Basic operational preorders for algebraic effects in general, and for combined probability and nondeterminism in particular

Computer Science Logic 2018

Aliaume Lopez
Alex Simpson
September 7, 2018
Context
Three approaches to semantics

Operational describe evaluation steps

Denotational compositional mathematical model

Axiomatics axiomatise behaviour

Contextual preorder

1. Tied to operational semantics
2. $P_1 \sqsubseteq_{ctxt} P_2$ iff in any context C, the behaviour of $C[P_1]$ approximates the behaviour of $C[P_2]$.
[Johann et al., 2010a]

Why? Operational semantics works *great* but needs to be adapted in each case.
[Johann et al., 2010a]

Why? Operational semantics works *great* but needs to be adapted in each case

Objective? Give a *generic* operational semantics for a large class of languages
[Johann et al., 2010a]

Why? Operational semantics works *great* but needs to be adapted in each case.

Objective? Give a *generic* operational semantics for a large class of languages.

How?
1. Parametrize with a signature of effect operations Σ
2. Reduce a program to an *effect tree*
3. Define a \preccurlyeq preorder on $\text{Trees}_{\text{Nat}}$
[Johann et al., 2010a]

Why? Operational semantics works *great* but needs to be adapted in each case.

Objective? Give a *generic* operational semantics for a large class of languages.

How?
1. Parametrize with a signature of effect operations Σ
2. Reduce a program to an effect tree
3. Define a \preceq preorder on $\text{Trees}_{\text{Nat}}$

Result? Generic operational definition of contextual preorder.
Contextual preorders

Morris-style

Input: A preorder \preceq for type Nat

Output:

\[P_1 \sqsubseteq_{\text{ctxt}} P_2 \iff \forall C[-] \text{ context}, \|C[P_1]\| \preceq \|C[P_2]\| \quad (1) \]
Contextual preorders

Morris-style

Input: A preorder \preceq for type Nat

Output:

\[P_1 \sqsubseteq_{ctxt} P_2 \iff \forall C[-] context, |C[P_1]| \preceq |C[P_2]| \quad (1) \]

GOM

Input: A preorder \preceq for type Nat

Output: A logical relation (!) on programs that characterises contextual preorder (Morris-Style)
Example of trees

Let $\Sigma = \{\text{pr}\}$ be a signature containing one binary effect construction.

Properties

Trees$_{\text{Nat}}$ is a DCPO and a continuous Σ-algebra
What are the conditions on \preceq in GOM?

Admissible If $t_i \preceq t_i'$ and $(t_i)_i, (t_i')_i$ are an ascending chains then

$$\bigvee_i t_i \preceq \bigvee_i t_i'$$

(2)

Compatible with least upper bounds

Compositional If $t \preceq t'$ and $\rho \preceq \rho'$ (pointwise) then $t\rho \preceq t'\rho'$

Compositional reasoning is possible
Contributions

General Identify three different ways to produce well-behaved preorders
Contributions

General Identify three different ways to produce well-behaved preorders

Specific Examine how they apply to a specific signature

\[\Sigma_{pr/nd} = \{\text{pr, or}\} \] (3)
Contributions

General Identify three different ways to produce well-behaved preorders

Specific Examine how they apply to a specific signature

\[\Sigma_{pr/nd} = \{pr, or\} \] (3)

Coincidence Prove that the three ways of defining \(\preceq_{pr/nd} \) lead to the same contextual preorder
Well-behaved preorders
Methods for defining preorders

Following three common approaches to semantics

• From some operational construction \(\preceq_{\text{op}} \)
• From a denotation \(\langle \cdot \rangle \) \(\preceq_{\text{den}} \)
• From axiomatic definitions \(\preceq_{\text{ax}} \)
Randomised Algorithms with Scheduler

\[\sum \text{ coin "pr", demon "or" } \]
\[\preceq \text{ capture the behaviour ... and satisfies the requirements } \]

Example of program

\((1 \text{ pr } 2) \text{ or } 3\)
Operationally defined preorders
Compare Markov Decision Processes pointwise, where a point is a goal set $X \subseteq \text{Nat}$:

$$t \preceq_{\text{badOp}} t' \iff \forall X \subseteq \text{Nat}, \quad \inf_{\pi} \mathbb{E}^{\pi}(t \in X) \leq \inf_{\pi} \mathbb{E}^{\pi}(t' \in X)$$
The issue

1. The following trees are equated

 \[\text{or} \quad \text{pr} \quad 3 \quad \sim_{\text{badOp}} \quad \text{or} \quad \text{pr} \quad \text{or} \quad \text{or} \quad 3 \]

2. If compositionality holds for \(\leq_{\text{badOp}} \) then

 \[x \text{ or} (y \text{ pr} z) = (x \text{ or} y) \text{ pr} (x \text{ or} z) \] \hspace{1cm} (4)

3. Which is does not hold for \(\simeq_{\text{badOp}} \) (easy substitution)

4. And should never hold [Mislove et al., 2004]
Compare Markov Decision Processes pointwise, where a point is a payoff function $h : \text{Nat} \rightarrow \overline{\mathbb{R}}_+$:

$$t \preceq_{\text{op}} t' \iff \forall h : \text{Nat} \rightarrow \overline{\mathbb{R}}_+, \quad \inf_{\pi} \mathbb{E}^\pi(h(t)) \leq \inf_{\pi} \mathbb{E}^\pi(h(t'))$$

Proposition
The preorder \preceq_{op} is admissible and compositional

Remark
The proof requires some topological arguments...
Denotationally defined preorders
The idea

Input
1. Continuous Σ-algebra D
2. $[\cdot] : \mathbb{N}_\bot \rightarrow D$ continuous Σ-algebra homomorphism

Output The preorder \preceq_{den}

$$
\begin{align*}
\mathbb{N} & \xrightarrow{j} D \\
i & \downarrow i \\
\text{Trees}(\mathbb{N}) & \xrightarrow{[\cdot]} D
\end{align*}
$$

$$
t \preceq_{\text{den}} t' \iff [t] \leq_D [t'] \quad (5)
$$
Properties of \(\preceq_{\text{den}} \)

1. Automatically *admissible* (continuity)
2. Automatically *compatible* (\(\Sigma \)-algebra)
3. Not always *compositional*!
Factorisation

The map \(j : \mathbb{N} \rightarrow D \) is said to have the *factorisation property* if, for every function \(f : \mathbb{N} \rightarrow D \), there exists a continuous homomorphism \(h_f : D \rightarrow D \) such that \(f = h_f \circ j \).

\[
\begin{array}{ccc}
\mathbb{N} & \xrightarrow{j} & D & \xrightarrow{h_f} & D \\
\downarrow{f} \quad & & & & \quad \downarrow{f}
\end{array}
\]

Idea

We then have \([t\sigma] = h_\sigma([t])\) which is continuous in \(t \) with a fixed \(\sigma \).
Well behaved denotational preorder

Proposition
If $j: \mathbb{N} \to D$ has the factorisation property then the relation \preceq_D is substitutive, hence it is an admissible compositional precongruence.

In practice [Proposition 16]
It is usually not necessary to prove the factorisation property directly. Instead it holds as a consequence of the continuous algebra D and map $j : \text{Nat} \to D$ being derived from a suitable monad.
Applying to the running example

Using Kegel's results [Keimel and Plotkin, 2017]

\[\mathcal{V}_{\leq 1} X \text{ } \omega \text{CPO of (discrete) subprobability distributions over } X. \]
\[S\mathcal{V}_{\leq 1} X \text{ } \omega \text{CPO of nonempty Scott-compact convex upper-closed subsets of } \mathcal{V}_{\leq 1} X \text{ ordered by reverse inclusion } \supseteq. \]

\[
\text{or}(A, B) = \text{Conv}(A \cup B) \quad (6)
\]
\[
\text{pr}(A, B) = \left\{ \frac{1}{2} a + \frac{1}{2} b \mid a \in A, b \in B \right\} \quad (7)
\]
Axiomatically defined preorders
Theories

Equation $e \leq e'$ with $e, e' \in \text{Trees}(\text{Vars})$

Clause (Infinitary) Horn-Clause of equations

Theory Set of Horn-Clauses
Theories

Equation \(e \leq e' \) with \(e, e' \in \text{Trees}(\text{Vars}) \)

Clause (Infinitary) Horn-Clause of equations

Theory Set of Horn-Clauses

Axiomatically defined preorder

Definition There exists a smallest admissible preorder \(\preceq_{\text{ax}} \) that models \(T \)

Property \(\preceq_{\text{ax}} \) is compositional
Axioms for Pr and Nd

Bot: $\bot \leq x$
Axioms for Pr and Nd

Bot: \(\perp \leq x \)

Prob: \(x \text{ pr } x = x, \ x \text{ pr } y = y \text{ pr } x, \)
\((x \text{ pr } y) \text{ pr } (z \text{ pr } w) = (x \text{ pr } z) \text{ pr } (y \text{ pr } w) \)

Appr: \(x \text{ pr } y \leq y \implies x \leq y \) (!)
Axioms for Pr and Nd

Bot: $\bot \leq x$

Prob:
- $x \text{pr} x = x$
- $x \text{pr} y = y \text{pr} x$,
- $(x \text{pr} y) \text{pr} (z \text{pr} w) = (x \text{pr} z) \text{pr} (y \text{pr} w)$

Appr: $x \text{pr} y \leq y \implies x \leq y$

Nondet:
- $x \text{or} x = x$
- $x \text{or} y = y \text{or} x$
- $x \text{or} (y \text{or} z) = (x \text{or} y) \text{or} z$

Dem: $x \text{or} y \geq x$
Axioms for Pr and Nd

Bot: \(\bot \leq x \)

Prob: \(x \text{pr} x = x, \ x \text{pr} y = y \text{pr} x, \)
\((x \text{pr} y) \text{pr} (z \text{pr} w) = (x \text{pr} z) \text{pr} (y \text{pr} w) \)

Appr: \(x \text{pr} y \leq y \implies x \leq y \) (!)

Nondet: \(x \text{or} x = x, \ x \text{or} y = y \text{or} x, \ x \text{or} (y \text{or} z) = (x \text{or} y) \text{or} z \)

Dem: \(x \text{or} y \geq x \)

Dist: \(x \text{pr} (y \text{or} z) = (x \text{pr} y) \text{or} (x \text{pr} z) \) (!)
The coincidence theorem
Coincidence

For probability and non-determinism

\[\preceq_{op} = \preceq_{den} = \preceq_{ax} \]

Proof sketch

1. Equality on trees without or nodes
2. Equality for trees with finite number of or nodes (!)
3. General equality using finite approximations and admissibility
Summary and limitations
Summary and limitations

What has been done

- Denotational and Axiomatic definitions of preorders
- Applied to a specific signature \(\Sigma = \{ \text{pr}, \text{or} \} \)

Limitations

- Some effects are not algebraic
- The preorder for *countable* non-determinism is not admissible

Thank You!
ArXiv e-prints.

Mathematical Structures in Computer Science.
To appear.

