LOGICAL FOUNDATIONS FOR THE FUTURE
OF SAFE SYSTEMS PROGRAMMING

Derek Dreyer
MPI for Software Systems

ENS Paris-Saclay Visit
November 2022

A Longstanding Problem

e Many core systems applications require
low-level control over memory/resources

e Such applications are typically written in

A Longstanding Problem

e Many core systems applications require
low-level control over memory/resources

e Such applications are typically written in

UNSAFE! &

C&C++

An update on Memory Safety in Chrome
September 21, 2021

from Google Security Blog

Last year, we showed that more than 70% of our severe security bugs are memory
safety problems. That is, mistakes with pointers in the C or C++ languages which cause

memory to be misinterpreted.

T ——— L

from Microsoft Security We need a safer systems programming language

Security Research & Defense | By MSRC Team [July 18, 2019 /| Memory Safety, Rust, Safe

Re SP Onse Center Systems Programming Languages, Secure Development

As was pointed out in our previous post, the root cause of approximately 70% of security

vulnerabilities that Microsoft fixes and assigns a CVE (Common Vulnerabilities and
Exposures) are due to memory safety issues. This is despite mitigations including intense

code review, training, static analysis, and more.

An update on Memory Safety in Chrome
September 21, 2021

from Google Security Blog

Last year, we showed that more than 70% of our severe security bugs are memory

safety problems. That is, mistakes with pointers in the C or C++ languages which cause

memory to be misinterpreted.

from Microsoft Secur itY We need a safer systems programming language

Security Research & Defense /| By MSRC Team / July 18, 2019 /| Memory Safety, Rust, Safe

Re SP Onse Center Systems Programming Languages, Secure Development

As was pointed out in our previous post, the root cause of approximately 70% of security

vulnerabilities that Microsoft fixes and assigns a (Common Vulnerabilities and

Exposures) are due to memory safety issues. This is despite mitigations including intense

code review, training, static analysis, and more.

T — T

An update on Memory Safety in Chrome
September 21, 2021

from Google Security Blog

Last year, we showed that more than 70% of our severe security bugs are memory

g mistakes with pointers in the C or C++ languagesy

memory to be misinterpreted.

safety problems. That i hich cause

from Microsoft Secur itY We need a safer systems programming language

Security Research & Defense /| By MSRC Team / July 18, 2019 /| Memory Safety, Rust, Safe

Re SP Onse Center Systems Programming Languages, Secure Development

As was pointed out in our previous post, the root cause of approximately 70% of security

vulnerabilities that Microsoft fixes and assigns a (Common Vulnerabilities and

Exposures) are due to memory safety issues. This is despite mitigations including intense

code review, training, static analysis, and more.

T — T

An update on Memory Safety in Chrome
September 21, 2021

from Google Security Blog

Last year, we showed that more than 70% of our severe security bugs are memory

g mistakes with pointers in the C or C++ languagesy

memory to be misinterpreted.

safety problems. That i hich cause

from Microsoft Secur itY We need a safer systems programming language

Security Research & Defense [By MSRC Team [July 18, 2019 [Memory Safety, Rust, Safe

Re SP Onse Center Systems Programming Languages, Secure Development

As was pointed out in our previous post, the root cause of approximately 70% of security

vulnerabilities that Microsoft fixes and assigns a (Common Vulnerabilities and

Exposures) are due to memory safety issues. This is despite mitigations including intense

code review, training, static analysis, and more.

T — =

Rust:

The Future of Safe Systems Programming?

In development since 2010, with 1.0 release in 2015

e Mozilla used Rust to build Servo, a next-gen
browser engine, later incorporated into Firefox

Rust is the only “systems PL’ to provide...
e Low-level control a la modern C++
e Strong safety guarantees

e Industrial development and backing

Many major companies using Rust in production

Rust
ALl e In 2021, the Rust Foundation was formed, incl.

Amazon, Google, Huawei, Meta, Microsoft, Mozilla

Rust:

The Future of Safe Systems Programming?

| In development since 2010, with 1.0 release in 2015
/ e Mozilla used Rust to build Servo, a next-gen

browser engine, later incorporated into Firefox

The “safety” of Rust is central to its promise.
But how do we know Rust is safe?

Rust

R e In 2021, the Rust Foundation was formed, incl.

Amazon, Google, Huawei, Meta, Microsoft, Mozilla

Core Idea of Rust

Core Idea of Rust

“\

[0]

Core Idea of Rust

Core Idea of Rust

Core Idea of Rust

y Z

X \ \

Unrestricted mutation and aliasing lead to:

e use-after-free errors (dangling references)
e data races

@ iterator invalidation

Core Idea of Rust

y Z

X \ \

Rust prevents all these errors using

a sophisticated “ownership” type system

The Reality of Rust

Arc ...standard libraries... Mutex
‘

Code written in the
safe fragment of the language

RefCell Channel

The Reality of Rust

...standard libraries...

pub fn borrow(&self) —> Ref<T> {
match BorrowRef::new(&self.borrow) {
Some(b) => Ref {
_value: unsafe { &kself.value.get() },
_borrow: b,

The Reality of Rust
Arc //K\\‘ ...standard libraries... é;i Mutex

Claim library developers want to make:

Clients written in the safe fragment
will never observe any undefined behavior.

&/

RUSTBELT

Goal: Develop 15t logical foundations for Rust

e Based on Iris, a new framework for higher-
order concurrent separation logic in Coq

e Use these foundations to veritfy the safety of
the Rust core type system and std libraries

e Give Rust developers the tools they need to
safely evolve the language

