## TD 10: Petri Nets <br> Solutions

## Exercise 2

1. We prove the result by induction on $u$ :

- if $u$ is equal to the empty transition $\varepsilon$ then the result is trivially obtained by taking $m_{3}=m_{2}=m_{0}$;
- suppose now that $u=v t$ for some $v \in T^{*}$ and $t \in T$, we have $m_{0} \xrightarrow{v} \mathcal{N} m \xrightarrow{t} m_{2}$ and by induction hypothesis we know that there exists $m^{\prime}$ such that $m_{0}{ }^{v}{ }_{G} m^{\prime}$ and for all $p \notin \Omega\left(m^{\prime}\right) m^{\prime}(p)=m(p) . t$ is thus firable from $m^{\prime}$ and there exists a marking $m_{3}$ such that $m_{0} \xrightarrow{u}_{G} m_{3}$ and for all $p \notin \Omega\left(m_{3}\right)$ we have $m_{2}(p)=m_{3}(p)$ (because $\Omega\left(m_{3}\right)$ contains $\Omega\left(m^{\prime}\right)$ ).

2. (a) We compute $\Theta(u)$ by induction: $\Theta(\varepsilon)=0^{P}$ and $\Theta(t u)=\max (W(P, t), \Theta(u)+$ $W(P, t)-W(t, P))$ where all operations are defined componentwise: indeed $\Theta(t u) \geq W(P, t)$ thus $t$ is enabled and leads to $\Theta(t u)-W(P, t)+W(t, P) \geq$ $\Theta(u)$. By definition we must have $\Theta(u)+\Theta(v) \xrightarrow{u} m \geq \Theta(v)$ thus still allowing to fire $v$, hence $\Theta(u v) \leq \Theta(u)+\Theta(v)$.
(b) Let $m^{\prime \prime}$ be the marking returned by $\operatorname{AddOMEGAS}\left(m, m^{\prime}, V\right)$. By definition of $\left\{v_{1}, \ldots, v_{\ell}\right\}$, the effect of each $v_{i}$ is

$$
=0 \text { for } p \in P \backslash \Omega\left(m^{\prime \prime}\right)
$$

$$
\geq 0 \text { for } p \in \Omega\left(m^{\prime \prime}\right) \backslash \Omega(m) \text { and }>0 \text { for at least one } p \in \Omega\left(m^{\prime \prime}\right) \backslash \Omega(m)
$$ unknown for $p \in \Omega(m)$.

The threshold required to fire $v_{i}$ on places $p$ in $P \backslash \Omega(m)$ is such that $\Theta\left(v_{i}\right)(p) \leq$ $m_{i}^{\prime \prime}(p) \leq m^{\prime}(p)=\nu_{k}(p)$ for the particular $m_{i}^{\prime \prime}$ of line 3 associated with $v_{i}$, and after firing $v_{i}$ we obtain a larger value in $p$, thus as far as these places are concerned $w^{k}$ can be fired.
On the places in $\Omega(m)$, by question (a), the sequence $w^{k}$ can also be fired.
Overall, we have

$$
\nu_{k}^{\prime}(p) \begin{cases}=\nu_{k}(p) & \text { for } p \in P \backslash \Omega\left(m^{\prime \prime}\right) \\ \geq k+\nu_{k}(p) & \text { for } p \in \Omega\left(m^{\prime \prime}\right) \backslash \Omega(m) \\ \geq 0 & \text { for } p \in \Omega(m)\end{cases}
$$

(c) By induction on $u$ in $T^{*}$. For $u=\varepsilon, m_{3}=m_{0}$, and $n=0$ and $u_{1}=\varepsilon$ fit: $m_{0} \xrightarrow{\varepsilon} \mathcal{N} m_{0}$.
For the induction step, consider $m_{0} \xrightarrow{u}_{G} m_{3} \xrightarrow{t}_{G} m_{3}^{\prime}$ and let $m_{4}=$ fire $\left(m_{3}, t\right)$, so that $m_{3}^{\prime}=\operatorname{AddOmegas}\left(m_{3}, m_{4}, V\right)$.

If $\boldsymbol{m}_{\mathbf{3}}^{\boldsymbol{\prime}}=\boldsymbol{m}_{\mathbf{4}}$ i.e. no $\omega$ value was introduced, use the ind. hyp. on $m_{0} \xrightarrow{u}{ }_{G} m_{3}$ with a partial marking $\max \left(W(p, t), m^{\prime}(p)+W(p, t)-W(t, p)\right)$ for all $p \in \Omega\left(m_{3}\right)$. We obtain a run

$$
\begin{equation*}
m_{0} \xrightarrow{u_{1} w_{1}^{k_{1}} u_{2} \cdots u_{n} w_{n}^{k_{n}} u_{n+1}} \mathcal{N} m_{2} \tag{1}
\end{equation*}
$$

with
$m_{2}(p) \begin{cases}=m_{3}(p) \geq W(p, t) & \text { for all } p \in P \backslash \Omega\left(m_{3}\right) \\ \geq \max \left(W(p, t), m^{\prime}(p)+W(p, t)-W(t, p)\right) & \\ \text { for all } p \in \Omega\left(m_{3}\right) .\end{cases}$
Thus $t$ can be fired from $m_{2}$ and we have $m_{2}{ }^{t} \mathcal{N}$ $m_{2}^{\prime}$ with $m_{2}^{\prime}(p)=m_{3}^{\prime}(p)$ for all $p \in P \backslash \Omega\left(m_{3}\right)=P \backslash \Omega\left(m_{3}^{\prime}\right)$ and

$$
\begin{aligned}
m_{2}^{\prime}(p) & \geq \max \left(W(p, t), m^{\prime}(p)+W(p, t)-W(t, p)\right)-W(p, t)+W(t, p) \\
& \geq m^{\prime}(p)
\end{aligned}
$$

for all $p \in \Omega\left(m_{3}\right)=\Omega\left(m_{3}^{\prime}\right)$.
If $\boldsymbol{m}_{\mathbf{3}}^{\prime} \neq \boldsymbol{m}_{\mathbf{4}}$ i.e. $\omega$ values were introduced on the places in $\Omega\left(m_{3}^{\prime}\right) \backslash \Omega\left(m_{3}\right)$. Then, define

$$
\begin{aligned}
k_{n+1} & =\max _{p \in \Omega\left(m_{3}^{\prime}\right) \backslash \Omega\left(m_{3}\right)} m^{\prime}(p) \\
w_{n+1} & =v_{1} \cdots v_{\ell}
\end{aligned}
$$

the sequence associated with this particular invocation of $\operatorname{AddOMEGAS}\left(m_{3}, m_{4}, V\right)$. We use the ind. hyp. on $m_{0}{ }^{u}{ }_{G} m_{3}$ with a partial marking $\nu_{k_{n+1}}(p)+$ $W(p, t)+m^{\prime}(p)$ for all $p \in \Omega\left(m_{3}\right)$. We obtain a run of form (1) with

$$
m_{2}(p) \begin{cases}=m_{3}(p) \geq W(p, t) & \text { for all } p \in P \backslash \Omega\left(m_{3}\right) \\ \geq \nu_{k_{n+1}}(p)+W(p, t)+m^{\prime}(p) & \text { for all } p \in \Omega\left(m_{3}\right)\end{cases}
$$

Let us consider the transition sequence $v=t w_{n+1}^{k_{n+1}}$ : by questions (a) and (b), $m_{2}$ can fire $v$ in $\mathcal{N}$, leading to a marking $m_{2}^{\prime}$ s.t. $m_{2}^{\prime}(p)=$ $m_{2}(p)-W(p, t)+W(t, p)=m_{3}(p)-W(p, t)+W(t, p)=m_{3}^{\prime}(p)$ for all $p \in P \backslash \Omega\left(m_{3}^{\prime}\right), m_{2}^{\prime}(p) \geq m^{\prime}(p)$ for all $p$ in $\Omega\left(m_{3}\right)$, and $m_{2}^{\prime}(p) \geq k_{n+1} \geq$ $m^{\prime}(p)$ for all $p$ in $\Omega\left(m_{3}^{\prime}\right) \backslash \Omega\left(m_{3}\right)$.

