TD 10: Petri Nets

Exercise 1 (Coverability Graph). The coverability problem for Petri nets is the following decision problem:

Instance: A Petri net $N = \langle P, T, F, W, m_0 \rangle$ and a marking m_1 in \mathbb{N}^P.

Question: Does there exist m_2 in $\text{reach}_N(m_0)$ such that $m_1 \leq m_2$?

For 1-safe Petri nets, coverability coincides with reachability, and is thus PSPACE-complete.

One way to decide the general coverability problem is to use Karp and Miller’s coverability graph (see the lecture notes). Indeed, we have the equivalence between the two statements:

i. there exists m_2 in $\text{reach}_N(m_0)$ such that $m_1 \leq m_2$, and

ii. there exists m_3 in $\text{CoverabilityGraph}_N(m_0)$ such that $m_1 \leq m_3$.

1. In order to prove that (i) implies (ii), we will prove a stronger statement: for a marking m in $(\mathbb{N} \cup \{\omega\})^P$, write $\Omega(m) = \{p \in P \mid m(p) = \omega\}$ for the set of ω-places of m.

Show that, if $m_0 \xrightarrow{u} N m_2$ in the Petri net N for some u in T^*, then there exists m_3 in $(\mathbb{N} \cup \{\omega\})^P$ such that $m_2(p) = m_3(p)$ for all p in $P \setminus \Omega(m_3)$ and $m_0 \xrightarrow{u} G m_3$ in the coverability graph.

2. Let us prove that (ii) implies (i). The idea is that we can find reachable markings that agree with m_3 on its finite places, and that can be made arbitrarily high on its ω-places. For this, we need to identify the graph nodes where new ω values were introduced, which we call ω-nodes.

(a) The threshold $\Theta(u)$ of a transition sequence u in T^* is the minimal marking m in \mathbb{N}^P s.t. u is enabled from m. Show how to compute $\Theta(u)$. Show that $\Theta(u \cdot v) \leq \Theta(u) + \Theta(v)$ for all u, v in T^*.

(b) Recall that an ω value is introduced in the coverability graph thanks to Algorithm [1].

We consider a call to ADDOMegas(m, m', V) on line 8 of the COVERABILITYGRAPH algorithm from the course notes, where $m \xrightarrow{t} N m'$ for t the transition chosen at line 6 of the COVERABILITYGRAPH algorithm.

Let $\{v_1, \ldots, v_\ell\}$ be the set of “vt” sequences, where v is found on line 3 of ADDOMegas(m, m', V). These sequences vt resulted in adding at least one
repeat
 saved ← m′
 foreach m″ ∈ V s.t. ∃v ∈ T*, m″ ↛_G m do
 if m″ < m′ then
 m′ ← m′ + ((m′ − m″) · ω)
 end
until saved = m′;
return m′

Algorithm 1: ADDOMegas(m, m′, V)

\(\omega \) value to \(m′ \) on line 5. Let \(w = v_1 \cdots v_κ \). Show that, for any \(k \) in \(\mathbb{N} \), the marking \(ν_k \) defined by

\[
ν_k(p) = \begin{cases}
 m′(p) & \text{if } p \in P \setminus \Omega(m) \\
 Θ(w_k)(p) & \text{if } p \in \Omega(m)
\end{cases}
\]

allows to fire \(w^k \). How does the marking \(ν'_k \) with \(ν_k \xrightarrow{w^k}_N ν'_k \) compare to \(ν_k \)?

(c) Prove that, if \(m_0 \xrightarrow{u}_G m_3 \) for some \(u \) in \(T^* \) in the coverability graph and \(m' \) in \(\mathbb{N}^{Ω(m_3)} \) is a partial marking on the places of \(Ω(m_3) \), then there are

- \(n \) in \(\mathbb{N} \),
- a decomposition \(u = u_1u_2 \cdots u_{n+1} \) with each \(u_i \) in \(T^* \) (where the markings \(µ_i \) reached by \(m_0 \xrightarrow{u_1 \cdots u_i}_G µ_i \) for \(i ≤ n \) have new \(\omega \) values),
- sequences \(w_1, \ldots, w_n \) in \(T^+ \),
- numbers \(k_1, \ldots, k_n \) in \(\mathbb{N} \),

such that \(m_0 \xrightarrow{u_1^{k_1}u_2^{k_2} \cdots u_n^{k_n}u_{n+1}}_N m_2 \) with \(m_2(p) = m_3(p) \) for all \(p \) in \(P \setminus Ω(m_3) \) and \(m_2(p) ≥ m′(p) \) for all \(p \) in \(Ω(m_3) \).

Exercise 2 (Decidability of Model-checking Action-based LTL).

1. Let \(N \) be Petri net, \(G \) its coverability graph, and \(m \) some marking in \(\mathbb{N}^P \). An infinite computation is a sequence \(m_0m_1 \cdots \in (\mathbb{N}^P)^\omega \) where for all \(i \in \mathbb{N} \), \(m_i \rightarrow_N m_{i+1} \) is a transition step. The effect \(Δ(u) \) of a transition sequence \(u \) in \(T^* \) is defined by \(Δ(ε) = 0^P \) and \(Δ(ut) = Δ(u) − W(P, t) + W(t, P) \).

Show that there exists an infinite computation s.t. \(m ≤ m_i \) for infinitely many indices \(i \) if and only if there exists an accessible loop \(m' \xrightarrow{v}_G m' \) in \(G \) s.t. \(m ≤ m' \) and \(Δ(v) ≥ 0^P \).

2. Show that action-based LTL model-checking is decidable for labeled Petri nets.
Exercise 3 (Rackoff’s Algorithm). A rather severe issue with the coverability graph construction is that it can generate a graph of Ackermannian size compared to that of the original Petri net. We show here a much more decent ExpSpace upper bound, which is matched by an ExpSpace hardness proof by Lipton.

Let us fix a Petri net $\mathcal{N} = \langle P, T, F, W, m_0 \rangle$. We consider generalized markings in \mathbb{Z}^P. A generalized computation is a sequence $\mu_1 \cdots \mu_n$ in $(\mathbb{Z}^P)^*$ such that, for all $1 \leq i < n$, there is a transition t in T with $\mu_{i+1}(p) = \mu_i(p) - W(p, t) + W(t, p)$ for all $p \in P$ (i.e. we do not enforce enabling conditions). For a subset I of P, a generalized sequence is I-admissible if furthermore $\mu_i(p) \geq W(p, t)$ for all p in I at each step $1 \leq i < n$. For a value B in \mathbb{N}, it is I-B-bounded if furthermore $\mu_i(p) < B$ for all p in I at each step $1 \leq i \leq n$. A generalized sequence is an I-covering for m_1 if $\mu_1 = m_0$ and $\mu_n(p) \geq m_1(p)$ for all p in I.

Thus a computation is a P-admissible generalized computation, and a P-admissible P-covering for m_1 answers the coverability problem.

For a Petri net $\mathcal{N} = \langle P, T, F, W, m_0 \rangle$ and a marking m_1 in \mathbb{N}^P, let $\ell(\mathcal{N}, m_1)$ be the length of the shortest P-admissible P-covering for m_1 in \mathcal{N} if one exists, and otherwise $\ell(\mathcal{N}, m_1) = 0$. For L, k in \mathbb{N}, define

$$M_L(k) = \sup\{\ell(\mathcal{N}, m_1) \mid |P| = k, \max_{p \in P, t \in T} W(p, t) + \max_{p \in P} m_1(p) \leq L\}$$

the maximal $\ell(\mathcal{N}, m_1)$ over all Petri nets \mathcal{N} of dimension k and all markings m_1 to cover, under some restrictions on incoming weights $W(p, t)$ in \mathcal{N} and values in m_1.

1. Show that $M_L(0) \leq 1$.

2. We want to show that

$$M_L(k) \leq (L \cdot M_L(k-1))^k + M_L(k-1)$$

for all $k \geq 1$. To this end, we prove that, for every marking m_1 in \mathbb{N}^P for a Petri net \mathcal{N} with $|P| = k$,

$$\ell(\mathcal{N}, m_1) \leq (L \cdot M_L(k-1))^k + M_L(k-1). \quad (\ast)$$

Let

$$B = M_L(k-1) \cdot \max_{p \in P, t \in T} W(p, t) + \max_{p \in P} m_1(p).$$

and suppose that there exists a P-admissible P-covering $w = \mu_1 \cdots \mu_n$ for m_1 in \mathcal{N}.

(a) Show that, if w is P-B-bounded, then (\ast) holds.

(b) Assume the contrary: we can split w as $w_1 w_2$ such that w_1 is P-B-bounded and w_2 starts with a marking μ_j with a place p such that $\mu_j(p) \geq B$. Show that (\ast) also holds.

3. Show that $M_L(|P|) \leq L^{(3|P|)!}$ for $L \geq 2$.\n
4. Given a Petri net $\mathcal{N} = (P, T, W, m_0)$ and a marking m_1, set $L = 2 + \max_{p \in P} m_1(p) + \max_{p \in P, t \in T} W(p, t)$. Assuming that the size n of the instance (\mathcal{N}, m_1) of the coverability problem is more than

$$\max(\log L, |P|, \max_{p \in P, t \in T} \log W(t, p)),$$

deduce that we can guess a P-admissible P-covering for m_1 of length at most $2^{c_n \log n}$ for some constant c. Conclude that the coverability problem can be solved in ExpSpace.