MPRI 1-22 Basics of Verification 2022

TD 9: Pushdown Systems

Reminder:

A pushdown system (PDS) is a triple P = (P,I', A), where P is a finite set of control
states, I' is a finite stack alphabet, and A C (P x I') x (P x I'*) is a finite set of rules.
We write pA — qw when ((p, A), (q,w)) € A. We associate with a PDS P and an
initial configuration ¢y € P x I'* the transition system Tp = (Con(P),—,cy), where
Con(P) = P x I'* is the set of configurations, and pAw’ — quww’ for all w' € T'* iff
pA — quw € A. We write pw = p/w’ if there is a path from pw to pw’ in Tp.

Let P be a PDS. A P-automaton is a finite automaton A = (Q,I', P, T, F'), where
the alphabet of A is the stack alphabet I', and the initial states of A are the control
states P. It is normalized if there are no transitions leading into initial states. We say
that A accepts the configuration pw if A has a path labelled by input w starting at p
and ending at some final state. We denote by L£(A) be the set of configurations accepted
by A. A set C of configurations is called regular if there is some P-automaton A with
L(A)=C.

Given a set C of configurations of P, we let
pre*(C)={c |3ce C:d =c}
post*(C) ={c |Fce C:c=}
If C is regular, then so are pre*(C) and post*(C).
If A is a normalized P-automaton accepting C, A can be transformed into an au-

tomaton accepting pre*(C') by applying the following saturation rule until no transition
can be added:

If ¢ = r currently holds in A and pA — qw is a rule in P, then add the
transition (p, A,7) to A.

The procedure for post*(C) is similar.

Exercise 1 (Computing pre*(C')). Consider the pushdown system represented below,
with stack alphabet I' = {a, b}.

MPRI 1-22 Basics of Verification 2022

Apply the algorithm described in the lecture notes to compute a P-automaton ac-
cepting pre*(pgb*).

Exercise 2 (Dickson’s Lemma). A quasi-order (A, <) is a set A endowed with a reflexive
and transitive ordering relation <. A well quasi order (wqo) is a quasi order (A, <) s.t.,
for any infinite sequence aga; - -- in A%, there exist indices ¢ < j with a; < a;.

1. Let (A, <) be a wqo and B C A. Show that (B, <) is a wqo.
2. Show that (NW{w}, <) is a wqo.

3. Let (A, <) be a wqo. Show that any infinite sequence aga; --- in A embeds an
infinite increasing subsequence a;, < a;; < a;, < --- with 49 < i3 <@g < ---.

4. Let (A, <4) and (B, <p) be two wqo’s. Show that the cartesian product (4 x B, <y),
where the product ordering is defined by (a,b) <y« (a’,V) iff a <4 a’ and b <p ¥V,
is a wqo.

Exercise 3 (Labelled Pushdown Systems). Let P = (P,I', A, ¥) be a labelled pushdown

system, i.e. the rules in A are of the form pA < qw, where p,q € P are control locations,
A €T and w € I'* are stack symbols, and additionally a € ¥ is an action. The set of
configurations Con(P) consists of the tuples qw with ¢ € P and w € IT'*. For two
configurations ¢, ¢ we write ¢ = ¢/, where w € X*, if ¢ can be transformed into ¢ by a
sequence of rules whose labels yield w.

Given a regular set of configurations C, it is known how to compute pre*(C) = {c €
Con(P) | 3¢ € C,w € ¥* : ¢ = ¢ }. If C is accepted by an automaton with n states,
this takes O(n? - |A|) time.

1. Let L C ¥* be a regular language and C be a regular set of configurations. We
define
pre*[L)(C) :={c€ Con(P) |3 € C,w € L:c = }.

One can prove that pre*[L](C) is regular. Describe how to compute a finite au-
tomaton accepting pre*[L](C).

2. Give a bound on the amount of time it takes to compute pre*[L](C).

Exercise 4 (Data-flow Analysis). We consider a problem from interprocedural data-flow
analysis. A program consists of a set Proc of procedures that can execute and recursively
call one another. The behaviour of each procedure p is described by a flow graph, an
example with two procedures is shown below.

MPRI 1-22 Basics of Verification 2022

Ninit Np
r=25 y =2
" ()
skip
call(p) x=0

12 Lp
) (=)

Formally, a flow graph for procedure p € Proc is a tuple G, = (Np, A, Ep, ep, 7)),
where

e N, are the nodes, corresponding to program locations; we denote N := Np.

p€E Proc

o A= ArU{call(p) | p € Proc} are the actions, where A are internal actions (such
as assignments etc); additionally an action can call some procedure. A is identical
for all procedures.

e £, C N, x Ax N, are the edges, labelled with actions from A. We denote
E = UpEProc EP‘

e ¢, is the entry point of procedure p, i.e. when p is called, execution will start at e,.

e 1, is the exit point of p (without any outgoing edges); when z, is reached, p
terminates and execution resumes at last call site of p.

1. Construct a labelled pushdown system with one single control location that ex-
presses the behaviour of the procedures in Proc.

Suppose that the internal actions in A; describe assignments to global variables,
i.e. they are of the form v := expr, where v is a variable and expr the right-hand-side
expression. If v is a variable, then D, C Ay is the set of actions that assign a value to v
and R, C Ay the set of actions where v occurs on the right-hand side.

Let Init € Proc be an initial procedure and n € N a node in the flow graph. We say
that variable v is live at n if there exists a node n’ and an execution that (i) starts at
€emit, (i) passes n, (iii) finally reaches n’ with an action from R,, and (iv) there is no
assignment to v between n and n’ in this execution. (Intuitively, this means that the
value that v has at n matters for some execution; this is used in compiler construction
to determine whether an optimizing compiler may “forget” the value of v at n.) For
instance, in the shown example, the variable x is live at n; and e,, but not in the other
nodes.

MPRI 1-22 Basics of Verification 2022

2. Describe a regular language L C A* that describes the sequences of actions that
can happen along such executions between n and n’.

3. Describe how, given a variable v, one can compute the set of nodes n such that v
is live at n.

