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* Learn to estimate optical flow end-to-end with a convolutional neural
network

convolutional
network

[FlowNet: Learning Optical Flow With Convolutional Networks]



https://openaccess.thecvf.com/content_iccv_2015/html/Dosovitskiy_FlowNet_Learning_Optical_ICCV_2015_paper.html

Image Overlay FlowFields [2] DeepFlow [31] LDOF (GPU) PCA-Flow [32] FlowNetS [10]

50,109ms 21,566ms 3,967ms 157 14ms
.‘ ' '
’
- ‘
8
-

21" 3“
o Rl 9
11,715ms 4,046ms 3,335ms

. » 'wu o . " "

L

‘.‘9
4

11,715ms 4,046ms 3,335ms

13,515ms 4,550ms 2,962ms




FlowNet 2.0

|dea:

* Design a bigger generic network

* Refine optical flow in serveral steps

Image 1

Image 2

[FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks]
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https://lmb.informatik.uni-freiburg.de/Publications/2017/IMKDB17/

Image Overlay FlowFields [2] DeepFlow [31] LDOF (GPU) PCA-Flow [32] FlowNetS [10] FlowNet2
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Uncertainty Estimation

Problem: CNN is a black box Solution: Make CNNs aware of their own uncertainty

r\iext Image FlowNetH Merged Entropy ProbFlow Entropy

[Uncertainty Estimates and Multi-Hypotheses Networks for Optical Flow] 9 of 39



https://arxiv.org/abs/1802.07095

Extension To Mixture Distributions

ldea:
* Predict multiple hypotesis for the future

[Overcoming Limitations of Mixture Density Networks: A Sampling and Fitting Framework for Multimodal Future Prediction] 10 of 39



https://openaccess.thecvf.com/content_CVPR_2019/papers/Makansi_Overcoming_Limitations_of_Mixture_Density_Networks_A_Sampling_and_Fitting_CVPR_2019_paper.pdf

i’ Facebook Reality Labs: AR Glasses

* See the real world with overlayed

information on top
(,augmented” real images)

* Example use-cases:
* Navigation
* Memory enhancement
* Assistance

* Virtual telepresence and
Virtual spaces

* Log term goal: replace smart phone

11 of 39

Image sources: www.nextpit.de, tradeinn.com, eyebizz.de



i’ Publications — Facebook Reality Labs
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Deep Local Shapes: Learning Local SDF Priors for Detailed 3D
TLIO: Tight Learned Inertial Odometry Reconstruction
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NinjaDesc: Content-Concealing Visual Descriptors via
Adversarial Learning ERF: Explicit Radiance Field Reconstruction From Scratch
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2% 2D vs. 3D Models

Novel View Synthesis — Baseline Comparison
Shapenet v2 cars — training set objects
2D: Tatarchenko et al.
Training on:
» 2434 cars
» 50 observations each
2D: Worrall et al. Testgion:
» 2434 cars from training set
» 250 novel views rendered in Archimedean
spiral around each object
2D: Deterministic
GQN
3D:
SRNs

[Scene Representation Networks, Sitzman, Zollhofer, Wetzstein]



https://www.vincentsitzmann.com/srns/slides.pdf

¥ Continual Learning

Machine Learning

Learn once

@: ows |

[Source: https://ai.kuleuven.be/stories/post/2021-05-10-continual-learning/]
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https://ai.kuleuven.be/

¥ Continual Learning

Machine Learning

Learn once
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[Source: https://ai.kuleuven.be/stories/post/2021-05-10-continual-learning/]
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Continual Learning

Learn continually

New
Data

Deploy continually



https://ai.kuleuven.be/

¥ Continual Learning

[Source: https://ai.kuleuven.be/stories/post/2021-05-10-continual-learning/]

Continual Learning

Learn continually

New
Data

Deploy continually



https://ai.kuleuven.be/

) Key Research Questions

1. How can we build machine
perception algorithms that
understand our 3D world?




) Key Research Questions

1. How can we build machine
perception algorithms that
understand our 3D world?

Y 2. How can we build machine
Uncertainty perception algorithms that
evolve and continually adapt
New Obsenvation to their environment?



=y Project 1: Knowledge Transfer

Segmentation from Single Frame Motion Boundaries from Video

[Source: https://neptune.ai/blog/image-segmentation]
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https://neptune.ai/blog/image-segmentation

:y Project 2: Object Discovery

|dea:

* Objects can be defined by the Gestalt Principle:
,Things that move together are an object”



:y Project 2: Object Discovery

|dea:

* Objects can be defined by the Gestalt Principle:
,Things that move together are an object”

[Conditional Object-Centric Learning from Video]



https://slot-attention-video.github.io/

:y Project 2: Object Discovery

|dea:

* Objects can be defined by the Gestalt Principle:
,Things that move together are an object”

Our work applies this to 3D Scenes:
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[Conditional Object-Centric Learning from Video]



https://slot-attention-video.github.io/

:y Project 3: Non-Rigid Reconstruction of Whole Scenes

DynamicFusion Motion Vectors for Visible and

Occluded Points Predicted
from FlowNet3D
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[DynamicFusion: Reconstruction and Tracking of Non-rigid Scenes in Real-Time, Nerfies: Deformable Neural Radiance Fields]



https://grail.cs.washington.edu/projects/dynamicfusion/
https://nerfies.github.io/

ity Long Term Vision

Building Machine Learning Algorithms that Evolve
from New Perceptions




Thank you!

N

LinkedIn:  https://www.linkedin.com/in/eddy-ilg/

Website: https://cvmp.cs.uni-saarland.de

Office: Building E1.7, Room 1.05

E-Mail: llg@cs.uni-saarland.de
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" Current Projects

* Improving object segmentation from a raw video stream
* Relightable Point-NeRF

* Non-Rigid Reconstruction with Point Clouds

* Non-Rigid Object with Low-Rank Shape Representations
* Estimating Optical Flow with Event Cameras

* Estimating Optical Flow with Quantum Computing

27 of 39



@
ﬂ' Collaboration Partners

Christian Theobalt Vladislav Golyanik Marc Habermann Jan-Eric Lenssen
e 3D Computer e Event Cameras e Non-Rigid e 3D Reconstruction
Vision Reconstruction ® Point Representations
e Quantum
Computing e SLAM

28 of 39



i’ Collaboration with MPI

e Large-Scale Capture Lab

e State-of-The-Art Light Stage

29 of 39



Lab Resources

e Workstation with A6000 GPU (48GB)
e 16 dedicated A100 GPUs / 32 shared A100 GPUs

® Nearly unlimited resources available from MPI

30 of 39



i’ 4D Non-Rigid Reconstruction

_ Only current

frame
< >
Time
Scene Flow
v Real time

%Only visible part
of the scene

Does not exist

Time-window
Scene at current time

Tracked Reconstruction

vV Real time
\/Complete Scene

Vv Good accuracy / runtime
trade-off

Requires all data

Time

Non-Rigid Reconstruction
(e.g. NeRFies, Unbiased 4D)

v Most accurate
xPost-hoc / slow
xSingle object

*No topology changes

31 of 39



i’ 4D Non-Rigid Reconstruction

RGBD
Camera

32 of 39



i’ 4D Non-Rigid Reconstruction

Motion Vectors for Visible and

Occluded Points Predicted
from FlowNet3D

_ @ Occluded Points
Uncerta\mti @ @ @ @ /

Loop Closure

®. e, ¢ Point Feature
" (encodes appearance
&> ! and geometry)

[
Continual Learning

Visible Points

Local Shape

RGBD
Camera

33 of 39



@
ﬂ' Potential Publications

ICCV 23 (March)
- Tracking Complete Scenes with Point Clouds from RGBD
- Lightweight Novel View Synthesis of Dynamic Scenes from RGBD

CVPR 24 (November)

- Realtime Reconstruction and Rendering with Local Shapes

- Realtime Non-Rigid Reconstruction of Complete Scenes from RGBD

- Extracting Objects from Non-Rigid Scenes with SLOT Attention from RGBD

ECCV 24 (March)
- Realtime Non-Rigid Reconstruction of Complete Scenes from Images
- Continual Learning of Deformation Models in Non-Rigid Scenes

- Physically Realistic and Uncertainty-Aware Completion for Non-Rigid

Reconstruction of Complete Scenes
34 of 39



iy Topics the lab works on

High Epistemic Uncertainty

Uncertainty
Estimation for 3D
Reconstruction

Material / Geometry

Decomposition for
Object
Reconstruction in
the Wild

Uncertainty
Estimation

Improving the

Reconstruction

Sampling and
Filtering

Incremental 3D
Reconstruction

6th axis

4th axis

Learning Object
Skeletons from
RGB-D

Lightweight
Realtime Non-
Rigid RGB-D
Reconstruction




