
ATLaS:
The Algorithmic Theory of Linear Systems
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Loop Termination

x := 1;
y := 0;
z := 0;
while x ̸= 0 do
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The Skolem and Positivity Problems arise in many other areas
(often in hardness results), e.g.:

theoretical biology (analysis of L-systems)

software verification / program analysis

differential privacy

(weighted) automata and games

analysis of stochastic systems

control theory

quantum computing
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formal power series

combinatorics
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L-Systems (Aristid Lindenmayer, late 1960s)



Automata and Power Series (from 1960s, published 1978)



The Skolem and Positivity Problems: State of the Art

Theorem (Mignotte, Shorey, Tijdeman 1984; Vereshchagin 1985)

In ambient dimension 4 or less, the Skolem Problem is decidable.

Critical ingredient is Baker’s theorem on
linear forms in logarithms, which earned
Baker the Fields Medal in 1970.

Theorem (O. & Worrell 2014)

• In dimension ≤ 5, Positivity is decidable.
• In dimension ≤ 9, Positivity for diagonalisable matrices is
decidable.

• In dimension ≥ 6, Positivity is hard with respect to longstanding
Diophantine-approximation problems.
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