} \ \mathcal{C}$

. . .

Structure of cycles

- Infinite antichain
- The sentence φ is monotone $\varphi \equiv_{\mathcal{C}} \psi_4$

Rewriting φ

- $\cdot \llbracket \varphi \rrbracket_{\mathcal{C}} = \uparrow \{ P_4 \} \cup \{ C_4 \}$

 P_4

We considered φ and studied whether it was monotone, equivalent to an existential sentence and had finitely many minimal models over different classes.

Space	Monotone	Existential	Compact ¹
Graph	×	×	X
${\mathcal C}$	\checkmark	\checkmark	×
\mathcal{P}	\checkmark	\checkmark	\checkmark

Preservation Theorems

Łoś-Tarski and beyond

Connecting an order to a syntactic fragment.

 $\forall \sigma. \forall \varphi \in \mathsf{FO}[\sigma].$

$$\llbracket \varphi \rrbracket_{X} = \uparrow \llbracket \varphi \rrbracket_{X} \iff \exists \psi \in \mathsf{EFO}[\sigma], \llbracket \varphi \rrbracket_{X} = \llbracket \psi \rrbracket_{X}$$

$Struct(\sigma)$	Order	Fragment	$FinStruct(\sigma)$
Łós-Tarski 🗸	⊆i	EFO	X [Tait, 1959]
Tarski-Lyndon 🗸	\subseteq	PFO	🗶 [Ajtai and Gurevich, 1994]
H.P.T. 🗸	\rightarrow	EPFO	✔ [Rossman, 2008]

Consequence

No relativisation result in general.

Preservation Theorems

Logically defined pre-spectral spaces

Pre-order	Topology
\leq	au
upwards-closed	open
monotone	continuous
↑ <i>F, F</i> finite	compact

Converting

- A topology τ has a specialisation pre-order, $x \leq_{\tau} y \triangleq \forall U \in \tau, x \in U \implies y \in U.$
- A pre-order \leq has *several* topologies. We will use Alexandroff $\tau_{\leq} \triangleq \{\uparrow U \mid U \subseteq X\}.$

The case of cycles

- τ_{\subseteq_i} is the discrete topology.
- EFO defines \subseteq_i .

Topological Solution

$$\tau_{\mathcal{C}} \triangleq \{F \cup \uparrow \{P_n\} \mid F \subseteq_f \mathcal{C} \land n \ge 1\} \cup \{\emptyset\}$$

Note: The specialisation preorder of $\tau_{\mathcal{C}}$ is \subseteq_i .

Topological Solution

$$\tau_{\mathcal{C}} \triangleq \{F \cup \uparrow \{P_n\} \mid F \subseteq_f \mathcal{C} \land n \ge 1\} \cup \{\emptyset\}$$

The case of cycles

- Every open set is compact
- Every compact-open set is definable in EFO
- Every continuous sentence $\varphi \in FO[\sigma]$ is definable in EFO.

Some perspectives

- Some sentences in EFO are *not* continuous in $(C, \tau_C)!$
- But if φ is not continuous, $\neg \varphi$ is.
- The complementary of a compact-open set is definable in EFO
- Every sentence $\varphi \in FO[\sigma]$ is definable in EFO.

Slight variations

- ↓*C* does not validate Łoś-Tarski's preservation theorem (adding points make things worse).
- Graphs of degree ≤ 2 validates Łoś-Tarski's preservation theorem [Atserias et al., 2008].

Spaces of interest

- $X \subseteq \mathsf{FinStruct}(\sigma)$ the support
- + τ a topology over X
- $\cdot \ \mathcal{K}^{\circ}(X)$ the compact-open sets
- \cdot FO[σ] the logic

Motto

Definable open sets are compact.

Logically-presented pre-spectral spaces (lpps)

For a triplet $\langle X, \tau, FO[\sigma] \rangle$

Pre-spectral $\tau = \langle \mathcal{K}^{\circ}(X) \rangle$ and $\mathcal{K}^{\circ}(X)$ is a lattice (see [Dickmann et al., 2019])

Presented $\tau \cap \llbracket FO \rrbracket_X \subseteq \mathcal{K}^{\circ}(X)$

Remark

In a lpps, $\tau \cap \llbracket FO \rrbracket_X = \mathcal{K}^{\circ}(X)$

Equivalence with preservation theorems

Let F be a fragment of FO[σ] and \leq a pre-order on X \subseteq FinStruct(σ) generated by F. Assume that \leq is downwards closed in FinStruct(σ).

There is a preservation theorem for (X, \leq, F) iff $(X, \tau_{\leq}, FO[\sigma])$ is a lpps.

Note

If $(X, \tau_{\leq}, FO[\sigma])$ is a lpps, then (X, \leq, F) always satisfies a preservation theorem.

A practical toolset

Combining previous examples

- \cdot Does ${\cal U}$ satisfy Łoś-Tarski's preservation theorem?
- Is $\langle \mathcal{U}, \tau_{\subseteq_i}, \mathsf{FO}[E] \rangle$ a lpps?
- Can we adapt $\tau_{\mathcal{C}}$ to \mathcal{U} ?

- Does U satisfy Łoś-Tarski's preservation theorem?
 ✗ ∀x. deg(x) = 2
- Is $\langle \mathcal{U}, \tau_{\subseteq_i}, \mathsf{FO}[E] \rangle$ a lpps?
- Can we adapt $\tau_{\mathcal{C}}$ to \mathcal{U} ?

- Does U satisfy Łoś-Tarski's preservation theorem?
 - ★ $\forall x. \deg(x) = 2$
- Is $\langle \mathcal{U}, \tau_{\subseteq_i}, \mathsf{FO}[E] \rangle$ a lpps? $\not{X} \quad \forall x. \deg(x) = 2$
- Can we adapt $\tau_{\mathcal{C}}$ to \mathcal{U} ?

- Does U satisfy Łoś-Tarski's preservation theorem?
 - ★ $\forall x. \deg(x) = 2$
- Is $\langle \mathcal{U}, \tau_{\subseteq_i}, \mathsf{FO}[E] \rangle$ a lpps? $\not{X} \quad \forall x. \deg(x) = 2$
- Can we adapt $\tau_{\mathcal{C}}$ to \mathcal{U} ?

$\langle X_1, \tau_1, \mathsf{FO}[\sigma] \rangle$ $\langle X_2, \tau_2, \mathsf{FO}[\sigma] \rangle$

$\begin{array}{c} \langle X_1, \tau_1, \mathsf{FO}[\sigma] \rangle & \qquad \langle X_2, \tau_2, \mathsf{FO}[\sigma] \rangle \\ \checkmark & \checkmark \end{array}$

A practical toolset

More complex construction

Support	Topology	Łoś-Tarski	Lpps
\mathcal{P}	τ_{\subseteq_i}	\checkmark	\checkmark
\mathcal{C}	$ au_{\subseteq_i}$	\checkmark	×
\mathcal{C}	$ au_{\mathcal{C}}$	\checkmark	\checkmark
$\mathcal{C}\bowtie\mathcal{P}$	$ au_{\subseteq_i}$?	?
$\mathcal{C}\bowtie\mathcal{P}$?	?	?

A practical toolset

Stability properties

Restrictions to definable open or definable closed sets

 $\langle X, \tau, \mathsf{FO}[\sigma] \rangle \, \mathsf{lpps} \land \llbracket \varphi \rrbracket_X \in \tau \implies \langle \llbracket \varphi \rrbracket_X, \tau, \mathsf{FO}[\sigma] \rangle \, \mathsf{lpps}$

Continuous FO-interpretation

 $\langle X, \tau, \mathsf{FO}[\sigma] \rangle \mathsf{lpps} \land f: (X, \tau) \twoheadrightarrow (Y, \theta) \implies \langle Y, \theta, \mathsf{FO}[\sigma] \rangle \mathsf{lpps}$

Restrictions to definable open or definable closed sets

•
$$\psi_1 \triangleq \exists x. \deg(x) \ge 4.$$

$$\cdot \ \psi_2 \triangleq \forall x_1, x_2. \deg(x_1) \ge 4 \land \deg(x_2) \ge 4 \implies x_1 = x_2.$$

Continuous FO-interpretation

 $\langle X, \tau, \mathsf{FO}[\sigma] \rangle \mathsf{lpps} \land f: (X, \tau) \twoheadrightarrow (Y, \theta) \implies \langle Y, \theta, \mathsf{FO}[\sigma] \rangle \mathsf{lpps}$

Restrictions to definable open or definable closed sets

 $\langle \mathcal{C}_{\geq 4} \bowtie \{ P_1 \}, \tau_{\subseteq_i}, \mathsf{FO}[E] \rangle$ is a lpps

Continuous FO-interpretation

 $\langle X, \tau, \mathsf{FO}[\sigma] \rangle \mathsf{lpps} \land f: (X, \tau) \twoheadrightarrow (Y, \theta) \implies \langle Y, \theta, \mathsf{FO}[\sigma] \rangle \mathsf{lpps}$

Restrictions to definable open or definable closed sets $\langle C_{\geq 4} \bowtie \{P_1\}, \tau_{\subseteq_i}, FO[E] \rangle$ is a lpps

Continuous FO-interpretation

- $\delta(x) \triangleq \deg(x) \leq 3.$
- $\psi_E(x,y) \triangleq E(x,y)$.

Restrictions to definable open or definable closed sets $\langle \mathcal{C}_{\geq 4} \bowtie \{ \mathcal{P}_1 \}, \tau_{\subseteq_i}, \mathrm{FO}[E] \rangle \text{ is a lpps}$

Continuous FO-interpretation

 $\langle \mathcal{C}_{\geq 4}, \tau_{\subseteq_i}, \mathsf{FO}[E] \rangle$ is a lpps

Absurd.

Support	Topology	Łoś-Tarski	Lpps
\mathcal{P}	$ au_{\subseteq_i}$	\checkmark	~
\mathcal{C}	$ au_{\subseteq_i}$	\checkmark	×
С	$ au_{\mathcal{C}}$	\checkmark	\checkmark
$\mathcal{C}\bowtie\mathcal{P}$	$ au_{\subseteq_i}$?	×
$\mathcal{C}\bowtie\mathcal{P}$?	?	?

$\langle \mathcal{C}, \tau_{\mathcal{C}}, \mathsf{FO}[E] \rangle$

27

Positive result

Positive result

Support	Topology	Łoś-Tarski	Lpps
\mathcal{P}	$ au_{\subseteq_i}$	\checkmark	\checkmark
$\mathcal C$	$ au_{\subseteq_i}$	\checkmark	×
С	$ au_{\mathcal{C}}$	\checkmark	\checkmark
$\mathcal{C}\bowtie\mathcal{P}$	$ au_{\subseteq_i}$?	×
$\mathcal{C}\bowtie\mathcal{P}$	$ au_{\mathcal{C}} \Join au_{\subseteq_i}$?	1

Consider ($\mathcal{C} \bowtie \mathcal{P}, \tau_{\mathcal{C}} \bowtie \tau_{\subseteq_i}$).

- Every compact-open set of is definable in EFO.
- Every definable open set is definable in EFO.

Warning!

Some EFO sentences are not continuous.

Exercise

If φ is monotone for \subseteq_i , and not continuous, then φ has finitely many models, hence is definable in EFO.

Support	Topology	Łoś-Tarski	Lpps
\mathcal{P}	$ au_{\subseteq_i}$	\checkmark	\checkmark
\mathcal{C}	τ_{\subseteq_i}	\checkmark	×
С	$ au_{\mathcal{C}}$	\checkmark	\checkmark
$\mathcal{C}\bowtie\mathcal{P}$	$ au_{\subseteq_i}$	 Image: A second s	×
$\mathcal{C}\bowtie\mathcal{P}$	$ au_{\mathcal{C}} \Join au_{\subseteq_i}$	\checkmark	1

A practical toolset

Details of the toolset

Constructor	Restrictions
Subset	definable, open or closed
Image of a morphism	
Sum	finite
Product	finite
Density	
Projective limit	*

Brief recap

Preservation to LPPS (Theorem 3.4)

Closure Properties (Propositions 5.4, 5.5, 5.8)

Using known spaces (well-quasi-orderings)

Using known spaces (noetherian spaces)

Thank You!

Ajtai, M. and Gurevich, Y. (1994). Datalog vs first-order logic. Journal of Computer and System Sciences, 49(3):562–588.

Atserias, A., Dawar, A., and Grohe, M. (2008).
Preservation under extensions on well-behaved finite structures.

SIAM Journal on Computing, 38(4):1364–1381.

- Dickmann, M., Schwartz, N., and Tressl, M. (2019).
 Spectral Spaces, volume 35 of New Mathematical Monographs.
 Cambridge University Press.

Rossman, B. (2008).

Homomorphism preservation theorems.

Journal of the ACM, 55(3):15:1–15:53.

Tait, W. W. (1959).

A counterexample to a conjecture of Scott and Suppes.

Journal of Symbolic Logic, 24(1):15–16.

$$X_n \triangleq \langle X, \tau_{\rightarrow_n}, \mathsf{FO}[\sigma] \rangle \qquad Y_n \triangleq \langle X, \tau_{\rightarrow}, \mathsf{FO}^n[\sigma] \rangle$$

- 1. The projective limit of Y_n in Top is $\langle X, \tau_{\rightarrow}, FO[\sigma] \rangle$.
- 2. $\exists \rho. \forall n. \mathcal{K}^{\circ}(Y_n) \subseteq \mathcal{K}^{\circ}(X_{\rho(n)})$
- 3. Hence $\langle X, \tau_{\rightarrow}, FO[\sigma] \rangle$ is lpps.

Logical Closure

 $\forall \varphi \in \mathsf{FO}[\sigma], \llbracket \varphi \rrbracket_{\chi} \neq \emptyset \iff \llbracket \varphi \rrbracket_{\overline{\chi}} \neq \emptyset$

- 1. New constructions (finite words, infinite words, trees, ...).
- 2. Iterative constructions.
- 3. Handle smaller fragments $\exists^k \forall$.
- 4. Locally lpps is the same as lpps.