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TD 10: Petri Nets

Exercise 1 (Coverability Graph). The coverability problem for Petri nets is the following
decision problem:

Instance: A Petri net N = ⟨P, T, F,W,m0⟩ and a marking m1 in NP .

Question: Does there exist m2 in reachN (m0) such that m1 ≤ m2?

For 1-safe Petri nets, coverability coincides with reachability, and is thus PSpace-
complete.

One way to decide the general coverability problem is to use Karp and Miller’s
coverability graph (see the lecture notes). Indeed, we have the equivalence between the
two statements:

i. there exists m2 in reachN (m0) such that m1 ≤ m2, and

ii. there exists m3 in CoverabilityGraphN (m0) such that m1 ≤ m3.

1. In order to prove that (i) implies (ii), we will prove a stronger statement: for a
marking m in (N⊎{ω})P , write Ω(m) = {p ∈ P | m(p) = ω} for the set of ω-places
of m.

Show that, if m0
u−→N m2 in the Petri net N for some u in T ∗, then there exists

m3 in (N⊎ {ω})P such that m2(p) = m3(p) for all p in P \Ω(m3) and m0
u−→G m3

in the coverability graph.

2. Let us prove that (ii) implies (i). The idea is that we can find reachable markings
that agree with m3 on its finite places, and that can be made arbitrarily high on
its ω-places. For this, we need to identify the graph nodes where new ω values
were introduced, which we call ω-nodes.

(a) The threshold Θ(u) of a transition sequence u in T ∗ is the minimal marking
m in NP s.t. u is enabled from m. Show how to compute Θ(u). Show that
Θ(u · v) ≤ Θ(u) + Θ(v) for all u, v in T ∗.

(b) Recall that an ω value is introduced in the coverability graph thanks to Al-
gorithm 1.

We consider a call to AddOmegas(m,m′, V ) on line 8 of the Coverability-

Graph algorithm from the course notes, where m
t−→N m′ for t the transition

chosen at line 6 of the CoverabilityGraph algorithm.

Let {v1, . . . , vℓ} be the set of “vt” sequences, where v is found on line 3 of
AddOmegas(m,m′, V ). These sequences vt resulted in adding at least one
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1 repeat
2 saved ← m′;

3 foreach m′′ ∈ V s.t. ∃v ∈ T ∗,m′′ v−→G m do
4 if m′′ < m′ then
5 m′ ← m′ + ((m′ −m′′) · ω)
6 end

7 end

8 until saved = m′;
9 return m′

Algorithm 1: AddOmegas(m,m′, V )

ω value to m′ on line 5. Let w = v1 · · · vℓ. Show that, for any k in N, the
marking νk defined by

νk(p) =

{
m′(p) if p ∈ P \ Ω(m)

Θ(wk)(p) if p ∈ Ω(m)

allows to fire wk. How does the marking ν ′k with νk
wk

−−→N ν ′k compare to νk?

(c) Prove that, if m0
u−→G m3 for some u in T ∗ in the coverability graph and m′

in NΩ(m3) is a partial marking on the places of Ω(m3), then there are

• n in N,
• a decomposition u = u1u2 · · ·un+1 with each ui in T ∗ (where the markings

µi reached by m0
u1···ui−−−−→G µi for i ≤ n have new ω values),

• sequences w1, . . . , wn in T+,

• numbers k1, . . . , kn in N,

such that m0
u1w

k1
1 u2···unw

kn
n un+1−−−−−−−−−−−−−−→N m2 with m2(p) = m3(p) for all p in P \

Ω(m3) and m2(p) ≥ m′(p) for all p in Ω(m3).

Exercise 2 (Decidability of Model-checking Action-based LTL).

1. Let N be Petri net, G its coverability graph, and m some marking in NP . An
infinite computation is a sequence m0m1 · · · in (NP )ω where for all i ∈ N, mi →N
mi+1 is a transition step. The effect ∆(u) of a transition sequence u in T ∗ is
defined by ∆(ε) = 0P and ∆(ut) = ∆(u)−W (P, t) +W (t, P ).

Show that there exists an infinite computation s.t. m ≤ mi for infinitely many
indices i iff there exists an accessible loop m′ v−→G m′ in G s.t. m ≤ m′ and
∆(v) ≥ 0P .

2. Show that action-based LTL model-checking is decidable for labeled Petri nets.
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Exercise 3 (Rackoff’s Algorithm). A rather severe issue with the coverability graph
construction is that it can generate a graph of Ackermannian size compared to that of
the original Petri net. We show here a much more decent ExpSpace upper bound,
which is matched by an ExpSpace hardness proof by Lipton.

Let us fix a Petri net N = ⟨P, T, F,W,m0⟩. We consider generalized markings in ZP .
A generalized computation is a sequence µ1 · · ·µn in (ZP )∗ such that, for all 1 ≤ i < n,
there is a transition t in T with µi+1(p) = µi(p) −W (p, t) +W (t, p) for all p ∈ P (i.e.
we do not enforce enabling conditions). For a subset I of P , a generalized sequence is
I-admissible if furthermore µi(p) ≥ W (p, t) for all p in I at each step 1 ≤ i < n. For
a value B in N, it is I–B-bounded if furthermore µi(p) < B for all p in I at each step
1 ≤ i ≤ n. A generalized sequence is an I-covering for m1 if µ1 = m0 and µn(p) ≥ m1(p)
for all p in I.

Thus a computation is a P -admissible generalized computation, and a P -admissible
P -covering for m1 answers the coverability problem.

For a Petri net N = ⟨P, T, F,W,m0⟩ and a marking m1 in NP , let ℓ(N ,m1) be the
length of the shortest P -admissible P -covering for m1 in N if one exists, and otherwise
ℓ(N ,m1) = 0. For L, k in N, define

ML(k) = sup{ℓ(N ,m1) | |P | = k, max
p∈P,t∈T

W (p, t) + max
p∈P

m1(p) ≤ L}

the maximal ℓ(N ,m1) over all Petri nets N of dimension k and all markings m1 to
cover, under some restrictions on incoming weights W (p, t) in N and values in m1.

1. Show that ML(0) ≤ 1.

2. We want to show that

ML(k) ≤ (L ·ML(k − 1))k +ML(k − 1)

for all k ≥ 1. To this end, we prove that, for every marking m1 in NP for a Petri
net N with |P | = k,

ℓ(N ,m1) ≤ (L ·ML(k − 1))k +ML(k − 1) . (∗)

Let
B = ML(k − 1) · max

p∈P,t∈T
W (p, t) + max

p∈P
m1(p) .

and suppose that there exists a P -admissible P -covering w = µ1 · · ·µn for m1 in
N .

(a) Show that, if w is P–B-bounded, then (∗) holds.
(b) Assume the contrary: we can split w as w1w2 such that w1 is P–B-bounded

and w2 starts with a marking µj with a place p such that µj(p) ≥ B. Show
that (∗) also holds.

3. Show that ML(|P |) ≤ L(3·|P |)! for L ≥ 2.
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4. Given a Petri netN = ⟨P, T,W,m0⟩ and a markingm1, set L = 2+maxp∈P m1(p)+
maxp∈P,t∈T W (p, t). Assuming that the size n of the instance (N ,m1) of the cov-
erability problem is more than

max(logL, |P |, max
p∈P,t∈T

logW (t, p)) ,

deduce that we can guess a P -admissible P -covering for m1 of length at most
22

c·n logn
for some constant c. Conclude that the coverability problem can be solved

in ExpSpace.
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