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Rust:

In development since 2010, with 1.0 release in 2015

•  Mozilla used Rust to build Servo, a next-gen 

 browser engine, later incorporated into Firefox


Rust is the only “systems PL” to provide…

• Low-level control à la modern C++


• Strong safety guarantees


• Industrial development and backing


Many major companies using Rust in production

• In 2021, the Rust Foundation was formed, incl. 

Amazon, Google, Huawei, Meta, Microsoft, Mozilla

The Future of Safe Systems Programming?
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The Future of Safe Systems Programming?

The “safety” of Rust is central to its promise. 
But how do we know Rust is safe?
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• iterator invalidation
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• data races

• iterator invalidation

Core Idea of Rust

dangling

Rust prevents all these errors using 
a sophisticated “ownership” type system
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Claim library developers want to make:

Clients written in the safe fragment 

will never observe any undefined behavior.





RustBelt
Goal:  Develop 1st logical foundations for Rust


• Based on Iris, a new framework for higher-
order concurrent separation logic in Coq


• Use these foundations to verify the safety of  
the Rust core type system and std libraries


• Give Rust developers the tools they need to 
safely evolve the language


