Preservation Theorems Through the Lens of Topology

A toolset for studying preservation theorems

Aliaume Lopez
9/ 03/ 2020

Under the supervision of école—l
) normale

Sylvain SCHMITZ supérieure

Jean GOUBAULT-LARRECQ paris—-saclay




Preservation Theorems

[llustrating the notions



A sentence over graphs D

© 2 X3y ~(XEy) AX # Y



Models of a sentence @

[l : Graph > {0,1}  [¢lx 2 {GEX|G ¢}
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A natural order for structures @
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A natural order for truth values @



Special kinds of sentences ®

[¢] : (Graph, &) — ({0,1}, <)

Monotone sentences over X

* ([¢]) x is non-decreasing

: [[‘P]]XZT[[SOH)(%{GGX|EHE [[@]])mH G G}
- For all (Gy,G;) € X? such that Gy C; G; and Gy |= ¢, G; = ¢.



Preservation Theorems

Evaluating ¢



Finite graphs

Recall that ¢ £ ¥x.3y.=(xEy) A x # y.
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Not Monotone!



Structure of paths
- Totally ordered for C;

- The sentence ¢ is monotone

Rewriting
P O—OOO0 v
lole =1iPu} P, | O—O—0—0O
4
© =p 3X1, X2, X3, Xs. ’
X1 7# Xa A Xy 7# X3/ P, OO
X175X4/\X275X3/\ Py O

X2 #X4/\X3¢X4
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Structure of cycles Rewriting
- Infinite antichain * [ele = t{Ps} U{Cy}
- The sentence ¢ is monotone -+ ¢ =¢ ¥,

- eue

P, O-O-OO



We considered ¢ and studied whether it was monotone, equivalent
to an existential sentence and had finitely many minimal models
over different classes.

Space Monotone Existential Compact’

Graph X X X
€ v v X
P v v v

THas finitely many minimal models



Preservation Theorems

tos-Tarski and beyond



tos-Tarski's preservation theorem over X C Struct(o)

Connecting an to a syntactic fragment.

Vo.¥y € FO[o].

[elx = Tlelx == 3 € EFOlo], [¢lx = [¥1x
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Preservations Theorems on Finite and Infinite Structures

Struct(o) Fragment FinStruct(o)
kos-Tarski v/ EFO X [Tait, 1959]
Tarski-Lyndon v/ PFO X [Ajtai and Gurevich, 1994]
H.PT. v EPFO v [Rossman, 2008]
Consequence

No relativisation result in general.



Preservation Theorems

Logically defined pre-spectral spaces



Translating to a topological setting M

Pre-order Topology
< T
upwards-closed open
monotone continuous
1F, F finite compact

Converting
- Atopology 7 has a specialisation pre-order,
x<,y=YWerxel = yel.

- A pre-order < has several topologies. We will use Alexandroff
< 2 {tU|UCX}.



Why topology matters M

The case of cycles

- 7c, is the discrete topology.
- EFO defines

Topological Solution
e £ {FUM{P} | FCsCAN>1}U{0}

Note: The specialisation preorder of 7¢ is C,.
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Why topology matters Q)

Topological Solution
e £ {FUM{Pr} | FCrCAN>1HU{0}

The case of cycles

- Every is
- Every is definable in EFO
- Every sentence ¢ € FO[o] is definable in EFO.



Why topology matters D

Some perspectives

- Some sentences in EFO are not continuous in (C, 7¢)!

- But if ¢ is not continuous, —p is.

- The complementary of a is definable in EFO
- Every sentence ¢ € FO[o] is definable in EFO.
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Why topology matters D

Slight variations

- |C does not validate tos-Tarski's preservation theorem (adding
points make things worse).

- Graphs of degree < 2 validates tos-Tarski's preservation
theorem [Atserias et al., 2008].



Spaces of interest

- X C FinStruct(o) the support
- 7 a topology over X

- K°(X) the compact-open sets
- FO[o] the logic

Motto
Definable open sets are compact.



Logically-presented pre-spectral spaces (Ipps)

For a triplet (X, 7, FO[o])

Pre-spectral ~ = (K°(X)) and K°(X) is a lattice
(see [Dickmann et al., 2019])
Presented N [FO], C K°(X)

Remark

Ina lpps, 7 N [FO], = K°(X)

19



Capturing downwards closed classes o )

Equivalence with preservation theorems

Let F be a fragment of FO[o] and < a pre-order on X C FinStruct(o)
generated by F. Assume that < is downwards closed in FinStruct(c).

There is a preservation theorem for (X, <, F) iff (X, 7<,FO[o]) is a lpps.
Note

If (X, 7<, FOl[o]) is a lpps, then (X, <, F) always satisfies a preservation
theorem.
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A practical toolset

Combining previous examples



A simple union d

Considerid £ C U P.

- Does U satisfy tos-Tarski's preservation theorem?
- Is (U, 7c,, FO[E]) a lpps?

- Can we adapt 7¢ to U?

21



A simple union d

Considerid £ C U P.

- Does U satisfy tos-Tarski's preservation theorem?
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A simple union d

Considerid £ C U P.

- Does U satisfy tos-Tarski's preservation theorem?
X Vx.deg(x) =2

- Is (U, 7c,, FO[E]) a lpps?
X Vx.deg(x) =2

- Can we adapt 7¢ to U?
v
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A simple union @

<X1,T1,FO[O']> <X2,7’2,FO[O’]>
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A simple union @

<X1,T1,FO[O']> <X2,7’2,FO[O’]>
v v
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A simple union @

(X2 WXy, 71 + 12, FO[o])

<X1,T1,FO[O']> <X2,7’2,FO[O’]>
v v
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A simple union @

v
(X2 WXy, 71 + 12, FO[o])

<X1,T1,FO[O']> <X2,7’2,FO[O’]>
v v
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A practical toolset

More complex construction



A complex class of graphs 9

Consider BEC P £ {C; = P; | (G, P)) € C x P}.

C3I><IP3
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A complex class of graphs 9

Consider BEC P £ {C; = P; | (G, P)) € C x P}.

B3

C3I><IP3
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A complex class of graphs 9

Consider BEC P £ {C; = P; | (G, P)) € C x P}.

C3I><IP3
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A complex class of graphs 9

Consider BEC P £ {C; = P; | (G, P)) € C x P}.

C3I><IP3
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Fiddling around <

Support Topology tos-Tarski Lpps

73 Tg’ v v
C TC; v X
@ Te v v
CxxP TC; ? ?

CaP [ ? ?
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A practical toolset

Stability properties



Negative result 9

Assume (C > P, 7c,, FO[E]) is a lpps.

Restrictions to definable open or definable closed sets
(X,7,FO[o]) lpps A ¢l € T = ([¢lx, 7, FO[o]) Lpps

Continuous FO-interpretation
(X,7,FO[o]) lpps A f: (X,7) — (V,0) = (V,6,FO[c]) lpps

25



Negative result 9

Assume (C > P, 7c,, FO[E]) is a lpps.

Restrictions to definable open or definable closed sets

- 11 £ 3x. deg(x) > 4.
< Yy £ VX1,X2.deg(X1) >4 A deg(Xz) >4 = X1 =X

Continuous FO-interpretation
(X,7,FO[a]) pps A f: (X,7) — (Y, 0) = (V,0,FO[o]) pps

25



Negative result 9

Assume (C 1 P, 1c,, FO[E]) is a [pps.

Restrictions to definable open or definable closed sets
(C>s > {P1},7c., FO[E]) is a lpps

Continuous FO-interpretation
(X,7,FO[a]) pps A f: (X,7) — (Y, 0) = (V,0,FO[o]) pps

25



Negative result 9

Assume (C > P, 7c,, FO[E]) is a lpps.

Restrictions to definable open or definable closed sets
(Cs4 b4 {P1},7c,, FOIE]) is a lpps

Continuous FO-interpretation
- 5(x) £ deg(x) < 3.
: qZ)E(va) = E(Xv y)
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Negative result 9

Assume (C > P, 7c,, FO[E]) is a lpps.

Restrictions to definable open or definable closed sets
(Csu > {Pr},7c,, FO[E]) is a lpps

Continuous FO-interpretation
(C>4,7c,, FO[E]) is a lpps

Absurd.
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Fiddling around D

Support Topology tos-Tarski Lpps

73 Tg’ v v

C TC; v X

@ Te v v
CxxP TC; ?

CaP [ ? ?
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Positive result D

<C7TC7 FO[E]> <P77—§,7 FO[E]>

27



Positive result D

<C7TC7 FO[E]> <P77—§,7 FO[E]>
v v
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Positive result

<C X P,Tc X TC, FO[E, 61,52]>

/

<C7TC7 FO[E]> <P77—§,7 FO[E]>
v v
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Positive result D

(C > P, 1c > 1c,, FO[E])

<C X P,Tc X TC;, FO[E,61752]> v

=

<C7TC7 FO[E]> <P77—§,7 FO[E]>
v v
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Positive result D

(C>=P,1cx7c,, FOIE]) v

<C X P,Tc X TC;, FO[E,61752]> v

=

<C7TC7 FO[E]> <P77—§,7 FO[E]>
v v
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Fiddling around D

Support Topology tos-Tarski Lpps

,P Tg v v

C TC; v X

@ Te v v
CxP TC, ?
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Answering our last question ¢D

Consider (C > P, 7¢ >a 7¢)).

- Every set of is definable in EFO.
- Every definable set is definable in EFO.
Warning!

Some EFO sentences are not continuous.
Exercise

If ¢ is monotone for C;, and not continuous, then ¢ has finitely many
models, hence is definable in EFO.

29



Fiddling around D

Support Topology tos-Tarski Lpps

,P Tg v v
C TC; v X
© Tc v v
CxxP TC; v
CxxP Tc XM T¢; v v
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A practical toolset

Details of the toolset



Closure properties ®

Constructor Restrictions
Subset definable,
Image of @ morphism

Sum finite
Product finite
Density

Projective limit *

31



Brief recap




The Approach O

Noetherian spaces

Preservation Theorems LPPS

WQO

Preservation to LPPS (Theorem 3.4)
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The Approach O

ST -

Noetherian spaces

Preservation Theorems LPPS

U \WQO

Closure Properties (Propositions 5.4, 5.5, 5.8)
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The Approach O

Noetherian spaces

Preservation Theorems LPPS

Using known spaces (well-quasi-orderings)
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The Approach O

O Noetherian spaces

Preservation Theorems LPPS

U \WQO

Using known spaces (noetherian spaces)
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The Approach O

ST -

C ) _—

Preservation Theorems LPPS

w \vvoo

Thank You!

Noetherian spaces

32



[@ Ajtai, M. and Gurevich, Y. (1994).
Datalog vs first-order logic.
Journal of Computer and System Sciences, 49(3):562-588.

[@ Atserias, A, Dawar, A, and Grohe, M. (2008).
Preservation under extensions on well-behaved finite
structures.

SIAM Journal on Computing, 38(4):1364-1381.

[@ Dickmann, M, Schwartz, N, and Tressl, M. (2019).

Spectral Spaces, volume 35 of New Mathematical Monographs.
Cambridge University Press.

[@ Rossman, B. (2008).
Homomorphism preservation theorems.
Journal of the ACM, 55(3):15:1-15:53.



@ Tait, W. W. (1959).
A counterexample to a conjecture of Scott and Suppes.
Journal of Symbolic Logic, 24(1):15-16.



Rossman's Proof of the H.P.T.

X, & (X, 17—, , FO[o]) Y, £ <X, Frse FO”[U]>

1. The projective limit of Y, in Top is (X, 7_,, FO[o]).
2.
3. Hence (X, 7, FO[o]) is lpps.



Logical Closure

x|

Vi € FO[o], [¢lx # 0 < [elx #0



What we are hoping for

1. New constructions (finite words, infinite words, trees, ...).
Iterative constructions.

Handle smaller fragments 3*v.

= @ N

Locally lpps is the same as lpps.
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