TD 9: Pushdown Systems

Reminder:

A pushdown system (PDS) is a triple \(P = (P, \Gamma, \Delta) \), where \(P \) is a finite set of control states, \(\Gamma \) is a finite stack alphabet, and \(\Delta \subseteq (P \times \Gamma) \times (P \times \Gamma^*) \) is a finite set of rules. We write \(pA \xrightarrow{} qw \) when \(((p, A), (q, w)) \in \Delta \). We associate with a PDS \(P \) and an initial configuration \(c_0 \in P \times \Gamma^* \) the transition system \(T_P = (\text{Con}(P), \rightarrow, c_0) \), where \(\text{Con}(P) = P \times \Gamma^* \) is the set of configurations, and \(pA w \rightarrow qw w' \) for all \(w' \in \Gamma^* \) iff \(pA \xrightarrow{} qw \in \Delta \). We write \(pw \Rightarrow p' w' \) if there is a path from \(pw \) to \(p' w' \) in \(T_P \).

Let \(P \) be a PDS. A \(P \)-automaton is a finite automaton \(A = (Q, \Gamma, P, T, F) \), where the alphabet of \(A \) is the stack alphabet \(\Gamma \), and the initial states of \(A \) are the control states \(P \). It is normalized if there are no transitions leading into initial states. We say that \(A \) accepts the configuration \(pw \) if \(A \) has a path labelled by input \(w \) starting at \(p \) and ending at some final state. We denote by \(\mathcal{L}(A) \) be the set of configurations accepted by \(A \). A set \(C \) of configurations is called regular if there is some \(P \)-automaton \(A \) with \(\mathcal{L}(A) = C \).

Given a set \(C \) of configurations of \(P \), we let

\[
\text{pre}^*(C) = \{ c' \mid \exists c \in C : c \Rightarrow c' \} \\
\text{post}^*(C) = \{ c' \mid \exists c \in C : c \Rightarrow c' \}
\]

If \(C \) is regular, then so are \(\text{pre}^*(C) \) and \(\text{post}^*(C) \).

If \(A \) is a normalized \(P \)-automaton accepting \(C \), \(A \) can be transformed into an automaton accepting \(\text{pre}^*(C) \) by applying the following saturation rule until no transition can be added:

If \(q \xrightarrow{w} r \) currently holds in \(A \) and \(pA \xrightarrow{} qw \) is a rule in \(P \), then add the transition \((p, A, r) \) to \(A \).

The procedure for \(\text{post}^*(C) \) is similar.

Exercise 1 (Computing \(\text{pre}^*(C) \)). Consider the pushdown system represented below, with stack alphabet \(\Gamma = \{a, b\} \).

1
Apply the algorithm described in the lecture notes to compute a \(\mathcal{P} \)-automaton accepting \(\preceq^* (p_0 b^*) \).

Exercise 2 (Dickson’s Lemma). A quasi-order \((A, \leq) \) is a set \(A \) endowed with a reflexive and transitive ordering relation \(\leq \). A well quasi order (wqo) is a quasi order \((A, \leq) \) s.t., for any infinite sequence \(a_0 a_1 \cdots \) in \(A^\omega \), there exist indices \(i < j \) with \(a_i \leq a_j \).

1. Let \((A, \leq) \) be a wqo and \(B \subseteq A \). Show that \((B, \leq) \) is a wqo.
2. Show that \((\mathbb{N} \cup \{\omega\}, \leq) \) is a wqo.
3. Let \((A, \leq_A) \) be a wqo. Show that any infinite sequence \(a_0 a_1 \cdots \) in \(A^\omega \) embeds an infinite increasing subsequence \(a_{i_0} \leq a_{i_1} \leq a_{i_2} \cdots \) with \(i_0 < i_1 < i_2 < \cdots \).
4. Let \((A, \leq_A) \) and \((B, \leq_B) \) be two wqo’s. Show that the cartesian product \((A \times B, \leq_\times) \), where the product ordering is defined by \((a, b) \leq_\times (a', b') \) iff \(a \leq_A a' \) and \(b \leq_B b' \), is a wqo.

Exercise 3 (Labelled Pushdown Systems). Let \(\mathcal{P} = (P, \Gamma, \Delta, \Sigma) \) be a labelled pushdown system, i.e. the rules in \(\Delta \) are of the form \(pA \xrightarrow{a} qw \), where \(p, q \in P \) are control locations, \(A \in \Gamma \) and \(w \in \Gamma^* \) are stack symbols, and additionally \(a \in \Sigma \) is an action. The set of configurations \(\text{Con}(\mathcal{P}) \) consists of the tuples \(qw \) with \(q \in P \) and \(w \in \Gamma^* \). For two configurations \(c, c' \) we write \(c \xrightarrow{w} c' \), where \(w \in \Sigma^* \), if \(c \) can be transformed into \(c' \) by a sequence of rules whose labels yield \(w \).

Given a regular set of configurations \(C \), it is known how to compute \(\preceq^*(C) = \{ c \in \text{Con}(\mathcal{P}) \mid \exists c' \in C, w \in \Sigma^*: c \xrightarrow{w} c' \} \). If \(C \) is accepted by an automaton with \(n \) states, this takes \(\mathcal{O}(n^2 \cdot |\Delta|) \) time.

1. Let \(L \subseteq \Sigma^* \) be a regular language and \(C \) be a regular set of configurations. We define

\[
\preceq^*[L](C) := \{ c \in \text{Con}(\mathcal{P}) \mid \exists c' \in C, w \in L : c \xrightarrow{w} c' \}.
\]

One can prove that \(\preceq^*[L](C) \) is regular. Describe how to compute a finite automaton accepting \(\preceq^*[L](C) \).

2. Give a bound on the amount of time it takes to compute \(\preceq^*[L](C) \).

Exercise 4 (Data-flow Analysis). We consider a problem from interprocedural data-flow analysis. A program consists of a set \(\text{Proc} \) of procedures that can execute and recursively call one another. The behaviour of each procedure \(p \) is described by a flow graph, an example with two procedures is shown below.
Formally, a flow graph for procedure $p \in \text{Proc}$ is a tuple $G_p = (N_p, A, E_p, e_p, x_p)$, where

- N_p are the nodes, corresponding to program locations; we denote $N := \bigcup_{p \in \text{Proc}} N_p$.
- $A = A_I \cup \{ \text{call}(p) \mid p \in \text{Proc} \}$ are the actions, where A_I are internal actions (such as assignments etc); additionally an action can call some procedure. A is identical for all procedures.
- $E_p \subseteq N_p \times A \times N_p$ are the edges, labelled with actions from A. We denote $E := \bigcup_{p \in \text{Proc}} E_p$.
- e_p is the entry point of procedure p, i.e. when p is called, execution will start at e_p.
- x_p is the exit point of p (without any outgoing edges); when x_p is reached, p terminates and execution resumes at last call site of p.

1. Construct a labelled pushdown system with one single control location that expresses the behaviour of the procedures in Proc.

Suppose that the internal actions in A_I describe assignments to global variables, i.e. they are of the form $v := \text{expr}$, where v is a variable and expr the right-hand-side expression. If v is a variable, then $D_v \subseteq A_I$ is the set of actions that assign a value to v and $R_v \subseteq A_I$ the set of actions where v occurs on the right-hand side.

Let $\text{Init} \in \text{Proc}$ be an initial procedure and $n \in N$ a node in the flow graph. We say that variable v is live at n if there exists a node n' and an execution that (i) starts at e_{Init}, (ii) passes n, (iii) finally reaches n' with an action from R_v, and (iv) there is no assignment to v between n and n' in this execution. (Intuitively, this means that the value that v has at n matters for some execution; this is used in compiler construction to determine whether an optimizing compiler may “forget” the value of v at n.) For instance, in the shown example, the variable x is live at n_1 and e_p, but not in the other nodes.
2. Describe a regular language \(L \subseteq A^* \) that describes the sequences of actions that can happen along such executions between \(n \) and \(n' \).

3. Describe how, given a variable \(v \), one can compute the set of nodes \(n \) such that \(v \) is live at \(n \).