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Abstract

This thesis takes places at the crossroad of several elds of computer science: combinatorics (throughwell-
quasi-orderings), topology (through Nœtherian spaces), and logic (through Finite Model Theory). Ideally,
onewould studydatabase relatedproblems through the lens of logic, andprovide combinatorial arguments for
their resolution using the theory ofwell-quasi-orderings. However, well-quasi-orderings are notwell-suited to
describe logical properties, and FiniteModel Theory is more prone to de ning topologies. As a glue between
these two realms,Nœtherian topologies, the analogue ofwell-quasi-orderings in the topological setting, allows
to amorce a dialogue between these classical order-theoretic results and nite model theory.

A particular instance of this interplay, studied in this thesis, is the wide variety of preservation theorems,
relating syntactic fragments of First Order Logic (e.g.unions of conjunctive queries) to semantic fragments
of First Order Logic (e.g.queries preserved under extensions). There exists a plethora of such preservation
theorems in classical model theory but most of them fail in the nite. As the classical proofs crucially rely
on the compactness theorem of rst order logic, this is a tting place to study the interplay between nite
model theory andnotions of compactness in topological spaces. Our rst contribution is to studypreservation
theorems through the lens of topology via “topological preservation theorems”, or, more formally, logically
presented pre-spectral spaces, where the topological setting is ideal to describe algebraic properties of those
theorems. However, this topological descriptions has its limits andwe provided a way to “decouple” topology
from logic though the study of localisable classes of structures and a positive variant of the Gaifman Normal
Form, a fundamental tool of nite model theory.

A second interplay, with well-quasi-ordering, is to generalise the “minimal bad sequence arguments” at
the heart of many proofs in the theory, to a categorical setting. A main consequence is the existence of a
canonical Nœtherian topology associated to an initial algebra. Using these results, we re-interpret existing
Nœtherian topologies, and develop new topologies, beyond the reach of well-quasi-orderings, such as the
recurrent topology over trans nite words.

Finally, bridging nite model theory and well-quasi-orderings, this thesis explored graph classes that are
well-quasi-ordered for the induced substructure ordering. This line of research was driven by the hope that
one could characterise concrete classes of graphs de ned by an interpretation from tree-like structures that are
well-quasi-ordered for the induced substructure ordering. The hope was to provide a decision procedure for
the existence of simple algorithms based on well-quasi-ordering theory, but this did not go through.

The contributions and their relative position with respect to the three main domains of this thesis are
described in Figure 1.
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Figure 1: Topology as a bridge between model theory and well-quasi-orderings.
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Scientific Context i
This section is devoted to the introduction of three core notions of this thesis: 1. well-quasi-orders in Section 1.1
2. Noetherian spaces in Section 1.2 3. nite model theory in Section 1.3. These notions will have numerous and
fruitful interplay in Section 2, devoted to the scienti c production of this thesis. None of the results and de n-
itions appearing hereaf er are new, but may be spelled out in a slightly unorthodox manner to keep consistency
between the di ferent elds of research.

1 Well quasi orderings
A poset is a set X equipped with a transitive, re exive and antisymmetric relation ≤. A quasi-order is a set X
equipped with a transitive and re exive relation≤. As one can always quotient a quasi-order to obtain a poset,
we will sometimes mix those denominations to match the convention in the literature. In a poset, two elements
might be incomparable for the relation≤, this will be written x ⊥ y.

Sequences in a Poset
To describe termination of programs, one relies on well-foundedness of some quasi-ordered set (X,≤). Con-
cretely, onewants to avoid disastro sequenc , that are sequences (xn)n∈N of (X,≤) that are strictly decreasing,
i.e. such that for all i < j, xi > xj . A quasi-ordered set (X,≤) is well-founded whenever no sequence is dis-
astrous. The prototypical example of well-founded total ordering is (N,≤), the natural numbers with the usual
ordering. Given an alphabet Σ, one can order the nite words over Σ using the suffix ordering⊑, building the
well-founded poset (Σ∗,⊑).

More of en than not, one cannot prove that a given sequence is disastrous, but rather that it cannot contain
an increasing pair, which happens to be two di ferent properties when the ordering is not total. For that purpose,
many authors introduced the notion of good sequence. A sequence (xn)n∈N is goodwhenever there exists i < j
such thatxi ≤ xj , as shown in Figure 2. Awell-quasi-order is a quasi-orderwhere every in nite sequence is good.
A bad sequence is a sequence that is not good. Hence, a wqo is a poset having no in nite bad sequence.

1, 3

1

2, 0

2

0, 2

3

1, 1

4

0, 0

i

· · · · · · · · ·

xi ≤ xj

3, 2

j

x1⊥x3 x4 > xi

Figure 2: A good sequence in the posetN× N ordered pointwise.

Example 1.1 (Examples of well-quasi-orderings). The following quasi-orders are wqos:
− (N,≤), the natural numbers equipped with the usual ordering,
− (F,=) a nite set equipped with equality,
− (G,≤minor) the class G of nite graphs equipped with the minor ordering≤minor.

Example 1.2 (Non-examples of well-quasi-orderings). The following quasi-orders are not wqos:
− Words with the su x ordering⊑.
− An in nite set equipped with equality.
− (G,⊆i) the class of nite graphs equipped with the induced substructure ordering.
To better understand the notions of good sequence and bad sequence we provide in Table 1 some examples

of such sequences in various posets. In this table, we will refer to the nite simple cycle of size i asCi.
The downwards closure of a set E ⊆ X is written ↓E and is the set of all elements of X below some

element of E, i.e. ↓E ≜ {x ∈ X | ∃y ∈ E, x ≤ y}. Similarly, one de nes the upwards closure via ↑E ≜
{x ∈ X | ∃y ∈ E, y ≤ x}. A subsetE ofX is upwards closedwhenever ↑E = E.

An antichain is a sequence (xi)i∈I of elements such that for all i ̸= j,xi ⊥ xj . By de nition, an antichain is
a bad sequence, and the following proposition states that it is enough to forbid antichains and in nite decreasing
sequences to forbid arbitrary bad sequences.
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Quasi-Order Sequence Good

(N,=) i 7→ i 
(N,≤) i 7→ i 

({a, b},⊑) i 7→ ai 
({a, b},⊑) i 7→ bai 

({a, b},≤h) i 7→ bai 

(G,⊆i) i 7→ Ci 
(G,≤minor) i 7→ Ci 

Table 1: Examples and non examples good sequences (xi)i≥1.

Proposition 1.3 (Equivalent de nitions of wqos). The following definitions are equivalent for a poset (X,≤).
(i) X a wqo.
(ii) X h no infinite decreasing sequence and no infinite antichains.
(iii) X h no strictly decreasing sequence of downwards closed sets for inclusion.
(iv) X h no strictly increasing sequence of upwards closed sets for inclusion.

AGrammar for well-quasi-orders
We now turn our attention to the relations between wqos and their algebraic properties. These properties men-
tioned are crucial as we will compare other properties by their ability to enjoy them.

Interpretations. Amapf : X → Y ismonotonewheneverx ≤X y =⇒ f(x) ≤Y f(y) for all (x, y) ∈ X .
It is an easy check that ifX is a well-quasi-order and f is a monotone surjective function, then Y is also a well-
quasi-order. In particular, this allows to quotient wqos.

Conversely, if there exists a map f : X → Y such that f(x) ≤Y f(y) =⇒ x ≤X y for all (x, y) ∈ X ,
then Y wqo impliesX wqo, such a map is called an order reflection. This implies that subsets of a wqo are wqos.

Concretely, one can use an order re ection to prove that a subset of a wqo is a wqo, andmonotone surjective
maps to prove that the quotient of a wqo is wqo. These stabilities under subsets and quotients, while natural on
posets, will be lacking when studying the otherwise analogous notion of “preservation theorem” in Section 1.3.

Sums and Products. IfA andB are two wqos, thenA+ B with the disjoint orderings is wqo, andA× B
with the usual product ordering is wqo. This immediately allows considering nite sums and products of wqos
to build new wqos.

Example 1.4. The set of unordered pairs {a, b} equipped with {a, b} ≤ {c, d} when a ≤ c ∧ b ≤ d or
a ≤ d ∧ b ≤ c is a wqo.

Proof. The set (N,≤) is a wqo, henceN×N ordered pointwise is a wqo, therefore its quotient under the action
of the permutation group S2 is a wqo.

Noticeably, in nite sums and in nite products fail to be wqo in general. This fails because in nite sums
of non-empty wqos contain an in nite antichain. For in nite products

∏
i∈I Xi, taking Xi = {a, b} with

a < b allows to build a strictly decreasing in nite sequence, althoughXi was wqo for all i ∈ I . In categorical
terms, thismeans that wqos have equalisers (quotients) but only nite products and co-products, hence that one
cannot, in general, consider the limit/co-limit of a diagram of wqos. This is a problem because most of the data
structures in computer science are de ned inductively, and therefore naturally appear as such co-limits.

Finite words. Surprisingly, one can consider words over a wqo and endow it with an orderingmaking it wqo.
Note that the subfactor ordering, su x ordering, and pre x ordering are not well-quasi-orders over nite words
over a binary alphabet. One could hope that by seeing words Σ∗ as the construction

∑
i≥0 Σ

i, the associated
product ordering on words de ned as u ≤ v if |u| = |v| and ui ≤ vi for 1 ≤ i ≤ |u| would be wqo. As
expected, the product ordering is not wqo on words as the sequence an is an in nite antichain. To tackle this
issue, one de nes theHigman word embedding, whereu ≤h v if there exists a strictly increasing function f such
thatui ≤ vf(i) for 1 ≤ i ≤ |u|. In practise, bigger words are obtained by “increasing the letters” and “inserting
arbitrary factors”, as depicted in Figure 3.
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Higman’s word embedding can be seen “algebraically” as the transitive closure of the usual product ordering
and the su x ordering, but is also directly related to the notion of structure embedding in nite model theory.
Indeed, a word w is a nite structure equipped with a total order and unary predicates, and Higman’s word
embedding is the actual structure embedding of words. Over a unary alphabetΣ ≜ {⋆}, the poset (Σ∗,≤h) is
isomorphic to (N,≤).

a1 a2 a3 a4 a5 a6 a7

u1b1 u2b2 u3b3 u4b4 u5b5 u6b6 u7b7u0

≤ ≤ ≤ ≤ ≤ ≤ ≤

Figure 3: Higman ordering

Extended constructors. One can quotient nite words by permutation of letters to obtain a representation
of nite multisets with the multiset embedding1, and forget about the number of occurrences to obtain nite
sets with the Hoare embedding. Concretely, E ≤♭ E′ whenever ↓E ⊆ ↓E′. This provides new datatype
constructors for wqos.

Following the intuition of structure embeddings, we can de neKruskal’s tree embedding over nite trees by
considering them as structures equipped with the tree ancestor relation. This provides one more constructor of
wqo, and completes the “basic grammar of well-quasi-orderings” described in Figure 4.

D ::= (F,=) nite set
| (N,≤) natural numbers
|Σn

i=1Di nite disjoint sums
|Πn

i=1Di nite products
|D∗ nite words, subword embedding
|D⊛ nite multisets, multiset embedding
|℘f (D) nite sets, Hoare embedding
|T (D) nite trees, Kruskal embedding

Figure 4: Grammar for building well-quasi-orderings.

Extensions of the Grammar
Building up on the ideas from theHigmanword embedding and theKruskal tree embedding one can extend the
grammar ofwqos pursuing either the idea of “quotients of inductive datatypes”, the one of “structure ordering”,
or the one of “word combinatorics”.

Structure orderings. Given a relational signature σ, one can consider Struct(σ) the class of structures over
this relational signature. As relational structures, elements of Struct(σ) can be compared by the way of homo-
morphisms, i.e. functions f from the domain of one structure to the domain of another one, respecting the
interpretation of relations. This comparison gives rise to the notion of homomorphism pre-order, A ≤hom B
whenever there exists a homomorphismh : A→ B. This ordering has no particular reason to bewqo in general,
and might not even be well-founded.

By restricting the range of accepted homomorphism, one obtains ner quasi-orders. The one that is studied
extensively in this thesis is structure embedding or induced substructure that puts the restriction on homomorph-
isms h : A→ B to be both injective and strong, i.e. a and b are in relation ifA if and only if h(a) and h(b) are in

1That may di fer from the usual multiset extension of a total order.
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relation inB. When there exists a structure embedding betweenA andB, we writeA ⊆i B, and can also write
that B is an extension of A. The quasi-order ⊆i is called the extension quasi-order. This ordering may not be
wqo but is well-founded over the class of nite structures Fin(σ). As we have seen before, both Higman’s word
embedding and Kruskal’s tree embedding are directly connected to this notion of structure embeddings, as they
relate to the extension quasi-order of the underlying structures. However, there has not been characterisations of
classes of nite structures for which the extension quasi-order is wqo, apart from the very speci c case of words,
trees and similar inductive data-structures.

Divisibility Quasi-Orderings on Inductive Datatypes. There are similarities between the word embed-
ding and tree embedding pre-orders beyond their model theoretic de nition through induced substructures. As
both the constructions are inductive datatypes, they enjoy a notion of subterm, e.g. subtrees or su xes. We can
therefore devise a notion of subterm ordering, de ned byA ⊑term B wheneverA is a subterm ofB.

It turns out that the tree embedding is also the transitive closure of the subterm ordering with the “point-
wise ordering” of trees. In the case of binary trees, the pointwise ordering is de ned recursively as in Figure 5.
Moreover, the actual proofs that the tree embedding and the word embedding are wqos use, at their core, an
identical combinatorial argument: Nash-Willam’sminimal bad sequence argument.

a ≤ b

a · () ≤p b · ()
a ≤ b t1 ≤p t

′
1 t2 ≤p t

′
2

a · (t1, t2) ≤p b · (t′1, t′2)

Figure 5: Recursive de nition of the pointwise ordering on binary trees.

This ressemblance has been noted and used byHasegawa to de ne, in full generality, the divisibility ordering
of an inductive construction [29, Theorem 2.10]. For di ferent reasons, this idea of divisibility ordering appears
in recent work from Freund [18]. This allows to add a “ xpoint combinator” to the grammar in Figure 4. As
a sanity check, one can see that Σ∗ is the least xed point of the constructor FΣ(X) ≜ 1 + Σ × X , and the
divisibility ordering overΣ∗ = µX.FΣ(X) is exactly Higman’s word embedding.

These inductive constructions can be used to recover a well-known “complex” wqo, namely the gap embed-
ding. The concurrent approaches fromHasegawa and Freund are both the result of a categorical study of wqos,
and we will not provide related de nitions in this mid-term report.

Induced Substructures on Graph Classes. Although the graph minor ordering is a wqo, the more natural
model theoretic notion is the one of structure embedding, which corresponds over graphs to the induced sub-
graph ordering, de nedbyG ⊆i G

′whenever there exists an injectivemapf : G→ G′ such that (f(u), f(v)) ∈
G′ if and only if (u, v) ∈ G (see Figure 6 for examples).

Unfortunately, the induced subgraph ordering is not wqo, as the family of cycles forms an in nite antichain
of nite graphs. This started a quest for large classes of nite graphs that are well-quasi-ordered with respect
to⊆i, the latest positive result [11] provides a characterisation of classes of bounded clique-width that are wqo.
Note that a characterisation of classes of nite graphs that are wqo for the “subgraph ordering” (not induced)
has been provided by Ding [15], but does not extend to the notion of induced subgraph.



 

Figure 6: Examples and non examples of induced subgraphs.
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Monoid Induced Well-Quasi-Orders. Another way to augment the range of wqos beyond divisibility or-
derings is to take “context” into account, that is, disallow to compare arbitrary substructures regardless of their
respective context. This quite informal statement can be made rigorous on words over an alphabet Σ using a
monoidM and a morphism µ : Σ → M . We say that a word u = a1 . . . an is below a word v whenever
v = v1 . . . vn and µ(ai) = µ(vi) for 1  ≤ i ≤ n. This is the composition preorder described in Figure 7, that
already has been quite extensively studied (in di ferent formats) by Ehrenfeucht [17], Bucher, Ehrenfeucht, and
Haussler [6], Kirsten [31], Kunc [34], Tzameret [49], Dershowitz and Tzameret [13].

This composition preorder can be then used to build new classes of graphs for which the extension preorder
is wqo via interpretations. Given a wordw, a monoidM , a partP ⊆M and amorphism µ : Σ →M , one can
build a graphGw whose set of vertices is the positions inw andwith an edge (i, j)wheneverµ(wi,j) ∈ P . This
recovers the notion of graphs of bounded linear clique width. If the composition quasi-order is wqo, then the
class of graphsGw is also wqo for induced substructures as w ≤M

µ w′ impliesGw ⊆i Gw′ . This remark lead
to the characterisation of classes graphs of bounded clique width that are wqo byDaligault, Rao, and Thomassé
[11].

a1 a2 a3 a4 a5 a6

v0 v1 v2 v3 v4 v5 v6 v7

∀i ∈ {1, . . . , 6}, µ(vi) = µ(ai)

Figure 7: Composition ordering
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2 Noetherian spaces
While being better behaved than well-founded pre-orderings with respect to most of the usual set constructions
(products, words, trees, etc.), some natural ones fail to preservewell-quasi-orderings, such as the (in nite) power-
set construction [42].

There are two main possibilities to tackle this issue. The rst one is to strengthen the de nition of well-
quasi-ordering to ensure that Rado’s structure cannot be built. This is the path leading to the theory of better-
quasi-orderings [41, 38]. A di ferent approach is taken by Goubault-Larrecq [22], who proceeds to weaken the
de nition of a well-quasi-order to a notion of Noetherian topological space. This shif from quasi-orders to
topologies resolves these stability properties through careful adaptation of the topologies [23]. However, this
approach su fers from the fact that many topologies can correspond to a single quasi-ordering and there usually
does not exist a nest one that isNoetherian. Notice that this lack of canonicity already arises from thede nitions
of the well-quasi-orderings on words or trees, although this is partially answered by the divisibility preorder [29,
18].

Topological Spaces Cheatsheet
A setX can be equipped with a topolo , that is, a set τ ⊆ ℘(X) stable under nite intersections and arbitrary
unions. In particular, ∅ ∈ τ as the empty union and X ∈ τ as the empty intersection. Given a topological
space (X, τ)we say that a given subsetE ⊆ X is an open set ifE ∈ τ and a closed set ifX \E ∈ τ . We usually
denote open sets with letters U, V and closed sets F,C . The sets {∅, X} and ℘(X) are always topologies over
X , the rst one is called the trivial topolo and the latter the discrete topolo . Note that the topologies over a
given setX form a complete lattice for inclusion.

Be careful that “usual” topological spaces come from a notion of distance between points: those are metric
spaces, butmany the topologies considered in computer science will not bemetric at all. An example of a usually
non-metric topology is the cofinite topolo , where open sets are complement of nite sets. To build the right
intuition on the spaces that are going to be considered, we provide a translation between posets and topological
spaces. Given a quasi-ordered set (X,≤), one can build the Alexandroff topolo τ≤ over X by collecting all
subsets ofX that are upwards-closed. We now refer to Table 2 for a conversion between topological properties
and order properties.

Pre-order ≤ Topology τ≤
U is upwards-closed U is open
f is monotone f is continuous

E has nitely many E is compact
minimal elements

wqo Noetherian

Table 2: Cheatsheet relating concepts between a quasi-order and its Alexandro f topology.

InTable 2, we use the following de nition of compactness: E is compact in (X, τ)whenever for every family
(Ui)i∈I of opens such that E ⊆

∪
i∈I Ui, there exists a nite subset J ⊆ I such that E ⊆

∪
j∈J Uj . The

family (Ui)i∈I is called an open cover of E and (Uj)j∈I is a subcover of (Ui)i∈I . Recall from Proposition 1.3
that (X,≤) is a wqo if and only if strictly increasing sequences of upwards closed subsets ofX are nite. Using
our cheatsheet, we can de neNoetherian spac as thosewhere increasing sequences of open sets stabilise in nite
time. In particular, (X,≤) is wqo if and only if (X, τ≤) is Noetherian.

We provide in Table 3 examples of compact and non-compact spaces, using simple topologies that we de ne
hereaf er. Given a poset (X,≤), we already de ned theAlexandro f topology, but it is possible to build a coarser
topology from this order: the upper topolo Upper(≤) is the smallest topology containing the downwards
closures of points in X as closed sets. Every open in the upper topology is open in the Alexandro f topology
but the converse is not true in general.

Proposition 1.5 (Equivalent de nitions of Noetherian spaces). The following propositions are equivalent for a
space (X, τ)
(i) (X, τ) Noetherian.
(ii) Every subset of X compact.
(iii) Strictly decreasing sequenc of closed sets are finite.
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Space Topology Compact Nœtherian

N τ≤  
N co nite  
N discrete  

Σ∗ Upper(⊑)  
Σ∗ τ⊑  
Σ∗ τ≤h

 

R metric  
[0, 1] metric  

C Zariski  

Σ∗ regular subword  

Table 3: Examples and non examples of Nœtherian spaces.

AGrammar for Noetherian Spaces
TrueNoetherian Spaces. Onemaywonder whether someNoetherian spaces can be foundwithout building
them from an already existing well-quasi-ordering. This natural question has two very di ferent answers. One
may argue thatNoetherian spaces are closed under some operations for whichwell-quasi-orderings are not, such
as the powerset [22],ω-words [24] or even trans nite ordinal words [25]. In that sense, even if someNoetherian
spaces come from well-quasi-orderings, they quickly leave the realm of Alexandro f topologies.

A second argument is to consider spaces that have either a pre-existing topological nature, or better, an algeb-
raic one. A classical example following this pattern is the complex plane C endowed with the Zariski topolo
where the closed sets are the algebraic sets V (S) ≜ {z ∈ C | ∀f ∈ S, f(z) = 0}where S is a subset ofC[X].

A Noetherian spaces program. While there exists canonical topologies for product spaces and sum spaces,
there can be a vast range of topologies to place on nite words or nite trees. A rst try would be to mimic the
construction on wqos via Alexandro f topologies, but we also have to treat the case where the input space is not
endowed with an Alexandro f topology, in which case we have no idea where to start.

A sanity check can be given through a conversion from topologies to quasi-orders: the specialisation pre-order
spec(τ) of a topology τ is de ned by x spec(τ) y if ∀U ∈ τ, x ∈ U =⇒ y ∈ U . The specialisation pre-order
of the Alexandro f topology of a quasi-order≤ is the preorder itself, but several topologies can share the same
specialisation pre-order, and this is the key observation allowing to escape the classical roadblocks in the theory
of well-quasi-orderings.

In his “Noetheran spaces program”, Goubault-Larrecq developed topological analogues of constructions
on wqos having the following properties: (a) they preserve Noetherian spaces (b) if FT is the operation on
topologies andFO the operationonquasi-orderings, the following equationholds spec(FT (τ))= FO(spec(τ)).
We provide the grammar in Figure 8 with fewer details than in the case of wqos Figure 4.

D ::= (X, τ≤) (X,≤)wqo
|Σn

i=1Di nite disjoint sums
|Πn

i=1Di nite products
|D∗ nite words, regular subword topology
|D⊛ nite multisets, multiset topology
|℘(D) arbitrary subsets, lower Vietoris topology
|T (D) nite trees, regular subtree topology
| S(D) sobri cation
|Xω in nite words, regular subword topology

Figure 8: Grammar for building Noetherian spaces.
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3 Finite and Algorithmic Model Theory
We are interested in rst-order logic over a nite relational signature σ, written FO[σ], and several syntactic
variants of FO, such as EFO[σ] the set of existential sentenc , that is, sentences of the form ∃x⃗.ψ where ψ is
quanti er free. One can also be interested in PFO, the set of sentences having no negations but an explicit
“inequality” predicate, EPFO, the set of sentences having nor negations, nor universal quanti ers.

Preservation Theorems. In classical model theory, preservation theorems characterise rst-order de nable
sets enjoying some semantic property as those de nable in a suitable syntactic fragment [e.g., 7, Section 5.2].
A well-known instance of a preservation theorem is the Łoś-Tarski Theorem [48, 36]: a rst-order sentence φ
is preserved under extensions over all structures—i.e., A |= φ and A is an induced substructure of B imply
B |= φ—if and only if it is equivalent to an existential sentence. Over a class that C ⊆ Struct(σ), the statement
that every rst-order sentence preserved under extensions is equivalent to an existential sentence is called the
preservation under extensions property. Similarly, the Lyndon Positivity Theorem applied to a unary predicate
X [37] connects surjective homomorphisms that are strong in every predicate except X to sentences that are
positive inX .

As most of classical model theory, preservation theorems typically rely on compactness. Recall that the com-
pactness theorem of first-order logic states that if a set of sentences is inconsistent, then a nite subset of it is already
inconsistent. This theorem is known to fail in the nite case. Consequently, preservation theorems generally do
not relativise to classes of structures, and in particular to the class Fin(σ) of all nite structures [see the discus-
sions in 43, Section 2 and 33, Section 3.4]. For example, Lyndon’s Positivity Theorem fails even over the class of
nite words [35]. Nevertheless, there are a few known instances of classes of nite structures where some preser-
vation theorems hold [3, 44, 45, 28], and this type of question is still actively investigated [e.g. 8, 35, 12]. We refer
to Table 4 for a brief recap of the most well-known preservation theorems and their behaviour over Fin(σ).

Struct(σ) Order Fragment Fin(σ)
Łós-Tarski ⊆i EFO  [47]

Tarski-Lyndon ⊆ PFO  [1]
H.P.T. ≤hom EPFO  [44]

Table 4: Example of preservation theorems and their relativisation in the nite.

Given a class C ⊆ Fin(σ) and a sentence φ ∈ FO[σ], one can de ne a set JφKC ≜ {A ∈ C | A |= φ}
and a function JφK : X → S, where S is the Sierpiński space {⊤,⊥} with⊥ ≤ ⊤. Let us now x a preorder
on C , for instance extensions ⊆i; the following properties are equivalent for a sentence φ: (a) φ is preserved
under⊆i, (b) JφK is monotone, (c) JφKC is upwards closed. As a consequence, if the classC is wqo for≤, every
sentence preserved under≤ is the upwards closure of nitely many structures. It is an easy check that for every
order appearing in Table 4, the upwards closure of nitely many points is de nable in the expected fragment
of rst-order logic. Therefore, whenever C is wqo for ≤ ∈ {⊆,⊆i,≤hom}, the corresponding preservation
theorem holds.

However, most of the classes considered in the literature are not well-quasi-ordered, and some enjoy preser-
vation theorems. This is because preservation theorems arise from the interplay between the ordering and the
expressiveness of rst-order logic. As an example, the class of nite cycles enjoys preservation under extensions,
although the set is an in nite antichain for⊆i, because rst-order logic cannot distinguish between large cycles
(see Figure 9).

C3 C4 C5 C6

   

· · ·

P4

Figure 9: Evaluating ∀x.∃y.¬(xEy) ∧ x ̸= y over nite cycles.
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Notice that the class of nite cycles is not hereditary, that is, not downwards closed with respect to induced
substructures, but that its “minimalmodels” can be de ned through equivalent existential sentences, and in this
case can be taken to be nite paths.

Locality. As away to tackle the lack of compactness theoremover Fin(σ), amore combinatorial description of
the expressiveness of rst-order logic is introduced. One of the main tools developed is the notion of “locality”,
with the broad meaning that rst-order sentences cannot de ne “global” properties of structures, hence can be
studied by their behaviour on local parts of said structures.

Given a structureA over a nite relational signature σ, its Gaifman graph has the elements ofA as vertices
and an edge (a, b) whenever both a and b are in relation in A. The distance dA(a, b) between two elements
ofA is their distance in the Gaifman graph ofA For a tuple a⃗ ∈ A, and a radius r ∈ N one can consider the r-
neighbourhood around a⃗ inA de ned asNA(⃗a, r) ≜ {a′ ∈ A | ∃a ∈ a⃗, dA(a, a′) ≤ r} =

∪
a∈a⃗ NA(a, r);

we emphasise that this union is not required to be disjoint. Slightly abusing notations, we identify the set
NA(⃗a, r) ⊆i Awith the corresponding induced substructure ofA. We call the structureNA(⃗a, r) the induced
neighbourhood of a⃗ inA.

A rst-order formulaφ(x⃗) is said to be r-local if its evaluation over a structureA and a tuple a⃗ fromA only
depends on the r-neighbourhood of a⃗ in A, i.e. A, a⃗ |= φ if and only if NA(⃗a, r), a⃗ |= φ. In the particular
case of r = 0, local formulas are equivalent to quanti er free formulas. Since σ is a nite relational signature,
every formula φ can be relativised to a r-local formula, which coincides with φ over neighbourhoods of size r,
although it might have a higher quanti er rank.

It is more delicate to craf a notion of locality for rst order sentences since they have no free variables. The
classical approach is to consider basic local sentenc of the form ∃x⃗.

∧
i ̸=j d(xi, xj) > 2r∧

∧
i ψ≤r(xi)where

ψ≤r is a r-local formula with a single free variable. Simply put, the evaluation of a local r-basic sentence is
determined solely by the evaluation of ψ≤r over disjoint neighbourhoods of radius r. Note that the predicates
d(x, y) ≤ r and y ∈ N(x⃗, r) are de nable for each xed r ∈ N.

TheGaifman Locality Theorem [19] states that every rst-order sentence is equivalent to a Boolean combin-
ation of basic local sentences, called its Gaifman Normal Form. This can be thought of as FO[σ] being limited
to describing the local behaviour of structures. In the study of preservation theorems such as preservation under
extensions over nite structures, a rst step is of en to use Gaifman’s normal form and rely on the structural
properties of such as the “sparsity of the models” as a substitute for compactness [2, 3, 28, 12].

Name Syntactic Form Interpretation

Existential sentence ∃x⃗.ψqf(x⃗) Induced substructure

Existential local sentence ∃x⃗.ψloc(x⃗) Induced neighbourhood

Basic local sentence ∃x⃗.
∧

i ̸=j d(xi, xj) > 2r ∧
∧n

i=1 ψloc(xi) ndisjoint copies of a onepoint
induced neighbourhood

Table 5: Comparison of the di ferent syntactic local forms. The notation ψqf denotes a quantifer-free formula,
and ψloc denotes a local formula.
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Scientific Production ii
The goal of this thesis is to bridge these domains through the core notion of “compactness”, be it as a logical
property, a topological notion, or a combinatorial tool. One of the main problem used as a practical applica-
tion is the study of so-called “preservation theorems” in rst-order logic, introduced in Section 1.3. Those arise
from classical model theory, but are highly non-trivial (if not false) in nite model theory, and can be elegantly
rephrased as generalisations of well-quasi-orders or Noetherian spaces.

However, we do not restrict our attention to preservation theorems, and also investigate both well-quasi-
orders and Noetherian spaces in their own right.

1 Compositions Orderings
Wetried to study the result byDaligault, Rao, andThomassé [11] onwell-quasi-ordered classes of bounded clique
width using automata theory. We rephrased the characterisation from [11] as a requirement on the monoidM :
M generates classes of graphs well-quasi-orderedwith respect to induced substructure if and only ifM is a chain
of simple semigroups. Moreover, we encoded the composition preorder of chains of simple semigroups into the
gap embedding and vice-versa, proving that they are “equally hard”.

As a follow-up question, we tried to measure the loss of expressiveness induced by the restriction to chains
of simple semigroups. For that, we compared classes generated by chains of simple semigroups to classes that
arem-partite. Classes ofm-partite graphs are classes of bounded clique width that are using a trivial monoid
M = {id}, hence are wqo. We exhibited a familyHk,n coming from a very simple monoid that leads to a well-
quasi-ordered class that is notm-partite for any nitem, see Figure 10. This result was strengthened by proving
thatHk,n can be built from a word rather than a tree, hence is of linear bounded clique width.

Figure 10: The graphH3,3.

One keyproperty in the characterisationofDaligault, Rao, andThomassé [11] is that one asks for themonoid
M to generate only well-quasi-ordered classes, regardless of the way the elements of the monoid are used to
build the edges af erwards. We tried to extend the characterisations to pairs (M,P ), and classify those pairs
such that the “language embedding” is wqo onM∗, that is a word u = a1 . . . an is below a word v if and only
if v = v1 . . . vn andµ(ai . . . aj) ∈ P ⇔ µ(vi . . . vj) ∈ P . This “language embedding” is precisely capturing
the induced substructure ordering over the interpreted graphs, hence we could have a more ned grained (and
hopefully decidable) characterisation of classes that are of linear bounded cliquewidth andwqo. However, none
of our proof scheme worked, and every conjecture was countered by explorations of monoids via Minisat.

This direction of research has been paused.

15



2 Topological preservation theorems
In Section 1.3, we saw that preservation theorems over a downwards closed set of nite structures can be rewritten
as the fact that sentences preserved under extensions have nitely manyminimal models. We use our Cheatsheet
in Table 2 to translate it in a topological setting:

1. A sentence preserved under extensions is a sentence de ning an upwards closed set, which is translated to
an open set.

2. A sentence having nitely many minimal models is translated to a sentence de ning a compact set.
Recall that a setE isdefinable inX whenever there exists a rst-order sentenceφ such thatE = JφKX . Moreover,
in a topological space (X, τ), we write K◦(X) to denote the compact and open sets ofX . As a consequence,
preservation under extensions can be rephrased as τ⊆i ∩ JFOKX ⊆ K◦(X).

However, this condition does not take into account a peculiar property of existential sentences: they de ne
a bas of the topology τ⊆i

, i.e. every open set in τ⊆i
is a union of sets de ned by existential sentences. Moreover,

existential sentences are compact, hence we have τ⊆i
= ⟨K◦(X)⟩. This is the motivation behind the de nition

of logically presented pre-spectral spaces.

Definition 2.1 (Logically presented pre-spectral space). Let X ⊆ Fin(σ) be a set of structures and τ be a
topology overX . The triple ⟨X, τ, FO[σ]⟩ is a lpps if τ = ⟨K◦(X)⟩ and τ ∩ JFOKX ⊆ K◦(X).

In a lpps, we automatically have the equality τ ∩ JFOKX = K◦(X), henceK◦(X) is a bounded sublattice
of ℘(X). Moreover, the underlying topological space (X, τ) is pre-spectral [see. 14], explaining part of the
notion’s name. This connection with spectral spaces allows leveraging structural properties of the category of
spectral spaces, such as the existence of products or projective limits [14, Section 2.2 and 2.3].

We generalise the notion of lpps to replace JFOKX by a bounded sublattice of ℘(X). This allows us to
express in full generality the fundamental property of lpps.

Theorem 2.2 (Fundamental Property). Let τ be a topolo on X , L a bounded sublattice of ℘(X), and L′ a
sublattice of L. The following are equivalent:

1. L ∩ τ ⊆ L′ ⊆ K◦(X).
2. ⟨X, τ,L⟩ a lpps and L′ a bas of τ.

Let us immediately translate this result in terms of preservation under extensions. Given a hereditary set
of structures X with the Alexandro f topology from the extension ordering ⊆i, Theorem 2.2 states that it is
equivalent that (a) FO-de nable upwards-closed sets for⊆i are both EFO-de nable and have nitely many⊆i-
minimal models, (b) FO-de nable upwards-closed sets have nitely many⊆i-minimal models, upwards-closed
sets with nitely many ⊆i-minimal models generate all upwards-closed sets, and EFO-de nable sets generate
all upwards-closed sets. In this speci c case, this amounts to the folklore result stating that preservation under
extensions holds if and only if upwards-closed FO-de nable subsets have nitely many⊆i-minimal models.

Note that for preservation theorems in the literature, one always has that the fragment of interest is a basis
of the topology, but for some classes of structures, this fragment may not always de ne compact sets, moreover,
compact setsmight not be thosewith “ nitelymanyminimalmodels”when the ambiant space is not downwards
closed. Let us reuse our example of the class of nite cycles and preservation under extensions as an illustration
of the power of our topological notions.

Example 2.3 (The case of cycles). In the case ofCycles the class of nite cycles, it is an easy check that τ⊆i is the
discrete topology, and as a consequenceK◦(Cycles) consists solely of the nite sets of nite cycles. In particular,
there are some existential sentences having in nitely many models, hence that are not compact.

However, τC de ned as the co nite topologyoverCycleshas the same specialisationpreorder as τ⊆i
. Moreover,

we do have that ⟨Cycles, τC , FO⟩ is a lpps because it is Noetherian. We conclude that JFOKCycles ∩ τC ⊆JEFOKCycles ∩ τC ⊆ K◦(Cycles). As a sentenceφ ∈ FO de nes either a finite set or a cofinite set ofCycles, in
both cases, it is expressible in EFO.

We argue that lpps captures the “well-behaved” preservation theorems, i.e. those obtained by topological ar-
guments, and demonstrate this by exhibiting stability properties of those spaces. Using properties of pre-spectral
spaces, we prove that if ⟨X, τ, FO[σ]⟩ is lpps and Y be a Boolean combination of compact-open subsets ofX ,
then ⟨Y, θ, FO[σ]⟩ is a lpps, where θ be the topology induced by τ on Y . This behaviour distinguishes the
property of “being lpps” from “having a preservation theorem”, because we capture explicitly the notion of
compactness, as demonstrated in Figure 11.

Moreover, mimicking the grammars for wqos Figure 4 and Noetherian spaces Figure 8, we built a grammar
for building lpps as described in Figure 12.
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C

Struct(σ)

x0

Figure 11: The upwards closure ↑x0 ∩ C may have in nitely many minimal models in C

D ::= (X,≤) wqo
| (X, τ) Noetherian
|D1 ·D2 inner product
|Σn

i=1Di nite disjoint sums
|Πn

i=1Di nite products
|D∗ nite words, regular subword topology
|T (D) nite trees, regular subtree topology
|D1 ⋊D2 wreath product,D1 ∞-Noetherian

Figure 12: Grammar for building lpps.

Specific Closure Properties. In addition to these algebraic constructions, we studied the logical closure of
a set, which only makes sense in the case of sets of structures. IfX ⊆ Z ⊆ Struct(σ) then one can build the
logical closure ofX inZ as the closure ofX in the topology generated by the de nable subsets ofZ . In practise,
this means that we “complete”X to add structures in Z indistinguishable from the point of view of the logic.
We proved the unsurprising theorem that if a set Y is stuck between X and the logical closure of X in some
ambiant space Z , then ⟨X, τ, FO⟩ is a lpps if and only if ⟨Y, τ, FO⟩ is, and de nable bases ofX are de nable
bases ofY . This can be used to prove that countable disjoint unions of nite structures enjoy preservation under
extensions.

Finally, we explained Rossman’s proof of the H.P.T. in the nite through a lemma allowing to “transfer”
projectives limits of pre-spectral spaces to lpps.
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3 Positive normal forms
Gaifman Normal Forms. In our approach to study preservation under extensions, we developed an inter-
polant between arbitrary rst-order sentences and existential sentences in the form of existential local sentenc :
these are sentences of the form ∃x⃗.ψ(x⃗)where ψ is a r-local formula around x⃗.

Our rst contribution is to prove that existential local sentences are exactly those that can be put inGaifman
Normal Form without using negations, hereaf er called positive Gaifman normal form. This result relies on
careful combinatorial description of the neighbourhoods in a model and therefore relativises to arbitrary classes
C of structures.
Theorem 2.4 (Positive Locality). Let C ⊆ Struct(σ) be a class of structur and φ ∈ FO[σ] be a first-order
sentence. The sentence φ equivalent over C to an existential local sentence if and only if it equivalent over C
to a positive Gaifman normal form.

As every existential sentence is existential local, every proof of preservation under extensions can be factored
as going from sentences preserved under extensions to a positive Gaifman normal forms and then to existential
sentences. This puts the light on technical parts common toproofs of preservationunder extensions [3, 2]. Given
our proof factorisation of preservation under extensions, we turned our attention to proving that sentences
preserved under extensions can always be rewritten in positive Gaifman normal form. Proving such a result
would reduce preservationunder extensions to a syntactic transformation frombasic local sentences to existential
sentences, and usual sparsity ormodel-theoretic properties of the considered classes can be used to tackle this last
part.

Positive Preservation. Following this program,we characterised the semantic property corresponding to pos-
itive Gaifman normal forms, through a ner notion of embeddings than induced substructures, namely local
elementary embeddings, that is, embeddings f : A → B such that for all local formula ψ(x⃗), for all a⃗ ∈ A,
A, a⃗ |= ψ(x⃗) if and only ifB, f (⃗a) |= ψ(x⃗). By restricting the quanti er rank q of sentences ψ, their locality
radii r, and the number of free variables k, this provides (r, q, k)-local elementary embeddings.
Theorem 2.5 (Local preservation). Let φ be a sentence in FO[σ]. The following properti are equivalent over
the class of all structur Struct(σ).
(a) The sentence φ equivalent to an existential local sentence.
(b) There exist r, q, k ∈ N such that φ preserved under (r, q, k)-local elementary embeddings.
(c) The sentence φ preserved under local elementary embeddings.

Unfortunately, Theorem 2.5 follows the usual proof scheme of classical model theory, relying on the com-
pactness theorem of rst-order logic. Early on, we noticed that preservation under local elementary embeddings
—sentences preserved under local elementary embeddings are expressible as existential local sentences— boils
down to preservation under disjoint unions—sentences preserved under disjoint unions are equivalent to exist-
ential local sentences— in the nite, whereφ is preserved under disjoint unions overC whenever for allA,B ∈ C,
A |= φ impliesA ⊎B |= φ.

Af er trying combinatorial methods having similar avour to Theorem 2.4, we found a (quite-involved)
counter-example to Theorem 2.5 in the nite. This counter-example is built on the idea of Tait [47] in the
case of the preservation under extensions and relativisation properties of lpps. We use as relational signature
σ ≜ {(≤, 2), (S, 2), (E, 2)}, and de ne structuresOm + · · ·+On with 2 ≤ m ≤ n as described in Figure 13
for n = 5 andm = 2. We de ne then Cbad to be the class of nite disjoint unions of such structures structures.
It is easy to see that Theorem 2.5 does not relativise to Cbad, and using stability properties of lpps this lif s to the
whole class Fin(σ) of nite structures.

Theorem 2.6 (Counter example over Fin(σ)). There exists a sentence φ preserved under disjoint unions over
Fin(σ) but not equivalent to an existential local sentence over Fin(σ).

Af er building this “grid-like” counter-example, it was now possible to prove the undecidability of a number
of natural questions on existential local sentences and preservation under local elementary embeddings.

Theorem 2.7 (Undecidability). It not possible, given a sentence φ preserved under disjoint unions over Fin(σ),
to decide whether it h it equivalent to an existential local sentence.

Neither it possible, given a sentence φ, to decide whether or not it preserved under disjoint unions over
Fin(σ).
Theorem 2.8 (Uncomputable equivalence). There no algorithm that given a sentence φ that equivalent to
an existential local sentence over Fin(σ) comput such a sentence.
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Figure 13: The structureO2 +O3 +O4 +O5

Cartography of Parameters. Becausewe can stratify local elementary embeddings using parameters (r, q, k),
we asked ourselves whether these stronger preservation properties imply our existential local syntactic form.
Though a systematic study, we mapped in Figure 14 regions of the “preorder-cube” implying positive Gaifman
normal form over C. One particularly interesting case is k = ∞ and r, q = 0, where the preorder coincides
with induced substructures, whenever the class is hereditary and closed under disjoint unions, that is, such that
A ⊎ B ∈ C ifA,B ∈ C. For this particular case, we actually use monadic second order logic to deal with the
possible intersections of neighbourhoods, and believe that this proof scheme has an interest of its own.

k = 1 k ≥ 2 k = ∞

q = ∞

q ≥ 1

q = 0

r =
0

r =
∞

r ≥
1

r =
0

r =
∞

r ≥
1

r =
0

r =
∞

r ≥
1

⊎

⊆i

Figure 14: Parameters (r, q, k) leading to an existential local normal form (white), thosewith a counter example
(dots) over hereditary classes closed under disjoint unions.
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4 Localisable classes of structures
Weproved in Figure 14 that sentences preservedunder extensions have a positiveGaifmannormal formon classes
of structures that are hereditary and closed under disjoint unions, which was the rst step of our “preservation
through locality” program. The second step ouf our program is to leverage this positive Gaifman normal forms
to build preservation under extensions theorems. To that end, we place ourselves in the situation of localisable
classes of structures, that is, classes C where every sentence φ preserved under extensions is equivalent over C to
some existential local sentence ψ.

Let us restate explicitly that from Figure 14, we know that if C ⊆ Fin(σ) is hereditary and closed under
disjoint unions then it is localisable, in particular, the class Fin(σ) is localisable.

Surprisingly, given the general non relativisation properties of preservation theorems, we were able to relate
preservation under extensions over C and preservation under extensions for a strati cation of C using neighbour-
hoods. More precisely, given a class C, we de ned Balls(C, r, k) as the set of allNA(⃗a, r) forA ∈ C and a⃗ ∈ Ak.
This is a strati cation because the increasing union

∪
r≥0

∪
k≥1 Balls(C, r, k) equals C whenever C is hereditary.

One key argument in our proof is that we can extend an induced substructureA ⊆i B ∈ Balls(C, r, k)with at
most r × k × |A| points to ensure thatA ⊆i A

′ ⊆i B withA′ ∈ Balls(C, r, k), see Figure 15.

The whole structureB is centered around (b1, b2).

b1

b2

The extended substructureA′ ∈ Balls(C, 2, 2) is centered around (b1, b2).

b1

b2

The induced substructureA ⊆i B.

b1

b2

Figure 15: Extracting a structure in Balls(C, 2, 2) from an induced substructureA of a larger structureB.

Theorem 2.9 (Local preservation under extensions). Let D be a hereditary localisable class of finite structur .
Preservation under extensions holds over D if and only if preservation under extensions holds over Balls(D, r, k)
for all r ≥ 0 and k ≥ 1.

Corollary 2.10 (Local preservation under extensions). Let D be a hereditary class of finite structur closed
under disjoint unions. Preservation under extensions holds over D if and only if preservation under extensions
holds over Balls(D, r, k) for all r ≥ 0 and k ≥ 1.

This completes our two-step approach to preservation under extensions, and allows us to strictly generalise
previously known classes of structures enjoying preservation under extensions. As an example, one of the best
known results was that hereditary classes of nite structures closed under disjoint unions and wide enjoy pre-
servation under extensions [2, Theorem 4.3]. This is captured in our program as hereditary wide classes C are
exactly those where Balls(C, r, k) is finite for every r ≥ 0, k ≥ 1, aka locally finite class . As nite classes en-
joy preservation under extensions, Corollary 2.10 implies that locally nite classes do, and thus recovers Atserias,
Dawar, and Grohe’s result [2, Theorem 4.3].

By localising properties known to imply preservation under extensions, we harvest from Theorem 2.9 new
structural properties implying preservation under extensions. Examples of such properties, along with their
respective implications, are given in Figure 16.

20



nitelocally
nite

bounded treedepthlocally
bounded treedepth

wqolocally
wqo

pr. under extensionslocally
pr. under extensions

wide

[40]

(2.9)

[15]

Figure 16: Implications of properties for localisable hereditary classes of nite structures. Arrows are strict im-
plications, thick arrows are new results. Boxes are properties over classes of nite structures, and dashed ones are
new.
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5 Generic bad sequence arguments
Following the idea thatwqos can be generated on inductive datatypes by adding the transitive closure of a notion
of substructure ordering, we study how one can iteratively buildNoetherian topologies on a given set. However,
as opposed to the constructions of the divisibility topology, we will not change the underlying space during our
construction. This can be understood as keeping the same underlying space and re ning the resolution of the
space, rather than building bigger and bigger (high resolution) parts of the space.

Iterative Topology Refinement. Given a setX , one can consider functions F from topologies overX to
topologies overX . IfF is monotone and preserves Noetherian topologies, we callF a refinement function. Nat-
urally, one can build the least fixed point of a re nement function, and it is obtained by iterating (trans nitely)
the function F starting from the trivial topology onX . Recall that given a limit ordinal α, the limit topolo
Fα(τ) is de ned as the join over all topologies F β(τ) for β < α.

Example 2.11. For instance, one can considerX = Σ∗ where (Σ, θ) is a nite topological space, and de ne
F (τ) as generated by the set {{av | a ∈ U, v ∈ V } | U ∈ θ, V ∈ τ}. It is an easy check thatF is a re nement
function, but its least xed point is the discrete topology overΣ∗ whenever θ is the discrete topology overΣ (see
Figure 17).

As the discrete topology overΣ∗ is notNoetherian, this proves that one cannot, in general, iterate re nement
functions.

Σ∗

∅

Σ∗

∅

aΣ∗ bΣ∗

Σ∗

∅

aΣ∗ bΣ∗

aaΣ∗ abΣ∗ baΣ∗ bbΣ∗

Figure 17: Iterating F overΣ∗. On the lef the trivial topology, followed by F , and on the right F 2.

However, wediscovered that a simple requirement on the re nement functionF allows touse aminimal bad
sequence argument (adapted to topological spaces). This requirement is roughly that the re nement function
“respects subsets”. Let (X, τ) be a topological space andH be a subset ofX . We call the subset restriction τ | H
the topology generated by the opens U ∩ H where U ranges in τ . See Figure 18 for a visual understanding of
this construction.

Example 2.12. It might be useful to consider what happens in the case of an Alexandro f topology to interpret
this notion on quasi-orders. Let us writeH ⊆ X , τ = τ≤ overX and compute spec(τ | H).

x spec(τ | H) y ⇐⇒ ∀U ∈ τ | H,x ∈ U =⇒ y ∈ U

⇐⇒ ∀U ∈ τ, x ∈ U ∩H =⇒ y ∈ U ∩H
⇐⇒ ∀z ∈ X,x ∈ ↑z ∩H =⇒ y ∈ ↑z ∩H

⇐⇒

{
x ≤ y ∧ x ∈ H ∧ y ∈ H

x ̸∈ H

We call topolo expanders the re nement functions that respects subsets, i.e. such that for every Noetherian
topology τ satisfying τ ⊆ F (τ), for all closed setH in τ , F (τ) | H ⊆ F (τ | H) | H .

Example 2.13. In the realm of quasi-orders, this condition can be translated as follows: for all x, y ∈ H ,
xF (≤H)y implies xF (≤)y, where u ≤H v if u ≤ v and u, v ∈ H or y ̸∈ H . This is interpreted as the fact
that to compute the re nement of the quasi-order over a closed subset, it su ces to re ne over this subset, i.e.
no outside information is needed by F .
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X

H

U

V
U ∩H

=

V ∩H

Figure 18: Subset Restriction. WheneverH is closed,W = U ∪Hc is the largest open set satisfyingU ∩H =
W ∩H .

Theorem 2.14 (Limit topologies are Noetherian). Let α be a limit ordinal and F be a topolo expander. If
F β(τ) Noetherian for all β < α then Fα(τ) Noetherian.

Corollary 2.15. Let F be a topolo expander. The least fixed point of F a Noetherian topolo .

Note that this topological setting allows getting rid of category theory altogether and focus on themainmin-
imal bad sequence argument. Moreover, one can de ne topology expanders over sets that are not usual inductive
datatypes, such as in nite words. Let us writeX<ω for the words of size at most ω, and de ne the following to-
pology expander, given a topology θ onX : F (τ) is generated by the open sets {wav | u ∈ Σ∗, a ∈ U, v ∈ V }
and {w | ∀i,∃j > i, wi ∈ U}, for U ∈ θ and V ∈ τ . It turns out that F is a topology expander and that its
least xed point is the regular subword topology over in nite words, as shown by Goubault-Larrecq and Lopez
[26].

Conjecture 2.16. One can obtain the same theorem by rede ning τ | H via {U ∪Hc | U ∈ τ}, which has a
nicer interpretation in terms of quasi-orders: u≤| Hv if and only if u ≤ v or v ̸∈ H .

Divisibility Topologies. We are nowworking in a categorical setting. Let us write Set for the category of sets
with functions, Top for the category of topological spaces with continuousmaps. If Corollary 2.15 can be applied
to sets that are not de ned inductively, it can also serve as a way to build canonical topologies over inductive
datatypes. For that, we will consider “type constructors” as analytic endofunctors of Set, that are lif ed to Top
to put topologies on the generated constructions.

Example 2.17. Let G′ be the functor sending a topological space (X, τ) to X∗ with the regular subword
topology. ThenG′ is the lif ofGmappingX toX∗ in Set to Top. Moreover,G is analytic.

LetGT : Top → Top be a lif ing of an analytic functorG, and (µG, δ) an initial algebra ofG. There exists
a notion of substructure ordering over µG, written ⊑. For instance, if one de nes nite words over Σ as the
least xed point of G(X) ≜ 1 + Σ × X , the substructure ordering is the usual su x ordering, described in
Figure 19.

We de ne the divisibility topolo onµG as the least xed point ofF♢ thatmaps a topology τ to the topology
generated by

{
↑⊑δ(U) | U open inGT (µG, τ)

}
. If we suppose thatGT preserves embeddings, then F♢ is a

topology expander on the initial algebra µG and the divisibility topology is Noetherian thanks to Corollary 2.15.
We provide in the case of nite words, the computation of F♢({∅,Σ∗}) in Figure 20; notice how this topology
di fers from Figure 17.

As a sanity check, we prove that the divisibility topology is the Alexandro f topology of the divisibility pre-
order fromHasegawa, Freund. Moreover, we can prove that the regular subword topology and the regular sub-
tree topology are the divisibility topologies of their inductive constructors.
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abaa

aaabaaaa

bbb

a b

bba

abaa abababba abbb

aba abb

bbaa baabbaaa bbabbbba aabbaaba bbbb

babbaa

ε

aaa aab

bbba

babbbaba

Figure 19: Substructure ordering⊑ on words of length at most 4.

Theorem 2.18. Let GT be the lift of an analytic functor respecting Alexandroff topologi , Noetherian spac ,
and embeddings. The divisibility topolo of µG the Alexandroff topolo of the divisibility preorder of µG,
which a well-quasi-ordering.
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⊤

⊥

{a} × ⊤

⊤

⊥

{ε} {b} × ⊤ ↑⊑{a} × ⊤

⊥

↑⊑{b} × ⊤

↑⊑{ε} = ⊤

{a, aa, ba, aaa, aba, baa, bba}

⊥

{b, bb, ab, bbb, bab, abb, aab}

⊤

Figure 20: One iteration of F♢ over the set of words of length at most 3.
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6 Transfinite Words
The Regular Subword Topology. We extend the Nœtherian topology introduced by Goubault-Larrecq
[24] to trans nite words in Goubault-Larrecq, Halfon, and Lopez [25] by de ning the regular subword topo-
logy over trans nite words. The regular subword topolo on trans nite words is de ned by the means of its
closed sets as in Figure 21.

C closed in θ β ≤ α

C<β closed
P1 closed · · · Pn closed

P1 · · ·Pn closed

Figure 21: Closed sets of the regular subword topology overX<α.

Af er proving that this topology is Noetherian, we compute concretely the specialisation preorder of the
regular subword topology by rst characterising the closures of words. A word w is said to be topologically in-
decomposable when every factorisation w = uv with v ̸= ε satis es w = v. BecauseX<α is Noetherian in its
regular subword topology, we know that every word is a nite product of topologically indecomposable words.

Our next step is proving that w1 . . . wn = w1 . . . wn when the words wi are indecomposable. Moreover,
w = (letters(w))<|w|+1 when w is topologically indecomposable. As a consequence, we characterised the
closure of words.

This can be used to prove that the specialisation preorder of the regular subword topology is not the em-
beddings of trans nite words, by considering for instancew ≜ (aωb)ω , whose closure is {a, b}<ω2+1 which is
de nitely not equal to ↓w. As this topology fails to have the correct specialisation preorder, evenwhen assuming
that the specialisation preorder ofX is better-quasi-ordered, we try to extend the range of closed sets.

Recurrent Subword Topology. It is possible to strengthen the topology by allowing the rule P<β in our
inductive de nition of closed sets. This provides a topology expander over trans nite words, and therefore a
Noetherian topology called the recurrent subword topolo , strictly ner than the regular subword topology. For
the exact same reasons as for the regular subword topology, the specialisation preorder cannot be the word em-
bedding in general, but we conjecture that this holds when we start from a better-quasi-order.
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Future Work iii
1 Topological interpretations

We have yet to produce a proper interpretation of our localisation theorems in terms of topological spaces. For
instance, the fact that a class C is localisable cannot be interpreted topologically –assuming that C is a set– as
the fact that ⟨C, τbasic, FO⟩ is a logically presented pre-spectral space, where τbasic is the topology generated using
basic local sentences. Indeed, basic local sentences may not de ne compact sets in τbasic.

2 Inductive constructions of preservation theorems
We hope that the technology of minimal bad sequences in the topological setting better adapts to lpps and that
the proof schemes of divisibility topologies allows building automatic preservation theorems over classes of struc-
tures, given an algebra over the class.

3 Characterising the tree expressions topology.
We have yet to compute concretely the specialisation preorder of the recurrent subword topology. We hope
that we can reuse our proof techniques developed in the case of the regular subword topology, in particular the
notion of topologically indecomposable words.
Conjecture 3.1. If the specialisaton preorder onX is BQO then we get back onX<α the embedding preorder as
a specialisation preorder.

4 Follow up on inductive constructions
We extended the divisibility preorders to divisibility topologies, but some hypothesis of the former are not
needed in the latter, namely, that the underlying Set-functor is analytic. Indeed, it is crucially used by both
Hasegawa, Freund in their minimal bad sequence argument to guarantee that the support of an element is nite.
In Noetherian spaces, we do not need such a restriction, as the usual powerset construction preserves Noeth-
erian spaces. We can therefore study the notion of “quasi-analytic functor”, where the niteness of the supports
is dropped.

We also hope that we can adapt our proof scheme to arbitrary algebras of a given functor, to justify the
canonicity of the regular subword topology or the recurrent subword topology as emerging from reasonable
algebras over in nite words.

We have yet to design an approach to compute the “ordinal invariants” of the topologies generated by topo-
logy expanders, that could give us automatic upper bounds on the constructions.

5 Sparsity, model theory, and compactness
There has been recent development in the theory of sparsity [39, 20, 5, 4, 16, 46, 27, 21] that is getting closer to
describe combinatorially classes of structures for which model checking is xed-parameter tractable.

The techniques usedmay have applications to the study of preservation theorems, particularly the character-
isation of rst-order transductions of sparse classes [39, 20]. Sylvain Schmitz proposed the following conjecture,
following the intuitions from these results.
Conjecture 3.2. A class C enjoys preservation under extensions if and only if one cannot existentially transduce
arbitrarily large cycles from C.

Moreover, the study of sparsity has been boosted by incorporating elements from nite model theory such
as stable classes and dependent classes, for which suitable regularity lemmas have been proven [see for example
10, 9]. We informally conjecture that stable classes may be localisable in some sense, because one cannot build
large grid-like structures as in Theorem 2.7.

6 Well quasi-orders defined via semigroups
Recent development in the semigroup community [32] allows characterising ordered semigroups for which the
composition preorder is wqo, leading to a proper algorithm to detect such semigroups. This reignites the hope
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of characterising regular languag for which the composition preorder is wqo.

7 Ordinal invariants of well-quasi-orders
In collaborationwith SimonHalfon, Philippe Schnoebelen, and IsaVialard, I started investigating the behaviour
of the nite powerset construction in wqos through its “ordinal invariants”. This is connected to the study of
divisibility preorders as they provide families attaining our lower bounds.

8 uery counting
In collaborationwith Thomas Colcombet andGaëtanDouéneau, I study formulas through their “growth beha-
viour” when counting the number of tuples that satis es said formula in a structure. Over words, it seems that
a polynomial growth of an MSO-formula implies that it can be rewritten in FO. Over arbitrary structures, we
hope to prove a similar result, using radically di ferent techniques.
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Out of Context Definitions i
To keep the main text readable, some de nitions have been omitted and are now recalled here.

1 Topology
Definition A.1 (Topological Closure). The closure E of a set E in a topological space (X, τ) is the smallest
closed set containingE.

Definition A.2 (Continuous Function). A function f : X → Y is continuo whenever f−1(U) is open in
X for every openU of Y .

Definition A.3 (Embeddings). Amap f : A→ B is an embeddingwhen every open set ofA is the pre-image
though f of an open set ofB.

DefinitionA.4 (Metric space). Aspace (X, τ) space ismetricwhenever there exists a distanced : X×X → R+

such that τ is generated using the open balls of d, that is, {x ∈ X | d(x, y) < r} for yinX and r ∈ R∗
+.

Definition A.5 (Lower Vietoris Topology). Given a topological space (X, τ), the lower Vietor topolo over
℘(X) is generated by the sets ♢U ≜ {E | E ∩ U ̸= ∅} forU ∈ τ .

Definition A.6 (Regular subtree topology). Given a topological space (Σ, θ) the regular subtree topolo over
T (Σ) is generated by

U ∈ θ U1, . . . , Un opens
♢U × [U1, . . . , Un] open

Where t ∈ ♢U × [U1, . . . , Un] if there exists a subtree of twith the root labelled by an element inU and a
subset of its children respectively inU1, . . . , Un.

Definition A.7 (Irreducible Set). A closed subset F of a topological space X is irreducible whenever F is non-
empty and is not the disjoint union of two non-empty closed sets.

Definition A.8 (Sober Space). A spaceX is sober whenever any irreducible closed subset F is the closure of
exactly one point x ∈ X .

Definition A.9 ([23, De nition 8.2.17]). The sobrification S(X) of a topological space (X, τ) is the set of
irreducible closed sets of X , and the topology is generated by the sets ♢U ≜ {F ∈ S(X) | F ∩ U ̸= ∅}
where U is an open set ofX . It can be shown that this construction leads to a sober space, is idempotent up to
homeomorphism, and constructs the free sober space overX [23, Theorem 8.2.44].

Definition A.10 (Pre spectral space). A pre-spectral space is a topological space (X, τ) such that τ is generated
byK◦(X), andK◦(X) is stable under nite unions and nite intersections.

Definition A.11 (Spectral space). A spectral space is a pre-spectral space that is sober [14, De nition 1.1.5].

2 Graphs and Structures
Definition A.12 (GraphMinor). A graphG is a graph minor of a graphH whenever one can go fromH toG
using the following rules
(i) One can remove vertices fromH .
(ii) One can remove edges fromH .
(iii) One can contract edges, i.e. merge two nodes that are on the same edge.

WhenG is a graph minor ofH , we writeG ≤minor H .

Definition A.13 (Wide structures). A class of structures C is widewhen there exists ρ : N2 → N such that for
all r,m ∈ N2, for allA ∈ C of size greater than ρ(n,m), there exists a (r,m)-scattered set inA, i.e. a set of at
leastm points at pairwise distance greater than 2r.

Definition A.14 (Letters). Given a word w : α → Σ where α is an ordinal, we write letters(w) for the set
{w(β) | β < α}.
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3 Orders
Definition A.15 (Complete Lattice). A poset (L,≤) is a complete lattice whenever every familyE ⊆ L has a
supremum and an in mimum.

Definition A.16 (Gap Embedding). For nite words with letters inN, the gap embedding is the composition
ordering of the monoid (N,max).

Definition A.17 (Better Quasi Order). A poset (X,≤) is a BQOwhenever for every ordinalα,X<α is a wqo
for the embedding on words.

4 Analytic functors
We will avoid as much as possible the use of complex machinery related to analytic functors, and use as a de ni-
tion an equivalent characterisation given by Hasegawa [29, Theorem 1.6]. For an introduction to analytic func-
tors and combinatorial species, we redirect the reader to Joyal [30]. We assume basic understanding of functors,
endofunctors and let C be an arbitrary category. We writeHom(A,B) for the morphisms betweenA andB in
C.

Definition A.18 (Category of elements). GivenG an endofunctor of Set, the category of elements el(G) has as
objects pairs (E, a) with a ∈ G(E), and as morphisms between (E, a) and (E′, a′)maps f : E → E′ such
thatGf (a) = a′.

As an intuition to the unfamiliar reader, an element (E, a) in el(G) is a witness that a can be produced
throughG by using elements of E. Morphisms of elements are witnessing how relations between elements of
G(E) andG(E′) arise from relations betweenE andE′. It is quite natural to de ne the notion of a “smallest”
set of elementsE such thata canbe found inG(E) as a notionof support. We replace this de nition of “smallest”
by the better behaved notion of transitive object.

Definition A.19 (Transitive object). A transitive object in a category C is an objectX satisfying the following
two conditions for every objectA ofC:

• Hom(X,A) is non-empty;

• The right action of Aut(X) onHom(X,A) by composition is transitive.

Recall that Aut(A) are the automorphisms of A, i.e., maps g : A → A such that there exists p : A → A
and gp = pg = IdA. A transitive object A is an object such that automorphisms of A completely describe
morphisms with domain A. Indeed, transitivity means that any morphism f ∈ Hom(A,B) can be mapped
to any morphism g ∈ Hom(A,B) by pre-composing with an automorphism h ∈ Aut(A). As an immediate
consequence,Hom(A,A) = Aut(A)whenA is a transitive object,moreover, two transitive objectsA andB are
isomorphic: the non emptiness conditions givemapsf ∈ Hom(A,B) andg ∈ Hom(B,A), butfg ∈ Aut(A)
and gf ∈ Aut(B), hence g(fg)−1 and (gf)−1g are respectively right and lef inverses of f , meaning that f is
invertible. This is better seen in Figure 22.

A B
f

fg

(fg)−1

g

gf

(gf)−1

Figure 22: Morphisms between two transitive objects in a categoryC.

In a category, a transitive object can be thought of as a generalisation of the notion of initial object, that is,
an objectA such thatHom(A,B) contains exactly one element for every objectB, in this case Aut(A) = IdA.
In the category Set of sets and functions, the empty set is an initial object hence a transitive object.

Given an object A in a category C, one can build the slice category C/A whose objects are elements of
Hom(B,A)whenB ranges over objects ofC andmorphismsbetween c1 ∈ Hom(B1, A) and c2 ∈ Hom(B2, A)
are maps f : B1 → B2 such that c2 ◦ f = c1. This notion of slice category can be combined with the one of
transitive object to build so-called “weak normal forms”.

33



Definition A.20 (WeakNormal Form). Aweak normal form of an objectA in a categoryC is a transitive object
inC/A.

A category C has the weak normal form property whenever every objectA has a weak normal form. We are
now ready to formulate a de nition of analytic functors through the existence of weak normal forms for objects
in their category of elements.

Definition A.21 (Analytic functor). An endofunctorG of Set is an analytic functor whenever its category of
elements el(G) has the weak normal form property. Moreover; X is a nite set for every weak normal form
f ∈ Hom((X,x), (Y, y)) in el(G)/(Y, y).

5 Category Theory
Definition A.22 (F -Algebra). If C is a category and F : C → C is an endofunctor of C then a F -algebra is a
tuple (A,α).

Definition A.23 (Morphism of F -algebras). A morphism f of F -algebras (A,α) and (B, β) is a map f ∈
Hom(A,B) such that the following diagram commutes

F (A) A

F (B) B

α

Ff f

β

Definition A.24 (Initial Algebra). An initial algebra is an initial object in the category ofF -algebras for a given
endofunctor F .

DefinitionA.25 (Lif ). An endofunctorGT ofTop is a lift of an endofunctorG ofSet if the following diagram
commutes, whereU is the forgetful functor

Top Top

Set Set

GT

U U

G

6 Automata Theory
Definition A.26 (Monoid). A monoid is a setM equipped with a binary operation · fromM2 toM that is
associative and has a neutral element e ∈M .
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