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A Longstanding Problem

e Many core systems applications require
low-level control over memory/resources

e Such applications are typically written in
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An update on Memory Safety in Chrome
September 21, 2021

from Google Security Blog

Last year, we showed that more than 70% of our severe security bugs are memory
safety problems. That is, mistakes with pointers in the C or C++ languages which cause

memory to be misinterpreted.

T ——— L

from Microsoft Security We need a safer systems programming language

Security Research & Defense | By MSRC Team [ July 18, 2019 /| Memory Safety, Rust, Safe

Re SP Onse Center Systems Programming Languages, Secure Development

As was pointed out in our previous post, the root cause of approximately 70% of security

vulnerabilities that Microsoft fixes and assigns a CVE (Common Vulnerabilities and
Exposures) are due to memory safety issues. This is despite mitigations including intense

code review, training, static analysis, and more.
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Rust:

The Future of Safe Systems Programming?

In development since 2010, with 1.0 release in 2015

e Mozilla used Rust to build Servo, a next-gen
browser engine, later incorporated into Firefox

Rust is the only “systems PL’ to provide...
e Low-level control a la modern C++
e Strong safety guarantees

e Industrial development and backing

Many major companies using Rust in production

Rust
ALl e In 2021, the Rust Foundation was formed, incl.

Amazon, Google, Huawei, Meta, Microsoft, Mozilla




Rust:

The Future of Safe Systems Programming?

| In development since 2010, with 1.0 release in 2015
/ e Mozilla used Rust to build Servo, a next-gen

browser engine, later incorporated into Firefox

The “safety” of Rust is central to its promise.
But how do we know Rust is safe?

Rust

R e In 2021, the Rust Foundation was formed, incl.

Amazon, Google, Huawei, Meta, Microsoft, Mozilla
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Unrestricted mutation and aliasing lead to:

e use-after-free errors (dangling references)
e data races

@ iterator invalidation
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Rust prevents all these errors using

a sophisticated “ownership” type system




The Reality of Rust

Arc ...standard libraries... Mutex
‘

Code written in the
safe fragment of the language

RefCell Channel



The Reality of Rust

...standard libraries...

pub fn borrow(&self) —> Ref<T> {
match BorrowRef::new(&self.borrow) {
Some(b) => Ref {
_value: unsafe { &kself.value.get() },
_borrow: b,




The Reality of Rust
Arc //K\\‘ ...standard libraries... é;i Mutex

Claim library developers want to make:

Clients written in the safe fragment
will never observe any undefined behavior.
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RUSTBELT

Goal: Develop 15t logical foundations for Rust

e Based on Iris, a new framework for higher-
order concurrent separation logic in Coq

e Use these foundations to veritfy the safety of
the Rust core type system and std libraries

e Give Rust developers the tools they need to
safely evolve the language



