
LOGICAL FOUNDATIONS FOR THE FUTURE
OF SAFE SYSTEMS PROGRAMMING

Derek Dreyer

MPI for Software Systems

ENS Paris-Saclay Visit 
November 2022

RustBelt:

A Longstanding Problem
• Many core systems applications require 

low-level control over memory/resources

• Such applications are typically written in

A Longstanding Problem
• Many core systems applications require 

low-level control over memory/resources

• Such applications are typically written in

UNSAFE!

from Google Security Blog

from Microsoft Security 
Response Center

from Google Security Blog

from Microsoft Security 
Response Center

from Google Security Blog

from Microsoft Security 
Response Center

from Google Security Blog

from Microsoft Security 
Response Center

Rust:

In development since 2010, with 1.0 release in 2015

• Mozilla used Rust to build Servo, a next-gen 

 browser engine, later incorporated into Firefox

Rust is the only “systems PL” to provide…

• Low-level control à la modern C++

• Strong safety guarantees

• Industrial development and backing

Many major companies using Rust in production

• In 2021, the Rust Foundation was formed, incl. 

Amazon, Google, Huawei, Meta, Microsoft, Mozilla

The Future of Safe Systems Programming?

Rust:

In development since 2010, with 1.0 release in 2015

• Mozilla used Rust to build Servo, a next-gen 

 browser engine, later incorporated into Firefox

Rust is the only “systems PL” to provide…

• Low-level control à la modern C++

• Strong safety guarantees

• Industrial development and backing

Many major companies using Rust in production

• In 2021, the Rust Foundation was formed, incl. 

Amazon, Google, Huawei, Meta, Microsoft, Mozilla

The Future of Safe Systems Programming?

The “safety” of Rust is central to its promise. 
But how do we know Rust is safe?

Core Idea of Rust

Mutation 
+ 

Aliasing

[0]

x
y z

Core Idea of Rust

[0]

x
y z

[0]

[1]

Core Idea of Rust

[0]

x
y z

[0]

[1]

Core Idea of Rust

dangling

[0]

x
y z

[0]

[1]

Unrestricted mutation and aliasing lead to:

• use-after-free errors (dangling references)

• data races

• iterator invalidation

Core Idea of Rust

dangling

[0]

x
y z

[0]

[1]

Unrestricted mutation and aliasing lead to:

• use-after-free errors (dangling references)

• data races

• iterator invalidation

Core Idea of Rust

dangling

Rust prevents all these errors using 
a sophisticated “ownership” type system

The Reality of Rust
Mutex

Code written in the 
safe fragment of the language

Arc

RefCell Channel

…standard libraries…

The Reality of Rust
Mutex

Code written in the 
safe fragment of the language

Arc

RefCell Channel

…standard libraries…
...

pub fn borrow(&self) -> Ref<T> {

 match BorrowRef::new(&self.borrow) {

 Some(b) => Ref {

 _value: unsafe { &*self.value.get() },

 _borrow: b,

 }, ...

 }

}

...

The Reality of Rust
Mutex

Code written in the 
safe fragment of the language

Arc

RefCell Channel

…standard libraries…
...

pub fn borrow(&self) -> Ref<T> {

 match BorrowRef::new(&self.borrow) {

 Some(b) => Ref {

 _value: unsafe { &*self.value.get() },

 _borrow: b,

 }, ...

 }

}

...

Claim library developers want to make:

Clients written in the safe fragment 

will never observe any undefined behavior.

RustBelt
Goal: Develop 1st logical foundations for Rust

• Based on Iris, a new framework for higher-
order concurrent separation logic in Coq

• Use these foundations to verify the safety of  
the Rust core type system and std libraries

• Give Rust developers the tools they need to
safely evolve the language

