TD 9: Pushdown Systems

Reminder:

A pushdown system $(P D S)$ is a triple $\mathcal{P}=(P, \Gamma, \Delta)$, where P is a finite set of control states, Γ is a finite stack alphabet, and $\Delta \subseteq(P \times \Gamma) \times\left(P \times \Gamma^{*}\right)$ is a finite set of rules. We write $p A \hookrightarrow q w$ when $((p, A),(q, w)) \in \Delta$. We associate with a PDS \mathcal{P} and an initial configuration $c_{0} \in P \times \Gamma^{*}$ the transition system $\mathcal{T}_{\mathcal{P}}=\left(\operatorname{Con}(\mathcal{P}), \rightarrow, c_{0}\right)$, where $\operatorname{Con}(\mathcal{P})=P \times \Gamma^{*}$ is the set of configurations, and $p A w^{\prime} \rightarrow q w w^{\prime}$ for all $w^{\prime} \in \Gamma^{*}$ iff $p A \hookrightarrow q w \in \Delta$. We write $p w \Rightarrow p^{\prime} w^{\prime}$ if there is a path from $p w$ to $p^{\prime} w^{\prime}$ in $\mathcal{T}_{\mathcal{P}}$.

Let \mathcal{P} be a PDS. A \mathcal{P}-automaton is a finite automaton $\mathcal{A}=(Q, \Gamma, P, T, F)$, where the alphabet of \mathcal{A} is the stack alphabet Γ, and the initial states of \mathcal{A} are the control states P. It is normalized if there are no transitions leading into initial states. We say that \mathcal{A} accepts the configuration $p w$ if \mathcal{A} has a path labelled by input w starting at p and ending at some final state. We denote by $\mathcal{L}(\mathcal{A})$ be the set of configurations accepted by \mathcal{A}. A set C of configurations is called regular if there is some \mathcal{P}-automaton \mathcal{A} with $\mathcal{L}(\mathcal{A})=C$.

Given a set C of configurations of \mathcal{P}, we let

$$
\begin{aligned}
\text { pre }^{*}(C) & =\left\{c^{\prime} \mid \exists c \in C: c^{\prime} \Rightarrow c\right\} \\
\text { post }^{*}(C) & =\left\{c^{\prime} \mid \exists c \in C: c \Rightarrow c^{\prime}\right\}
\end{aligned}
$$

If C is regular, then so are $\operatorname{pre}^{*}(C)$ and $\operatorname{post}^{*}(C)$.
If \mathcal{A} is a normalized \mathcal{P}-automaton accepting C, \mathcal{A} can be transformed into an automaton accepting $\operatorname{pre}^{*}(C)$ by applying the following saturation rule until no transition can be added:

If $q \xrightarrow{w} r$ currently holds in \mathcal{A} and $p A \hookrightarrow q w$ is a rule in \mathcal{P}, then add the transition (p, A, r) to \mathcal{A}.

The procedure for $\operatorname{post}^{*}(C)$ is similar.
Exercise 1 (Computing pre ${ }^{*}(C)$). Consider the pushdown system represented below, with stack alphabet $\Gamma=\{a, b\}$.

Apply the algorithm described in the lecture notes to compute a \mathcal{P}-automaton accepting $p r e^{*}\left(p_{6} b^{*}\right)$.

Exercise 2 (Dickson's Lemma). A quasi-order (A, \leq) is a set A endowed with a reflexive and transitive ordering relation \leq. A well quasi order (wqo) is a quasi order (A, \leq) s.t., for any infinite sequence $a_{0} a_{1} \cdots$ in A^{ω}, there exist indices $i<j$ with $a_{i} \leq a_{j}$.

1. Let (A, \leq) be a wqo and $B \subseteq A$. Show that (B, \leq) is a wqo.
2. Show that $(\mathbb{N} \uplus\{\omega\}, \leq)$ is a wqo.
3. Let (A, \leq) be a wqo. Show that any infinite sequence $a_{0} a_{1} \cdots$ in A^{ω} embeds an infinite increasing subsequence $a_{i_{0}} \leq a_{i_{1}} \leq a_{i_{2}} \leq \cdots$ with $i_{0}<i_{1}<i_{2}<\cdots$.
4. Let $\left(A, \leq_{A}\right)$ and $\left(B, \leq_{B}\right)$ be two wqo's. Show that the cartesian product $\left(A \times B, \leq_{x}\right)$, where the product ordering is defined by $(a, b) \leq_{x}\left(a^{\prime}, b^{\prime}\right)$ iff $a \leq_{A} a^{\prime}$ and $b \leq_{B} b^{\prime}$, is a wqo.

Exercise 3 (Labelled Pushdown Systems). Let $\mathcal{P}=(P, \Gamma, \Delta, \Sigma)$ be a labelled pushdown system, i.e. the rules in Δ are of the form $p A \stackrel{a}{\hookrightarrow} q w$, where $p, q \in P$ are control locations, $A \in \Gamma$ and $w \in \Gamma^{*}$ are stack symbols, and additionally $a \in \Sigma$ is an action. The set of configurations $\operatorname{Con}(\mathcal{P})$ consists of the tuples $q w$ with $q \in P$ and $w \in \Gamma^{*}$. For two configurations c, c^{\prime} we write $c \stackrel{w}{\Rightarrow} c^{\prime}$, where $w \in \Sigma^{*}$, if c can be transformed into c^{\prime} by a sequence of rules whose labels yield w.

Given a regular set of configurations C, it is known how to compute pre* $(C)=\{c \in$ $\left.\operatorname{Con}(\mathcal{P}) \mid \exists c^{\prime} \in C, w \in \Sigma^{*}: c \stackrel{w}{\Rightarrow} c^{\prime}\right\}$. If C is accepted by an automaton with n states, this takes $\mathcal{O}\left(n^{2} \cdot|\Delta|\right)$ time.

1. Let $L \subseteq \Sigma^{*}$ be a regular language and C be a regular set of configurations. We define

$$
\operatorname{pre}^{*}[L](C):=\left\{c \in \operatorname{Con}(\mathcal{P}) \mid \exists c^{\prime} \in C, w \in L: c \stackrel{w}{\Rightarrow} c^{\prime}\right\} .
$$

One can prove that $\operatorname{pre}^{*}[L](C)$ is regular. Describe how to compute a finite automaton accepting $\operatorname{pre}^{*}[L](C)$.
2. Give a bound on the amount of time it takes to compute pre ${ }^{*}[L](C)$.

Exercise 4 (Data-flow Analysis). We consider a problem from interprocedural data-flow analysis. A program consists of a set Proc of procedures that can execute and recursively call one another. The behaviour of each procedure p is described by a flow graph, an example with two procedures is shown below.

Formally, a flow graph for procedure $p \in \operatorname{Proc}$ is a tuple $G_{p}=\left(N_{p}, A, E_{p}, e_{p}, x_{p}\right)$, where

- N_{p} are the nodes, corresponding to program locations; we denote $N:=\bigcup_{p \in \text { Proc }} N_{p}$.
- $A=A_{I} \cup\{\operatorname{call}(p) \mid p \in \operatorname{Proc}\}$ are the actions, where A_{I} are internal actions (such as assignments etc); additionally an action can call some procedure. A is identical for all procedures.
- $E_{p} \subseteq N_{p} \times A \times N_{p}$ are the edges, labelled with actions from A. We denote $E:=\bigcup_{p \in \text { Proc }} E_{p}$.
- e_{p} is the entry point of procedure p, i.e. when p is called, execution will start at e_{p}.
- x_{p} is the exit point of p (without any outgoing edges); when x_{p} is reached, p terminates and execution resumes at last call site of p.

1. Construct a labelled pushdown system with one single control location that expresses the behaviour of the procedures in Proc.

Suppose that the internal actions in A_{I} describe assignments to global variables, i.e. they are of the form $v:=\operatorname{expr}$, where v is a variable and expr the right-hand-side expression. If v is a variable, then $D_{v} \subseteq A_{I}$ is the set of actions that assign a value to v and $R_{v} \subseteq A_{I}$ the set of actions where v occurs on the right-hand side.

Let Init \in Proc be an initial procedure and $n \in N$ a node in the flow graph. We say that variable v is live at n if there exists a node n^{\prime} and an execution that (i) starts at $e_{\text {Init }}$, (ii) passes n, (iii) finally reaches n^{\prime} with an action from R_{v}, and (iv) there is no assignment to v between n and n^{\prime} in this execution. (Intuitively, this means that the value that v has at n matters for some execution; this is used in compiler construction to determine whether an optimizing compiler may "forget" the value of v at n.) For instance, in the shown example, the variable x is live at n_{1} and e_{p}, but not in the other nodes.
2. Describe a regular language $L \subseteq A^{*}$ that describes the sequences of actions that can happen along such executions between n and n^{\prime}.
3. Describe how, given a variable v, one can compute the set of nodes n such that v is live at n.

