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Abstract

This thesis takes places at the crossroad of several fields of computer science: combinatorics (through well-
quasi-orderings), topology (through Neetherian spaces), and logic (through Finite Model Theory). Ideally,
one would study database related problems through the lens of logic, and provide combinatorial arguments for
their resolution using the theory of well-quasi-orderings. However, well-quasi-orderings are not well-suited to
describe logical properties, and Finite Model Theory is more prone to defining topologies. As a glue between
these two realms, Neetherian topologies, the analogue of well-quasi-orderings in the topological setting, allows
to amorce a dialogue between these classical order-theoretic results and finite model theory.

A particular instance of this interplay, studied in this thesis, is the wide variety of preservation theorems,
relating syntactic fragments of First Order Logic (e.g.unions of conjunctive queries) to semantic fragments
of First Order Logic (e.g.queries preserved under extensions). There exists a plethora of such preservation
theorems in classical model theory but most of them fail in the finite. As the classical proofs crucially rely
on the compactness theorem of first order logic, this is a fitting place to study the interplay between finite
model theory and notions of compactness in topological spaces. Our first contribution is to study preservation
theorems through the lens of topology via “topological preservation theorems”, or, more formally, logically
presented pre-spectral spaces, where the topological setting is ideal to describe algebraic properties of those
theorems. However, this topological descriptions has its limits and we provided a way to “decouple” topology
from logic though the study of localisable classes of structures and a positive variant of the Gaifman Normal
Form, a fundamental tool of finite model theory.

A second interplay, with well-quasi-ordering, is to generalise the “minimal bad sequence arguments” at
the heart of many proofs in the theory, to a categorical setting. A main consequence is the existence of a
canonical Noetherian topology associated to an initial algebra. Using these results, we re-interpret existing
Neetherian topologies, and develop new topologies, beyond the reach of well-quasi-orderings, such as the
recurrent topology over transfinite words.

Finally, bridging finite model theory and well-quasi-orderings, this thesis explored graph classes that are
well-quasi-ordered for the induced substructure ordering. This line of research was driven by the hope that
one could characterise concrete classes of graphs defined by an interpretation from tree-like structures that are
well-quasi-ordered for the induced substructure ordering. The hope was to provide a decision procedure for
the existence of simple algorithms based on well-quasi-ordering theory, but this did not go through.

The contributions and their relative position with respect to the three main domains of this thesis are
described in Figure 1.
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Figure 1: Topology as a bridge between model theory and well-quasi-orderings.
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SCIENTIFIC CONTEXT

This section is devoted to the introduction of three core notions of this thesis: 1. well-quasi-orders in Section 1.1
2. Noetherian spaces in Section 1.2 3. finite model theory in Section 1.3. These notions will have numerous and
fruitful interplay in Section 2, devoted to the scientific production of this thesis. None of the results and defin-
itions appearing hereafter are new, but may be spelled out in a slightly unorthodox manner to keep consistency
between the different fields of research.

WELL QUASI ORDERINGS

A poset is a set X equipped with a transitive, reflexive and antisymmetric relation <. A guasi-order is a set X
equipped with a transitive and reflexive relation <. As one can always quotient a quasi-order to obtain a poset,
we will sometimes mix those denominations to match the convention in the literature. In a poset, two elements
might be incomparable for the relation <, this will be written L y.

53 Sequences in a Poset #%-

To describe termination of programs, one relies on well-foundedness of some quasi-ordered set (X, <). Con-
cretely, one wants to avoid disastrous sequences, that are sequences (21, ) nen of (X, <) thatare strictly decreasing,
ie. such thatforalli < j,x; > z;. A quasi-ordered set (X, <) is well-founded whenever no sequence is dis-
astrous. The prototypical example of well-founded total ordering is (N, <), the natural numbers with the usual
ordering. Given an alphabet X, one can order the finite words over 3 using the suffix ordering =, building the
well-founded poset (X%, C).

More often than not, one cannot prove that a given sequence is disastrous, but rather that it cannot contain
an increasing pair, which happens to be two different properties when the ordering is not total. For that purpose,
many authors introduced the notion of good sequence. A sequence (, ) nen is good whenever there exists i < j
such thatx; < x5, as shown in Figure 2. A well-quasi-orderis a quasi-order where every infinite sequence is good.
A bad sequence is a sequence that is not good. Hence, a wqo is a poset having no infinite bad sequence.

r1lxs Ty > T
I 2 3

Figure 2: A good sequence in the poset N X N ordered pointwise.

4 i j

Example 1.1 (Examples of well-quasi-orderings). The following quasi-orders are wqos:
= (N, <), the natural numbers equipped with the usual ordering,
= (F, =) afinite set equipped with equality,
= (G, <minor) the class G of finite graphs equipped with the minor ordering <pinor-

Example 1.2 (Non-examples of well-quasi-orderings). The following quasi-orders are not wqos:
= Words with the suffix ordering C.
= An infinite set equipped with equality.
= (G, ;) the class of finite graphs equipped with the induced substructure ordering.

To better understand the notions of good sequence and bad sequence we provide in Table 1 some examples
of such sequences in various posets. In this table, we will refer to the finite simple cycle of size 7 as C;.

The downwards closure of a set E C X is written [E and is the set of all elements of X below some
element of B, ie. |E = {r € X |Tyc E,x <y} Similarly, one defines the upwards closure via TE =
{r € X |3y € E,y <z}. Asubset E of X is upwards closed whenever 1E = E.

An antichainis asequence (z;) ;e of elements such thatforalli # j,z; L ;. By definition, an antichain is
abad sequence, and the following proposition states that it is enough to forbid antichains and infinite decreasing
sequences to forbid arbitrary bad sequences.



Quasi-Order Sequence Good

(N,=) i X

(N, <) i
({ab},C)  imal
({a,b},0) i+ bat x

({a,b}, <p) i — ba’

(g, g,) 7 CL X
(ga Sminor) 1 07,

Table 1: Examples and non examples good sequences (2;);>1.

Proposition 1.3 (Equivalent definitions of wqos). The following definitions are equivalent for a poset (X, <).
(i) X is a wqo.
(ti) X has no infinite decreasing sequence and no infinite antichains.
(iti) X has no strictly decreasing sequence of downwards closed sets for inclusion.
(iv) X has no strictly increasing sequence of upwards closed sets for inclusion.

-93 A Grammar for well-quasi-orders ®-

We now turn our attention to the relations between wqos and their algebraic properties. These properties men-
tioned are crucial as we will compare other properties by their ability to enjoy them.

Interpretations. Amap f: X — Yismonotonewheneverz <x y = f(z) <y f(y)forall(z,y) € X.
It is an easy check that if X is a well-quasi-order and f is a monotone surjective function, then Y is also a well-
quasi-order. In particular, this allows to quotient wqos.

Conversely, if there existsamap f: X — Y such that f(z) <y f(y) = z <x yforall (z,y) € X,
then Y wqo implies X wqo, such a map is called an order reflection. This implies that subsets of a wqo are wqos.

Concretely, one can use an order reflection to prove that a subset of a wqo is a wqo, and monotone surjective
maps to prove that the quotient of a wqo is wqo. These stabilities under subsets and quotients, while natural on
posets, will be lacking when studying the otherwise analogous notion of “preservation theorem” in Section 1.3.

Sums and Products. If A and B are two wqos, then A + B with the disjoint orderings is wqo, and A x B
with the usual product ordering is wqo. This immediately allows considering finite sums and products of wqos
to build new wqos.

Example 1.4. The set of unordered pairs {a, b} equipped with {a,b} < {¢,d} whena < ¢Ab < dor
a<dAb< cisawqo.

Proof. Theset (N, <) isawqo, hence N x N ordered pointwise is a wqo, therefore its quotient under the action
of the permutation group 53 is a wqo. O

Noticeably, infinite sums and infinite products fail to be wqo in general. This fails because infinite sums
of non-empty wqos contain an infinite antichain. For infinite products [ [, ; Xj, taking X; = {a, b} with
a < b allows to build a strictly decreasing infinite sequence, although X; was wqo for all i € I. In categorical
terms, this means that wqos have equalisers (quotients) but only finite products and co-products, hence that one
cannot, in general, consider the limit/co-limit of a diagram of wqos. This is a problem because most of the data
structures in computer science are defined inductively, and therefore naturally appear as such co-limits.

Finite words. Surprisingly, one can consider words over a wqo and endow it with an ordering making it wqo.
Note that the subfactor ordering, suffix ordering, and prefix ordering are not well-quasi-orders over finite words
over a binary alphabet. One could hope that by seeing words £* as the construction Y~ , £, the associated
product ordering on words defined as u < vif |u| = |v|and u; < v; forl < i < |uf would be wqo. As
expected, the product ordering is not wqo on words as the sequence a™ is an infinite antichain. To tackle this
issue, one defines the Higman word embedding, where u <j, v if there exists a strictly increasing function f such
thatu; < vy for 1 <4 < |ul. In practise, bigger words are obtained by “increasing the letters” and “inserting
arbitrary factors”, as depicted in Figure 3.



Higman’s word embedding can be seen “algebraically” as the transitive closure of the usual product ordering
and the suffix ordering, but is also directly related to the notion of structure embedding in finite model theory.
Indeed, a word w is a finite structure equipped with a total order and unary predicates, and Higman’s word
embedding is the actual structure embedding of words. Over a unary alphabet 32 £ {x}, the poset (¥*, <j) is
isomorphic to (N, <).

up by w1 by U2 by U3 by U4 by Us bg Us by ur
NN A PSS
< < < < < <
\ \ \ / / /
a1 ap ar

as a4 a5 dag

— IN =

Figure 3: Higman ordering

Extended constructors. One can quotient finite words by permutation of letters to obtain a representation
of finite multisets with the multiser embedding', and forget about the number of occurrences to obtain finite
sets with the Hoare embedding. Concretely, X <" E’ whenever LE C |E’. This provides new datatype
constructors for wqos.

Following the intuition of structure embeddings, we can define Kruskal’s tree embedding over finite trees by
considering them as structures equipped with the tree ancestor relation. This provides one more constructor of
wqo, and completes the “basic grammar of well-quasi-orderings” described in Figure 4.

D :=(F,=) finite set
(N, <) natural numbers
| X2, D; finite disjoint sums
|11, D; finite products
| D* finite words, subword embedding
| D® finite multisets, multiset embedding
| (D) finite sets, Hoare embedding
| T(D) finite trees, Kruskal embedding

Figure 4: Grammar for building well-quasi-orderings.

-93 Extensions of the Grammar %

Building up on the ideas from the Higman word embedding and the one can extend the
grammar of wqos pursuing either the idea of “quotients of inductive datatypes”, the one of “structure ordering”,
or the one of “word combinatorics”.

Structure orderings. Given a relational signature 0, one can consider Struct(0) the class of structures over
this relational signature. As relational structures, elements of Struct(0) can be compared by the way of homo-
morphisms, i.e. functions f from the domain of one structure to the domain of another one, respecting the
interpretation of relations. This comparison gives rise to the notion of homomorphism pre-order, A <pon B
whenever there existsa homomorphism h: A — B. This ordering has no particular reason to be wqo in general,
and might not even be well-founded.

By restricting the range of accepted homomorphism, one obtains finer quasi-orders. The one that is studied
extensively in this thesis is structure embedding or induced substructure that puts the restriction on homomorph-
ismsh: A — B to be both injective and strong, i.e. a and b are in relation if A ifand only if h(a) and h(D) are in

"That may differ from the usual multiset extension of a total order.



relation in B. When there exists a structure embedding between A and B, we write A C; B, and can also write
that B is an extension of A. The quasi-order C; is called the extension guasi-order. This ordering may not be
wqo but is well-founded over the class of finite structures Fin(0). As we have seen before, both Higman’s word
embedding and Kruskal’s tree embedding are directly connected to this notion of structure embeddings, as they
relate to the extension quasi-order of the underlying structures. However, there has not been characterisations of
classes of finite structures for which the extension quasi-order is wqo, apart from the very specific case of words,
trees and similar inductive data-structures.

Divisibility Quasi-Orderings on Inductive Datatypes. There are similarities between the word embed-
ding and tree embedding pre-orders beyond their model theoretic definition through induced substructures. As
both the constructions are inductive datatypes, they enjoy a notion of subterm, e.g. subtrees or suffixes. We can
therefore devise a notion of subterm ordering, defined by A Cery B whenever A is a subterm of B.

It turns out that the tree embedding is also the transitive closure of the subterm ordering with the “point-
wise ordering” of trees. In the case of binary trees, the pointwise ordering is defined recursively as in Figure s.
Moreover, the actual proofs that the tree embedding and the word embedding are wqos use, at their core, an
identical combinatorial argument: Nash-Willam’s minimal bad sequence argument.

a<b <t by <t

a<b
Spb() a'(tlatQ) gpb(lla l2)

a-()

Figure s: Recursive definition of the pointwise ordering on binary trees.

This ressemblance has been noted and used by Hasegawa to define, in full generality, the divisibility ordering
of an inductive construction [29, Theorem 2.10]. For different reasons, this idea of divisibility ordering appears
in recent work from Freund [18]. This allows to add a “fixpoint combinator” to the grammar in Figure 4. As
a sanity check, one can see that £* is the least fixed point of the constructor Fx; (X)) £ 14+ Y x X, and the
divisibility ordering over ¥* = puX.F5(X) is exactly Higman’s word embedding.

These inductive constructions can be used to recover a well-known “complex” wqo, namely the gap embed-
ding. The concurrent approaches from Hasegawa and Freund are both the result of a categorical study of wqos,
and we will not provide related definitions in this mid-term report.

Induced Substructures on Graph Classes. Although the graph minor ordering is a wqo, the more natural
model theoretic notion is the one of structure embedding, which corresponds over graphs to the induced sub-
graph ordering, definedby G C; G’ whenever there existsan injectivemap f: G — G'suchthat (f(u), f(v)) €
G’ if and only if (u, v) € G (see Figure 6 for examples).

Unfortunately, the induced subgraph ordering is not wqo, as the family of cycles forms an infinite antichain
of finite graphs. This started a quest for large classes of finite graphs that are well-quasi-ordered with respect
to C;, the latest positive result [11] provides a characterisation of classes of bounded clique-width that are wqo.
Note that a characterisation of classes of finite graphs that are wqo for the “subgraph ordering” (not induced)
has been provided by Ding [15], but does not extend to the notion of induced subgraph.

X

o B ol

Figure 6: Examples and non examples of induced subgraphs.



Monoid Induced Well-Quasi-Orders. Another way to augment the range of wqos beyond divisibility or-
derings is to take “context” into account, that is, disallow to compare arbitrary substructures regardless of their
respective context. This quite informal statement can be made rigorous on words over an alphabet 3 using a
monoid M and a morphism p: 3 — M. We say thata word u = a1 ...a, is below a word v whenever
v =wv1...vand p(a;) = p(v;) for 1 <4 < n. Thisis the composition preorder described in Figure 7, that
already has been quite extensively studied (in different formats) by Ehrenfeucht [17], Bucher, Ehrenfeucht, and
Haussler [6], Kirsten [31], Kunc [34], Tzameret [49], Dershowitz and Tzameret [13].

This composition preorder can be then used to build new classes of graphs for which the extension preorder
is wqo via interpretations. Given a word w, amonoid M, a part P C M and a morphism j: ¥ — M, one can
build a graph G, whose set of vertices is the positions in w and with an edge (%, j) whenever pi(w; ;) € P. This
recovers the notion of graphs of bounded linear clique width. If the composition quasi-order is wqo, then the
class of graphs G, is also wqo for induced substructures as w < ﬁ[ w’ implies G, C; Gy . This remark lead
to the characterisation of classes graphs of bounded clique width that are wqo by Daligault, Rao, and Thomassé

[u].

as a4 a5 Qg
Vie{l,...,6}, u(v;) = ula;)

Figure 7: Composition ordering
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NOETHERIAN SPACES

While being better behaved than well-founded pre-orderings with respect to most of the usual set constructions
(products, words, trees, etc.), some natural ones fail to preserve well-quasi-orderings, such as the (infinite) power-
set construction [42].

There are two main possibilities to tackle this issue. The first one is to strengthen the definition of well-
quasi-ordering to ensure that Rado’s structure cannot be built. This is the path leading to the theory of better-
quasi-orderings [41, 38]. A different approach is taken by Goubault-Larrecq [22], who proceeds to weaken the
definition of a well-quasi-order to a notion of Noetherian topological space. This shift from quasi-orders to
topologies resolves these stability properties through careful adaptation of the topologies [23]. However, this
approach suffers from the fact that many topologies can correspond to a single quasi-ordering and there usually
does notexista finest one thatis Noetherian. Notice that thislack of canonicity already arises from the definitions
of the well-quasi-orderings on words or trees, although this is partially answered by the divisibility preorder [29,
18].

-9 Topological Spaces Cheatsheet %

A set X can be equipped with a rgpology, that is, a set 7 C (X)) stable under finite intersections and arbitrary
unions. In particular, 0 € 7asthe empty union and X € T as the empty intersection. Given a topological
space (X, 7) we say that a given subset £ C X isan open setif E € T and a closed setif X \ E € 7. We usually
denote open sets with letters U, V' and closed sets F, C. The sets {(}, X' } and ©(X) are always topologies over
X, the first one is called the #7ivial ropology and the latter the discrete ropology. Note that the topologies over a
given set X form a complete lattice for inclusion.

Be careful that “usual” topological spaces come from a notion of distance between points: those are metric
spaces, but many the topologies considered in computer science will not be metricatall. An example of a usually
non-metric topology is the cofinite topology, where open sets are complement of finite sets. To build the right
intuition on the spaces that are going to be considered, we provide a translation between posets and topological
spaces. Given a quasi-ordered set (X, <), one can build the Alexandroff ropology T< over X by collecting all
subsets of X that are upwards-closed. We now refer to Table 2 for a conversion between topological properties
and order properties.

Pre-order < Topology 7<

U is upwards-closed U is open
f is monotone f is continuous

E has finitely many E is compact
minimal elements
wqo Noetherian

Table 2: Cheatsheet relating concepts between a quasi-order and its Alexandroff topology.

In Table 2, we use the following definition of compactness: E is compactin (X, T) whenever for every family
(Ui)ier of opens such that B C | J;; U, there exists a finite subset J C I such that £ C UjeJ Uj. The
family (U;)ier is called an open cover of E and (Uj) jey is a subcover of (U;)ier. Recall from Proposition 1.3
that (X, <) isa wqo if and only if strictly increasing sequences of upwards closed subsets of X are finite. Using
our cheatsheet, we can define Noetherian spaces as those where increasing sequences of open sets stabilise in finite
time. In particular, (X, <) is wqo if and only if (X, 7<) is Noetherian.

We provide in Table 3 examples of compact and non-compact spaces, using simple topologies that we define
hereafter. Given a poset (X, <), we already defined the Alexandroff topology, but it is possible to build a coarser
topology from this order: the upper topology Upper(<) is the smallest topology containing the downwards
closures of points in X as closed sets. Every open in the upper topology is open in the Alexandroff topology
but the converse is not true in general.

Proposition 1.5 (Equivalent definitions of Noetherian spaces). The following propositions are equivalent for a
space (X, T)

(i) (X,T) is Noetherian.

(it) Every subset of X is compact.
(ii) Strictly decreasing sequences of closed sets are finite.

I0



Space Topology Compact Noetherian

N TS

N cofinite

N discrete b x

o Upper(E)

E* T; b 4

E* TSh

R metric X X
[0,1] metric P

C Zariski

3 regular subword

Table 3: Examples and non examples of Noetherian spaces.

9% A Grammar for Noetherian Spaces -

True Noetherian Spaces. One may wonder whether some Noetherian spaces can be found without building
them from an already existing well-quasi-ordering. This natural question has two very different answers. One
may argue that Noetherian spaces are closed under some operations for which well-quasi-orderings are not, such
as the powerset [22.], w-words [24] or even transfinite ordinal words [25]. In that sense, even if some Noetherian
spaces come from well-quasi-orderings, they quickly leave the realm of Alexandroff topologies.

A second argument is to consider spaces that have either a pre-existing topological nature, or better, an algeb-
raic one. A classical example following this pattern is the complex plane C endowed with the Zariski topology

where the closed sets are the algebraic sets V(S) £ {z € C | Vf € S, f(2) = 0} where S is a subset of C[X].

A Noetherian spaces program. While there exists canonical topologies for product spaces and sum spaces,
there can be a vast range of topologies to place on finite words or finite trees. A first try would be to mimic the
construction on wqos via Alexandroff topologies, but we also have to treat the case where the input space is not
endowed with an Alexandroff topology, in which case we have no idea where to start.

A sanity check can be given through a conversion from topologies to quasi-orders: the specialisation pre-order
spec(7) of a topology 7 is defined by x spec(7) yif VU € 7, € U = y € U. The specialisation pre-order
of the Alexandroff topology of a quasi-order < is the preorder itself, but several topologies can share the same
specialisation pre-order, and this is the key observation allowing to escape the classical roadblocks in the theory
of well-quasi-orderings.

In his “Noetheran spaces program”, Goubault-Larrecq developed topological analogues of constructions
on wqos having the following properties: (a) they preserve Noetherian spaces (b) if Fr is the operation on
topologies and F the operation on quasi-orderings, the following equation holds spec(Fr (7))= Fo (spec(T)).
We provide the grammar in Figure 8 with fewer details than in the case of wqos Figure 4.

D = (X,7<) (X, <) wqo
|X*, D; finite disjoint sums
|11, D; finite products
| D* finite words, regular subword topology
| D® finite multisets, multiset topology
| p(D) arbitrary subsets, lower Vietoris topology
| T(D) finite trees, regular subtree topology
|S(D) sobrification
| X« infinite words, regular subword topology

Figure 8: Grammar for building Noetherian spaces.

II
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FINITE AND ALGORITHMIC MODEL THEORY

We are interested in first-order logic over a finite relational signature o, written FO[0], and several syntactic
variants of FO, such as EFO[0] the set of existential sentences, that is, sentences of the form 3Z.1) where 1 is
quantifier free. One can also be interested in PFO, the set of sentences having no negations but an explicit
“inequality” predicate, EPFO, the set of sentences having nor negations, nor universal quantifiers.

Preservation Theorems. In classical model theory, preservation theorems characterise first-order definable
sets enjoying some semantic property as those definable in a suitable syntactic fragment [e.g., 7, Section s.2].
A well-known instance of a preservation theorem is the Lo$-Tarski Theorem [48, 36]: a first-order sentence ¢
is preserved under extensions over all structures—i.e., A = ¢ and A is an induced substructure of B imply
B E p—if and only if it is equivalent to an existential sentence. Over a class that C C Struct(0), the statement
that every first-order sentence preserved under extensions is equivalent to an existential sentence is called the
preservation under extensions property. Similarly, the Lyndon Positivity Theorem applied to a unary predicate
X [37] connects surjective homomorphisms that are sz7ong in every predicate except X to sentences that are
positive in X

As most of classical model theory, preservation theorems typically rely on compactness. Recall that the com-
pactness theorem of first-order logic states that if a set of sentences is inconsistent, then a finite subset of it is already
inconsistent. This theorem is known to fail in the finite case. Consequently, preservation theorems generally do
not relativise to classes of structures, and in particular to the class Fin(o) of all finite structures [see the discus-
sions in 43, Section 2 and 33, Section 3.4]. For example, Lyndon’s Positivity Theorem fails even over the class of
finite words [35]. Nevertheless, there are a few known instances of classes of finite structures where some preser-
vation theorems hold [3, 44, 45, 28], and this type of question is still actively investigated [e.g. 8, 35, 12]. We refer
to Table 4 for a brief recap of the most well-known preservation theorems and their behaviour over Fin(0).

Struct(o) Fragment  Fin(o)
E&s-Tarski < EFO % [47]

Tarski-Lyndon - PFO % [1]
H.PT. Zhom EPFO [44]

Table 4: Example of preservation theorems and their relativisation in the finite.

A

Given a class C C Fin(0) and a sentence ¢ € FOJ0], one can define aset [p]c = {A€ C | A E ¢}
and a function [¢] : X — S, where S is the Sierpifiski space { T, L} with L < T. Let us now fix a preorder
on C, for instance extensions C;; the following properties are equivalent for a sentence ¢: (a) ¢ is preserved
under C;, (b) [[¢] is monotone, (c) [¢] ¢ is upwards closed. Asa consequence, if the class C'is wqo for <, every
sentence preserved under < is the upwards closure of finitely many structures. It is an easy check that for every
order appearing in Table 4, the upwards closure of finitely many points is definable in the expected fragment
of first-order logic. Therefore, whenever C'is wqo for < € {C, C;, <jom}, the corresponding preservation
theorem holds.

However, most of the classes considered in the literature are not well-quasi-ordered, and some enjoy preser-
vation theorems. This is because preservation theorems arise from the interplay between the ordering and the
expressiveness of first-order logic. As an example, the class of finite cycles enjoys preservation under extensions,
although the set is an infinite antichain for C;, because first-order logic cannot distinguish between large cycles

(see Figure 9).
03 04 05 06
X

P, O-O-0-0

Figure 9: Evaluating Va.3y.—~(xEy) A « # y over finite cycles.
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Notice that the class of finite cycles is not bereditary, that is, not downwards closed with respect to induced
substructures, but that its “minimal models” can be defined through equivalent existential sentences, and in this
case can be taken to be finite paths.

Locality. Asaway to tackle the lack of compactness theorem over Fin(0), a more combinatorial description of
the expressiveness of first-order logic is introduced. One of the main tools developed is the notion of “locality”,
with the broad meaning that first-order sentences cannot define “global” properties of structures, hence can be
studied by their behaviour on local parts of said structures.

Given a structure A over a finite relational signature o, its Gaifiman graph has the elements of A as vertices
and an edge (a, b) whenever both a and b are in relation in A. The distance d 4 (a, b) between two elements
of A is their distance in the Gaifman graph of A For a tuple @ € A, and aradius 7 € N one can consider the 7-
neighbourhood around @ in A defined as N'a (@, 7) £ {a’ € A | 3a € @,da(a,a’) <1} = UyeaNala,7);
we emphasise that this union is not required to be disjoint. Slightly abusing notations, we identify the set
Na(d,r) C; Awith the corresponding induced substructure of A. We call the structure N'4 (@, ) the induced
neighbourhood of @ in A.

A first-order formula () is said to be 7-local if its evaluation over a structure A and a tuple @ from A only
depends on the r-neighbourhood of @ in A, i.e. A,@ [ ¢ if and only if N4 (d,7),d@ [ ¢. In the particular
case of 7 = 0, local formulas are equivalent to quantifier free formulas. Since 0 is a finite relational signature,
every formula ¢ can be relativised to a r-local formula, which coincides with ¢ over neighbourhoods of size r,
although it might have a higher quantifier rank.

It is more delicate to craft a notion of locality for first order sentences since they have no free variables. The
classical approach is to consider basic local sentences of the form 32. A\, ; d(@, ;) > 2r A \; <, (x;) where
<, is a r-local formula with a single free variable. Simply put, the evaluation of a local 7-basic sentence is
determined solely by the evaluation of 1)<, over disjoint neighbourhoods of radius 7. Note that the predicates
d(z,y) < randy € N(Z,r) are definable for each fixed r € N.

The Gaifman Locality Theorem [19] states that every first-order sentence is equivalent to a Boolean combin-
ation of basic local sentences, called its Gaifman Normal Form. This can be thought of as FO[0] being limited
to describing the local behaviour of structures. In the study of preservation theorems such as preservation under
extensions over finite structures, a first step is often to use Gaifman’s normal form and rely on the structural
properties of such as the “sparsity of the models” as a substitute for compactness [2, 3, 28, 12].

Name Syntactic Form Interpretation
Existential sentence 3T ) 4e(T) Induced substructure
Existential local sentence AZ e (T) Induced neighbourhood
Basic local sentence 37 N\iyj d(@i, 25) > 2r AN Yioc(wi)  ndisjointcopies of a one point
induced neighbourhood

Table s: Comparison of the different syntactic local forms. The notation t4¢ denotes a quantifer-free formula,
and ), denotes a local formula.
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SCIENTIFIC PRODUCTION

The goal of this thesis is to bridge these domains through the core notion of “compactness”, be it as a logical
property, a topological notion, or a combinatorial tool. One of the main problem used as a practical applica-
tion is the study of so-called “preservation theorems” in first-order logic, introduced in Section 1.3. Those arise
from classical model theory, but are highly non-trivial (if not false) in finite model theory, and can be elegantly
rephrased as generalisations of well-quasi-orders or Noetherian spaces.

However, we do not restrict our attention to preservation theorems, and also investigate both well-quasi-

orders and Noetherian spaces in their own right.

COMPOSITIONS ORDERINGS

We tried to study the result by Daligault, Rao, and Thomassé [11] on well-quasi-ordered classes of bounded clique
width using automata theory. We rephrased the characterisation from [11] as a requirement on the monoid M:
M generates classes of graphs well-quasi-ordered with respect to induced substructure if and only if M is a chain
of simple semigroups. Moreover, we encoded the composition preorder of chains of simple semigroups into the
gap embedding and vice-versa, proving that they are “equally hard”.

As a follow-up question, we tried to measure the loss of expressiveness induced by the restriction to chains
of simple semigroups. For that, we compared classes generated by chains of simple semigroups to classes that
are m-partite. Classes of m-partite graphs are classes of bounded clique width that are using a trivial monoid
M = {id}, hence are wqo. We exhibited a family Hj, ,, coming from a very simple monoid that leads to a well-
quasi-ordered class that is not m-partite for any finite m, see Figure 10. This result was strengthened by proving
that H}, 5, can be built from a word rather than a tree, hence is of linear bounded clique width.

Figure 10: The graph H3 3.

One key property in the characterisation of Daligault, Rao, and Thomassé [11] is that one asks for the monoid
M to generate only well-quasi-ordered classes, regardless of the way the elements of the monoid are used to
build the edges afterwards. We tried to extend the characterisations to pairs (M, P), and classify those pairs
such that the “language embedding” is wqo on M™*, thatisaword u = a1 ... ay, is below a word v if and only
ifv=uv1...v,and p(a;...a;) € P < p(v;...vj) € P. This “language embedding” is precisely capturing
the induced substructure ordering over the interpreted graphs, hence we could have a more fined grained (and
hopefully decidable) characterisation of classes that are of linear bounded clique width and wqo. However, none
of our proof scheme worked, and every conjecture was countered by explorations of monoids via Minisat.

This direction of research has been paused.
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2 TOPOLOGICAL PRESERVATION THEOREMS

In Section 1.3, we saw that preservation theorems over adownwards closed set of finite structures can be rewritten
as the fact that sentences preserved under extensions have finitely many minimal models. We use our Cheatsheet
in Table 2 to translate it in a topological setting:

1. A sentence preserved under extensions is a sentence defining an upwards closed set, which is translated to

an open set.

2. A sentence having finitely many minimal models is translated to a sentence defining a compact set.
Recall thataset E is definablein X whenever there exists a first-order sentence ¢ such that E = [¢] x. Moreover,
in a topological space (X, 7), we write K°(X) to denote the compact and open sets of X. As a consequence,
preservation under extensions can be rephrased as 7c, N [FO] x C K°(X).

However, this condition does not take into account a peculiar property of existential sentences: they define
a basis of the topology 7c ,, i.e. every open setin 7c, isa union of sets defined by existential sentences. Moreover,
existential sentences are compact, hence we have 7, = (K°(X)). This is the motivation behind the definition
of logically presented pre-spectral spaces.

Definition 2.1 (Logically presented pre-spectral space). Let X C Fin(0) be a set of structures and 7 be a
topology over X. The triple (X, 7, FO[0]) isa lppsif 7 = (K°(X)) and 7 N [FO] x C K°(X).

In a lpps, we automatically have the equality 7 N [FO] x = K°(X), hence X°(X) is a bounded sublattice
of p(X). Moreover, the underlying topological space (X, T) is pre-spectral [see. 14], explaining part of the
notion’s name. This connection with spectral spaces allows leveraging structural properties of the category of
spectral spaces, such as the existence of products or projective limits [14, Section 2.2 and 2..3].

We generalise the notion of Ipps to replace [FO] x by a bounded sublattice of p(X). This allows us to
express in full generality the fundamental property of Ipps.

Theorem 2.2 (Fundamental Property). Let T be a ropology on X, L a bounded sublattice of o(X), and L' a
sublattice of L. The following are equivalent:

. LNt CL CK°(X).

2. (X, 7, L) is alpps and L' is a basis of T.

Let us immediately translate this result in terms of preservation under extensions. Given a hereditary set
of structures X with the Alexandroft topology from the extension ordering C;, Theorem 2.2 states that it is
equivalent that (a) FO-definable upwards-closed sets for C; are both EFO-definable and have finitely many C;-
minimal models, (b) FO-definable upwards-closed sets have finitely many C;-minimal models, upwards-closed
sets with finitely many C;-minimal models generate all upwards-closed sets, and EFO-definable sets generate
all upwards-closed sets. In this specific case, this amounts to the folklore result stating that preservation under
extensions holds if and only if upwards-closed FO-definable subsets have finitely many C;-minimal models.

Note that for preservation theorems in the literature, one always has that the fragment of interest is a basis
of the topology, but for some classes of structures, this fragment may not always define compact sets, moreover,
compact sets might not be those with “finitely many minimal models” when the ambiant space is not downwards
closed. Let us reuse our example of the class of finite cycles and preservation under extensions as an illustration
of the power of our topological notions.

Example 2.3 (The case of cycles). In the case of Cycles the class of finite cycles, it is an easy check that 7, is the
discrete topology, and as a consequence K°(Cycles) consists solely of the finite sets of finite cycles. In particular,
there are some existential sentences having infinitely many models, hence that are not compact.
However, 7¢ defined as the cofinite topology over Cycles has the same specialisation preorder as 7c ;. Moreover,
we do have that (Cycles, 7¢, FO) is a Ipps because it is Noetherian. We conclude that [FO]cyces N 7 €
[EFO]cyctes N 7 € K°(Cycles). Asasentence ¢ € FO defines either a finite set or a cofinite set of Cycles, in
both cases, it is expressible in EFO.

We argue that Ipps captures the “well-behaved” preservation theorems, i.e. those obtained by topological ar-
guments, and demonstrate this by exhibiting stability properties of those spaces. Using properties of pre-spectral
spaces, we prove that if (X, T, FO[o]) is Ipps and Y be a Boolean combination of compact-open subsets of X,
then (Y, 0, FO[o]) is a Ipps, where 6 be the topology induced by T on Y. This behaviour distinguishes the
property of “being Ipps” from “having a preservation theorem”, because we capture explicitly the notion of
compactness, as demonstrated in Figure 11.

Moreover, mimicking the grammars for wqos Figure 4 and Noetherian spaces Figure 8, we built a grammar
for building Ipps as described in Figure 12.
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Struct(o)

Figure 1: The upwards closure T2¢ N C may have infinitely many minimal models in C

D :=(X,<) wqo
| (X, 1) Noetherian
| Dy - Dy inner product
| X2, D; finite disjoint sums
|11, D; finite products
| D* finite words, regular subword topology
| T(D) finite trees, regular subtree topology
| D1 % Do wreath product, D; co-Noetherian

Figure 12: Grammar for building Ipps.

Specific Closure Properties. In addition to these algebraic constructions, we studied the logical closure of
a set, which only makes sense in the case of sets of structures. If X C Z C Struct(0) then one can build the
logical closure of X in Z as the closure of X in the topology generated by the definable subsets of Z. In practise,
this means that we “complete” X to add structures in Z indistinguishable from the point of view of the logic.
We proved the unsurprising theorem that if a set Y is stuck between X and the logical closure of X in some
ambiant space Z, then (X, 7, FO) is a Ipps if and only if (Y, 7, FO) is, and definable bases of X are definable
bases of Y. This can be used to prove that countable disjoint unions of finite structures enjoy preservation under
extensions.

Finally, we explained Rossman’s proof of the H.P.T. in the finite through a lemma allowing to “transfer”
projectives limits of pre-spectral spaces to Ipps.
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3

POSITIVE NORMAL FORMS

Gaifman Normal Forms. In our approach to study preservation under extensions, we developed an inter-
polant between arbitrary first-order sentences and existential sentences in the form of existential local sentences:
these are sentences of the form 3%.1) () where v is a r-local formula around Z.

Our first contribution is to prove that existential local sentences are exactly those that can be put in Gaifman
Normal Form without using negations, hereafter called positive Gaifinan normal form. This result relies on
careful combinatorial description of the neighbourhoods in a model and therefore relativises to arbitrary classes
C of structures.

Theorem 2.4 (Positive Locality). Ler C C Struct(0) be a class of structures and ¢ € FO[0| be a first-order
sentence. The sentence  is equivalent over C to an existential local sentence if and only if it is equivalent over C
to a positive Gaifman normal form.

As every existential sentence is existential local, every proof of preservation under extensions can be factored
as going from sentences preserved under extensions to a positive Gaifman normal forms and then to existential
sentences. This puts the light on technical parts common to proofs of preservation under extensions 3,2]. Given
our proof factorisation of preservation under extensions, we turned our attention to proving that sentences
preserved under extensions can always be rewritten in positive Gaifman normal form. Proving such a result
would reduce preservation under extensions to a syntactic transformation from basiclocal sentences to existential
sentences, and usual sparsity or model-theoretic properties of the considered classes can be used to tackle this last
part.

Positive Preservation. Following this program, we characterised the semantic property corresponding to pos-
itive Gaifman normal forms, through a finer notion of embeddings than induced substructures, namely local
elementary embeddings, that is, embeddings f: A — B such that for all local formula (&), forall @ € A,
A,d E (&) ifand only if B, f(@) E ¢ (&). By restricting the quantifier rank ¢ of sentences v, their locality

radii r, and the number of free variables k, this provides (7, ¢, k)-local elementary embeddings.

Theorem 2.5 (Local preservation). Ler ¢ be a sentence in FO[0]. The following properties are equivalent over
the class of all structures Struct(0).

(a) The sentence @ is equivalent to an existential local sentence.

(b) There existr,q, k € N such that o is preserved under (v, q, k)-local elementary embeddings.

(c) The sentence @ is preserved under local elementary embeddings.

Unfortunately, Theorem 2.5 follows the usual proof scheme of classical model theory, relying on the com-
pactness theorem of first-order logic. Early on, we noticed that preservation under local elementary embeddings
—sentences preserved under local elementary embeddings are expressible as existential local sentences— boils
down to preservation under disjoint unions —sentences preserved under disjoint unions are equivalent to exist-
ential local sentences— in the finite, where @ is preserved under disjoint unions over C whenever forall A, B € C,
AE ¢gimplies AW B E o.

After trying combinatorial methods having similar flavour to Theorem 2.4, we found a (quite-involved)
counter-example to Theorem 2.5 in the finite. This counter-example is built on the idea of Tait [47] in the
case of the preservation under extensions and relativisation properties of Ipps. We use as relational signature
o £{(£,2),(5,2), (F,2)}, and define structures O, + - - - + O, with 2 < m < n as described in Figure 13
forn = 5and m = 2. We define then Cpqq to be the class of finite disjoint unions of such structures structures.
Itis easy to see that Theorem 2.5 does not relativise to Cpqq, and using stability properties of lpps this lifts to the
whole class Fin(o) of finite structures.

Theorem 2.6 (Counter example over Fin(0)). There exists a sentence @ preserved under disjoint unions over
Fin(0) but not equivalent to an existential local sentence over Fin(0).

After building this “grid-like” counter-example, it was now possible to prove the undecidability of a number
of natural questions on existential local sentences and preservation under local elementary embeddings.

Theorem 2.7 (Undecidability). 1t is not possible, given a sentence  preserved under disjoint unions over Fin(0),
to decide whether it has it is equivalent to an existential local sentence.
Neither is it possible, given a sentence @, to decide whether or not it is preserved under disjoint unions over

Fin(0).

Theorem 2.8 (Uncomputable equivalence). There is no algorithm that given a sentence @ that is equivalent to
an existential local sentence over Fin(0) computes such a sentence.
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Figure 13: The structure Oz + O3 + O4 + O3

Cartography of Parameters. Because we can stratify local elementary embeddings using parameters (7, ¢, k),
we asked ourselves whether these stronger preservation properties imply our existential local syntactic form.
Though a systematic study, we mapped in Figure 14 regions of the “preorder-cube” implying positive Gaifman
normal form over C. One particularly interesting case is k = oo and ,¢ = 0, where the preorder coincides
with induced substructures, whenever the class is hereditary and closed under disjoint unions, that s, such that
AW B e Cif A, B € C. For this particular case, we actually use monadic second order logic to deal with the
possible intersections of neighbourhoods, and believe that this proof scheme has an interest of its own.

Q N Q N P Q N o
<7 A {400 <7 v <7 <7 <7 <7
q=
q=1
k=1 k>2 k=00

Figure 14: Parameters (7, ¢, k) leading to an existential local normal form (white), those with a counter example
(dots) over hereditary classes closed under disjoint unions.
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4

LOCALISABLE CLASSES OF STRUCTURES

We proved in Figure 14 that sentences preserved under extensions have a positive Gaifman normal form on classes
of structures that are hereditary and closed under disjoint unions, which was the first step of our “preservation
through locality” program. The second step ouf our program is to leverage this positive Gaifman normal forms
to build preservation under extensions theorems. To that end, we place ourselves in the situation of localisable
classes of structures, that is, classes C where every sentence ¢ preserved under extensions is equivalent over C to
some existential local sentence .

Let us restate explicitly that from Figure 14, we know that if C C Fin(0) is hereditary and closed under
disjoint unions then it is localisable, in particular, the class Fin(0) is localisable.

Surprisingly, given the general non relativisation properties of preservation theorems, we were able to relate
preservation under extensions over C and preservation under extensions for a stratification of C using neighbour-
hoods. More precisely, given a class C, we defined Balls(C, 7, k) as the set of all N4 (@, ') for A € Cand @ € AF.
This is a stratification because the increasing union J, 5 o Uy >, Balls(C, 7, k) equals C whenever C is hereditary.
One key argument in our proof is that we can extend an induced substructure A C; B € Balls(C, 7, k) with at
most 7 X k X |A] points to ensure that A C; A’ C; B with A’ € Balls(C, r, k), see Figure 1s.

O—O0—=0 O
O

The induced substructure A C; B.

O—0O0—"C0C—"~AQ O

®
@,

The whole structure B is centered around (b1, b2).

Figure 15: Extracting a structure in Balls(C, 2, 2) from an induced substructure A of a larger structure B.

Theorem 2.9 (Local preservation under extensions). Let D be a hereditary localisable class of finite structures.
Preservation under extensions holds over D if and only if preservation under extensions bolds over Balls(D, r, k)
forallr > 0 and k > 1.

Corollary 2.10 (Local preservation under extensions). Let D be a hereditary class of finite structures closed
under disjoint unions. Preservation under extensions holds over D if and only if preservation under extensions

holds over Balls(D, r, k) for allr > 0 and k > 1.

This completes our two-step approach to preservation under extensions, and allows us to strictly generalise
previously known classes of structures enjoying preservation under extensions. As an example, one of the best
known results was that hereditary classes of finite structures closed under disjoint unions and wide enjoy pre-
servation under extensions [2, Theorem 4.3]. This is captured in our program as hereditary wide classes C are
exactly those where Balls(C, 7, k) is finite for every v > 0,k > 1, aka locally finite classes. As finite classes en-
joy preservation under extensions, Corollary 2.10 implies that locally finite classes do, and thus recovers Atserias,
Dawar, and Grohe’s result [2, Theorem 4.3].

By localising properties known to imply preservation under extensions, we harvest from Theorem 2.9 new
structural properties implying preservation under extensions. Examples of such properties, along with their
respective implications, are given in Figure 16.
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Figure 16: Implications of properties for localisable hereditary classes of finite structures. Arrows are strict im-
plications, thick arrows are new results. Boxes are properties over classes of finite structures, and dashed ones are
new.
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5

GENERIC BAD SEQUENCE ARGUMENTS

Following the idea that wqos can be generated on inductive datatypes by adding the transitive closure of a notion
of substructure ordering, we study how one can iteratively build Noetherian topologies on a given set. However,
as opposed to the constructions of the divisibility topology, we will not change the underlying space during our
construction. This can be understood as keeping the same underlying space and refining the resolution of the

space, rather than building bigger and bigger (high resolution) parts of the space.

Iterative Topology Refinement. Given a set X, one can consider functions F' from topologies over X to
topologies over X. If F' is monotone and preserves Noetherian topologies, we call F' a refinement function. Nat-
urally, one can build the least fixed point of a refinement function, and it is obtained by iterating (transfinitely)
the function F' starting from the trivial topology on X. Recall that given a limit ordinal v, the limit topology
Fo(7) is defined as the join over all topologies F'# (1) for 8 < a.

Example 2.11. For instance, one can consider X = 3* where (X, ) is a finite topological space, and define
F(7)asgenerated by theset {{av | a € U,v € V} | U € 0,V € 7}. Itisan easy check that F'is a refinement
function, but its least fixed point is the discrete topology over X* whenever @ is the discrete topology over X (see
Figure 17).

As the discrete topology over X* is not Noetherian, this proves that one cannot, in general, iterate refinement

functions.
S / \
\ aaX* abZ* baX* bbX*
\ / aE* by
0 0 0

Figure 17: Iterating F' over ¥*. On the left the trivial topology, followed by F', and on the right F° 2,

However, we discovered thata simple requirement on the refinement function F allows to use a minimal bad
sequence argument (adapted to topological spaces). This requirement is roughly that the refinement function

“respects subsets”. Let (X, 7) be a topological space and H be a subset of X. We call the subset restriction T | H

the topology generated by the opens U M H where U ranges in 7. See Figure 18 for a visual understanding of
this construction.

Example 2.12. Itmight be useful to consider what happens in the case of an Alexandroff topology to interpret
this notion on quasi-orders. Let us write H C X, 7 = 7< over X and compute spec(7 | H).

zspec(t | H)y <= VU et |HoelU = yeU
— YWer,ceUNH = yecUNH
«— VzeX,xeftzNH = yetzNH

r<yANzecHANyeH
r¢ H

We call zopology expanders the refinement functions that respects subsets, i.e. such that for every Noetherian
topology T satisfying 7 C F(7), forall closed set Hin 7, F(1) | H C F(r | H) | H.

Example 2.13. In the realm of quasi-orders, this condition can be translated as follows: forall z,y € H,
zF(<g)yimplies F(<)y, wherew <py vifu < wvandu,v € H ory ¢ H. This s interpreted as the fact
that to compute the refinement of the quasi-order over a closed subset, it suffices to refine over this subset, i.c.
no outside information is needed by F'.
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Figure 18: Subset Restriction. Whenever H is closed, W = U U H¢ is the largest open set satisfying U N H =
WNH.

Theorem 2.14 (Limit topologies are Noetherian). Let o be a limit ordinal and F be a topology expander. If
FPB(7) is Noetherian for all B < « then F(7) is Noetherian.

Corollary 2.15. Ler F' be a topology expander. The least fixed point of F' is a Noetherian topology.

Note that this topological setting allows getting rid of category theory altogether and focus on the main min-
imal bad sequence argument. Moreover, one can define topology expanders over sets that are not usual inductive
datatypes, such as infinite words. Let us write X < for the words of size at most w, and define the following to-
pology expander, given a topology 6 on X': F(7) is generated by the open sets {wav | u € ¥*,a € U,v € V'}
and {w | Vi,3j > i,w; € U}, forU € fand V' € 7. It turns out that F' is a topology expander and that its
least fixed point is the regular subword topology over infinite words, as shown by Goubault-Larrecq and Lopez
[26].

Conjecture 2.16. One can obtain the same theorem by redefining 7 | H via {U U H® | U € 7}, which has a
nicer interpretation in terms of quasi-orders: u<| Hv ifand onlyif u < vorv ¢ H.

Divisibility Topologies. We are now working in a categorical setting. Let us write Set for the category of sets
with functions, Top for the category of topological spaces with continuous maps. If Corollary 2.15 can be applied
to sets that are not defined inductively, it can also serve as a way to build canonical topologies over inductive
datatypes. For that, we will consider “type constructors” as analytic endofunctors of Set, that are lifted to Top
to put topologies on the generated constructions.

Example 2.17. Let G’ be the functor sending a topological space (X, 7) to X* with the regular subword
topology. Then G is the lift of G mapping X to X * in Set to Top. Moreover, G is analytic.

Let GT': Top — Top be a lifting of an analytic functor G, and (4G, §) an initial algebra of G. There exists
a notion of substructure ordering over G, written C. For instance, if one defines finite words over X as the
least fixed point of G(X) £ 1 + ¥ x X, the substructure ordering is the usual suffix ordering, described in
Figure 19.

We define the divisibility ropology on ;1G as the least fixed point of Fy that maps a topology T to the topology
generated by {1=6(U) | U openin G* (4G, 7) }. If we suppose that G*' preserves embeddings, then Fy is a
topology expander on the initial algebra 4G and the divisibility topology is Noetherian thanks to Corollary 2.15.
We provide in the case of finite words, the computation of Fi, ({0), £*}) in Figure 20; notice how this topology
differs from Figure 17.

As a sanity check, we prove that the divisibility topology is the Alexandroff topology of the divisibility pre-
order from Hasegawa, Freund. Moreover, we can prove that the regular subword topology and the regular sub-
tree topology are the divisibility topologies of their inductive constructors.
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bbba abba aaba baba aaaa baaa abaa bbaa bbab abab baab aaab aabb babb bbbb abbb

NSNS N N 1S

ALY A VA
\T T/
N

Figure 19: Substructure ordering = on words of length at most 4.

Theorem 2.18. Let GT be the lift of an analytic functor respecting Alexandroff topologies, Noetherian spaces,
and embeddings. The divisibility topology of nG is the Alexandroff ropology of the divisibility preorder of uG,

which is a well-quasi-ordering.
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L

Figure 20: One iteration of Fy, over the set of words of length at most 3.
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6

TRANSFINITE WORDS

The Regular Subword Topology. We extend the Neetherian topology introduced by Goubault-Larrecq
[24] to transfinite words in Goubault-Larrecq, Halfon, and Lopez [25] by defining the regular subword topo-
logy over transfinite words. The regular subword topology on transfinite words is defined by the means of its
closed sets as in Figure 21.

C closed in ¢ B<a P; closed e P, closed
C<B closed P, --- P, closed

Figure 21: Closed sets of the regular subword topology over X <a,

After proving that this topology is Noetherian, we compute concretely the specialisation preorder of the
regular subword topology by first characterising the closures of words. A word w is said to be ropologically in-
decomposable when every factorisation w = uv with v # ¢ satisfies W = T. Because X <* is Noetherian in its
regular subword topology, we know that every word is a finite product of topologically indecomposable words.

Our next step is proving that Wy ... W,, = Wy ... W, when the words w; are indecomposable. Moreover,
W = (letters(w))<Iwl+1
closure of words.

when w is topologically indecomposable. As a consequence, we characterised the

This can be used to prove that the specialisation preorder of the regular subword topology is not the em-
beddings of transfinite words, by considering for instance w = (a*b)*, whose closure is {a, b}<‘*’2+1 which is
definitely not equal to Jw. As this topology fails to have the correct specialisation preorder, even when assuming
that the specialisation preorder of X is better-quasi-ordered, we try to extend the range of closed sets.

Recurrent Subword Topology. It is possible to strengthen the topology by allowing the rule P <8 in our
inductive definition of closed sets. This provides a topology expander over transfinite words, and therefore a
Noetherian topology called the recurrent subword ropology, strictly finer than the regular subword topology. For
the exact same reasons as for the regular subword topology, the specialisation preorder cannot be the word em-
bedding in general, but we conjecture that this holds when we start from a better-quasi-order.

26



FUTURE WORK 111

TOPOLOGICAL INTERPRETATIONS

We have yet to produce a proper interpretation of our localisation theorems in terms of topological spaces. For
instance, the fact that a class C is localisable cannot be interpreted topologically —assuming that C is a set— as
the fact that (C, Ty, FO) is a logically presented pre-spectral space, where i is the topology generated using
basic local sentences. Indeed, basic local sentences may not define compact sets in Tigic.

INDUCTIVE CONSTRUCTIONS OF PRESERVATION THEOREMS

We hope that the technology of minimal bad sequences in the topological setting better adapts to Ipps and that
the proof schemes of divisibility topologies allows building automatic preservation theorems over classes of struc-
tures, given an algebra over the class.

CHARACTERISING THE TREE EXPRESSIONS TOPOLOGY.

We have yet to compute concretely the specialisation preorder of the recurrent subword topology. We hope
that we can reuse our proof techniques developed in the case of the regular subword topology, in particular the
notion of topologically indecomposable words.

Conjecture 3.1. If the specialisaton preorder on X is BQO then we get back on X <* the embedding preorder as
a specialisation preorder.

FOLLOW UP ON INDUCTIVE CONSTRUCTIONS

We extended the divisibility preorders to divisibility topologies, but some hypothesis of the former are not
needed in the latter, namely, that the underlying Set-functor is analytic. Indeed, it is crucially used by both
Hasegawa, Freund in their minimal bad sequence argument to guarantee that the support of an element is finite.
In Noetherian spaces, we do not need such a restriction, as the usual powerset construction preserves Noeth-
erian spaces. We can therefore study the notion of “quasi-analytic functor”, where the finiteness of the supports
is dropped.

We also hope that we can adapt our proof scheme to arbitrary algebras of a given functor, to justify the
canonicity of the regular subword topology or the recurrent subword topology as emerging from reasonable
algebras over infinite words.

We have yet to design an approach to compute the “ordinal invariants” of the topologies generated by topo-
logy expanders, that could give us automatic upper bounds on the constructions.

SPARSITY, MODEL THEORY, AND COMPACTNESS

There has been recent development in the theory of sparsity [39, 20, s, 4, 16, 46, 27, 21] that is getting closer to
describe combinatorially classes of structures for which model checking is fixed-parameter tractable.

The techniques used may have applications to the study of preservation theorems, particularly the character-
isation of first-order transductions of sparse classes [39, 20]. Sylvain Schmitz proposed the following conjecture,
following the intuitions from these results.

Conjecture 3.2. A class C enjoys preservation under extensions if and only if one cannot existentially transduce

arbitrarily large cycles from C.

Moreover, the study of sparsity has been boosted by incorporating elements from finite model theory such
as stable classes and dependent classes, for which suitable regularity lemmas have been proven [see for example
10, 9]. We informally conjecture that stable classes may be localisable in some sense, because one cannot build
large grid-like structures as in Theorem 2.7.

WELL QUASI-ORDERS DEFINED VIA SEMIGROUPS

Recent development in the semigroup community [32] allows characterising ordered semigroups for which the
composition preorder is wqo, leading to a proper algorithm to detect such semigroups. This reignites the hope
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of characterising regular languages for which the composition preorder is wqo.

ORDINAL INVARIANTS OF WELL-QUASI-ORDERS

In collaboration with Simon Halfon, Philippe Schnoebelen, and Isa Vialard, I started investigating the behaviour
of the finite powerset construction in wqos through its “ordinal invariants”. This is connected to the study of
divisibility preorders as they provide families attaining our lower bounds.

QUERY COUNTING

In collaboration with Thomas Colcombet and Gaétan Douéneau, I study formulas through their “growth beha-
viour” when counting the number of tuples that satisfies said formula in a structure. Over words, it seems that
a polynomial growth of an MSO-formula implies that it can be rewritten in FO. Over arbitrary structures, we
hope to prove a similar result, using radically different techniques.
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OUT OF CONTEXT DEFINITIONS

To keep the main text readable, some definitions have been omitted and are now recalled here.

TOPOLOGY

Definition A.1 (Topological Closure). The closure E of a set E in a topological space (X, 7) is the smallest
closed set containing E.

Definition A.2 (Continuous Function). A function f: X — Y is continuous whenever f~1(U) is open in
X foreveryopen U of Y.

Definition A.3 (Embeddings). A map f: A — B isan embedding when every open set of A is the pre-image
though f of an open set of B.

Definition A.4 (Metricspace). A space (X, T) spaceis metric whenever there existsadistance d: X x X — Ry
such that 7 is generated using the open balls of d, thatis, {z € X | d(z,y) < r} foryinX andr € R

Definition A.S (Lower Vietoris Topology). Given a topological space (X, T), the lower Vietoris topology over
©(X) is generated by the sets OU = {E | ENU # 0} forU € 7.

Definition A.6 (Regular subtree topology). Given a topological space (X, 0) the regular subtree topology over
T(X) is generated by

Uecbo Ui, ..., U, opens
QU x [Un,...,Upy] open

Wheret € QU x [Uy, ..., U,] if there exists a subtree of ¢ with the root labelled by an element in U and a
subset of its children respectively in Uy, . .., Up,.

Definition A.7 (Irreducible Set). A closed subset F of a topological space X is irreducible whenever F is non-
empty and is not the disjoint union of two non-empty closed sets.

Definition A.8 (Sober Space). A space X is sober whenever any irreducible closed subset F is the closure of
exactly one point z € X.

Definition A.9 ([23, Definition 8.2.17]). The sobrification S(X') of a topological space (X, 7) is the set of
irreducible closed sets of X, and the topology is generated by the sets QU £ {F € S(X) | FNU # 0}
where U is an open set of X It can be shown that this construction leads to a sober space, is idempotent up to
homeomorphism, and constructs the free sober space over X [23, Theorem 8.2.44].

Definition A.10 (Pre spectral space). A pre-spectral space is a topological space (X, 7) such that 7 is generated
by KC°(X), and K° (X)) is stable under finite unions and finite intersections.

Definition A.11 (Spectral space). A spectral space is a pre-spectral space that is sober [14, Definition r.r.5].

GRAPHS AND STRUCTURES

Definition A.12 (Graph Minor). A graph G is a graph minor of a graph H whenever one can go from H to G
using the following rules
(i) One can remove vertices from H.
(ii) One can remove edges from H.
(iif) One can contract edges, i.e. merge two nodes that are on the same edge.
When G is a graph minor of H, we write G <yyinor H.

Definition A.13 (Wide structures). A class of structures C is wide when there exists p: N? — N such that for
all,m € N2, forall A € C of size greater than p(n, m), there exists a (7, m)-scattered set in A, i.e. a set of at
least m points at pairwise distance greater than 2r.

Definition A.14 (Letters). Given a word w: o — X where «v is an ordinal, we write letters(w) for the set

{w(B) | 6 < a}.
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3

ORDERS

Definition A.15 (Complete Lattice). A poset (L, <) is a complete lattice whenever every family E C L hasa
supremum and an infimimum.

Definition A.16 (Gap Embedding). For finite words with letters in N, the gap embedding is the composition
ordering of the monoid (N, max).

Definition A.17 (Better Quasi Order). A poset (X, <) isa BQO whenever for every ordinal o, X <isa wqo
for the embedding on words.

ANALYTIC FUNCTORS

We will avoid as much as possible the use of complex machinery related to analytic functors, and use as a defini-
tion an equivalent characterisation given by Hasegawa [29, Theorem 1.6]. For an introduction to analytic func-
tors and combinatorial species, we redirect the reader to Joyal [30]. We assume basic understanding of functors,
endofunctors and let C be an arbitrary category. We write Hom(A, B) for the morphisms between A and B in
C.

Definition A.18 (Category of elements). Given G an endofunctor of Set, the cazegory of elements el(G)) has as
objects pairs (E, a) with a € G(E), and as morphisms between (E, a) and (E’,a’) maps f: E — E’ such
that G¢(a) = d’.

As an intuition to the unfamiliar reader, an element (E, a) in el(G) is a witness that a can be produced
through G by using elements of . Morphisms of elements are witnessing how relations between elements of
G(E) and G(E') arise from relations between E and E’. It is quite natural to define the notion of a “smallest”
set of elements E such that a can be found in G(E) as a notion of support. We replace this definition of “smallest”
by the better behaved notion of transitive object.

Definition A.19 (Transitive object). A rransitive object in a category C is an object X satisfying the following
two conditions for every object A of C:

* Hom(X, A) is non-empty;
* The right action of Aut(X') on Hom(X, A) by composition is transitive.

Recall that Aut(A) are the automorphisms of A, i.e., maps g: A — A such that there existsp: A — A
and gp = pg = Id4. A transitive object A is an object such that automorphisms of A completely describe
morphisms with domain A. Indeed, transitivity means that any morphism f € Hom(A, B) can be mapped
to any morphism g € Hom(A, B) by pre-composing with an automorphism h € Aut(A). As an immediate
consequence, Hom(A, A) = Aut(A) when A isa transitive object, moreover, two transitive objects A and B are
isomorphic: the non emptiness conditions give maps f € Hom(A, B)andg € Hom(B, A),but fg € Aut(A)
and gf € Aut(B), hence g(fg) ! and (¢gf) ' g are respectively right and left inverses of f, meaning that f is
invertible. This is better seen in Figure 22.

Figure 22: Morphisms between two transitive objects in a category C.

In a category, a transitive object can be thought of as a generalisation of the notion of initial object, that is,
an object A such that Hom (A4, B) contains exactly one element for every object B, in this case Aut(A) = Id 4.
In the category Set of sets and functions, the empty set is an initial object hence a transitive object.

Given an object A in a category C, one can build the slice category C/A whose objects are elements of
Hom(B, A) when B ranges over objects of C and morphisms between ¢; € Hom(B1, A)and ¢z € Hom(Bz, A)
are maps f: By — Bjsuch thatcy o f = ¢;. This notion of slice category can be combined with the one of
transitive object to build so-called “weak normal forms”.

33



Definition A.20 (Weak Normal Form). A weak normal form of an object A in a category C is a transitive object
in C/A.

A category C has the weak normal form property whenever every object A has a weak normal form. We are
now ready to formulate a definition of analytic functors through the existence of weak normal forms for objects
in their category of elements.

Definition A.21 (Analytic functor). An endofunctor G of Set is an analytic functor whenever its category of
elements el(G) has the weak normal form property. Moreover; X is a finite set for every weak normal form

f € Hom((X,z), (Y,y)) inel(G) (Y, y).

CATEGORY THEORY

Definition A.22 (F'-Algebra). If Cisa category and F': C — C is an endofunctor of C then a F-algebraisa
tuple (A4, a).

Definition A.23 (Morphism of F-algebras). A morphism f of F-algebras (A4, ) and (B, 3) isamap f €
Hom(A, B) such that the following diagram commutes

F(A) —2 A
0|
F(B) 2> B

Definition A.24 (Initial Algebra). An initial algebrais an initial object in the category of F'-algebras for a given
endofunctor F.

Definition A.25 (Lift). Anendofunctor G of Top isa /iff of an endofunctor G of Set if the following diagram
commutes, where U is the forgetful functor

GT
Top —— Top

o

Set —<  Set

AUTOMATA THEORY

Definition A.26 (Monoid). A monoid is a set M equipped with a binary operation - from M? to M that is
associative and has a neutral element e € M.
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